
S O F T W A R E D E V E L O P E R ’ S Q U A R T E R L Y

Editor’s Note ... 1

Recent Releases ... 1

VTK’s 3D Widgets .. 3

Packaging Software With CPack ... 6

Adding a New Filter to ParaView 2.6 8

In Progress ... 12

Kitware News .. 12

This issue of the Kitware Software Developer’s Quarterly
newsletter contains three diverse articles related to Kitware’s
open source projects. Will Schroeder provides an overview
of interactive elements known as 3D Widgets that can be
embedded into a VTK scene to intuitively control various
visualization parameters. Andy Cedilnik describes a cross-
platform software packaging tool known as CPack that is
distributed as part of CMake. Amy Squillacote contributes a
detailed tutorial describing the steps required to add custom-
ized functionality, including algorithms and user interface,
to ParaView 2.6.

Kitware would like to encourage contributions to this
newletter from our active developer community by offering
a free five-volume set of Kitware books for any accepted
article. Perhaps you have contributed to one of the open
source projects and would like to write a technical article
describing your enhancement. Or perhaps you are develop-
ing a product that is built upon one or more of Kitware’s
open source projects, and would like to document
your success or lessons learned. Please send your ideas to
kitware@kitware.com.

This newsletter is just one of a suite of products and ser-
vices that Kitware offers to assist developers in getting
the most out of our open source products. Each project
web site contains links to free resources including mailing
lists, documentation, FAQs and Wikis. In addition, Kitware
offers technical books and user’s guides, consulting services,
support contracts, and training courses. For more informa-
tion on Kitware’s products and services, please visit our web
site at www.kitware.com.

Issue 3 • Jan 2007

PARAVIEW III ALPHA RELEASE
In January 2007, a new snapshot (2.9.7) of the alpha release
of ParaView III was created. This is the eighth monthly
snapshot; the first was created in June 2006. It includes
binaries for Windows, Linux (32 and 64 bit) and Mac OS X.
To download the snapshot, visit http://paraview.org/Wiki/
ParaView_III_snapshots. The following new features have
been added over the past three months:

• Improved python support. We added a programmable
python filter. The python source can be entered on the
object inspector.

• Better default values for the object inspector. These are
computed based on the input. For example, the default
maximum length of the streamlines is now computed
based on the input size.

• Pipeline browser improvements. It is now possible to
change inputs as well as add multiple inputs to filters that
support it.

• First pass at annotation. We added a text source. This
allows creation of an arbitrary number of labels on the
display. The text can be moved by clicking and dragging.
There are some glitches with the interaction. We will fix
this soon.

• Reading multiple exodus files.
• Improved chart code.
• Improved testing framework, which now includes python.
• Improved pipeline browser.
• Play/Pause in VCR controls.
• Light Kit controls added.
• Auto-generated and custom panel improvements.
• More robust server connection.
• File dialog improvements.

This screen shot highlights ParaView III’s support for
multiple viewing windows.

2

CMAKE RELEASE
CMake 2.4.6 was released in January 2007. It is available for
download at http://www.cmake.org/HTML/Download.html.
Improvements since version 2.4.3 include the following.

• Support for Windows dll version numbers.
• Improved Find/Use wxWidgets.
• Improved FindJava and FindJNI.
• Added FILE_IS_NEWER to IF command.
• Added OPTIONAL to INSTALL command.
• Added SORT and REVERSE to LIST command.
• Added SYMBOLIC as a source file property.
• Much faster dependency scanning.
• Improved support for Visual Studio 8.
• Support for QNX.
• Added APPEND option to ADD_CUSTOM_COMMAND.
• Added VERBATIM option to ADD_CUSTOM_COMMAND

and ADD_CUSTOM_TARGET.
• Added EXCLUDE_FROM_ALL option for ADD_LIBRARY and

ADD_EXECUTABLE.
• Improved FindKDE3 and FindKDE4.
• Improved FindRuby.
• Improved FindQt3 and FindQt4.
• Improved FindPNG.

ITK RELEASE
ITK 3.0 was released on November 21 2006.

The main change in this release is the addition of an alter-
native wrapping system called WrapITK. This system was
contributed by Gaetan Lehmann, Zachary Pincus and Benoit
Regrain in a paper submitted to the Insight Journal. The
paper can be found at the following Insight Journal handle:
http://hdl.handle.net/1926/188.

WrapITK uses CMake macros in order to generate the instan-
tiations of ITK templated classes. The instantiations are then
processed using CableSwig in order to generate wrappings
for Tcl, Python, and Java. The previous wrapping mechanism
is still available. Users can select what wrapping to use by
setting CMake variables at configuration time.

A review of copyrights and licenses of different subcom-
ponents of the Insight Toolkit was also performed. Several
components that were not compatible with the BSD license
were removed.

The full list of changes in this release can be found at
http://www.itk.org/Wiki/ITK_Release_3.0.

KWWIDGETS UPDATE
There has not been an official release of KWWidgets.
However, the following features have been added to the
project recently. You can download KWWidgets from http://
www.kwwidgets.org/Wiki/KWWidgets#Download.

• State machine framework with workflow wizard. (See
vtkKWStateMachine, vtkKWWizardWorkflow.) This is cur-
rently used by the EMSegment module in NAMIC Slicer3.
The vtkKWStateMachineDOTWriter can use its output to
create figures/diagrams automatically using graphviz’s
dot, or dynamically into a Wiki that supports it.

• VTK’s Error/Warning macros can be redirected to a vtkKW-
LogWidget. This is currently used by the main application
of NAMIC Slicer3. This widget can be used to display
various types of records/events in the form of a multi-

column log. Each record is time-stamped automatically,
and the interface allows the user to sort the list by time,
type, or description. This widget can be inserted in any
widget hierarchy, or used as a standalone dialog through
the vtkKWLogDialog class.

• Many new widgets have been added including,
 • vtkKWListBoxWithScrollbarsWithLabel
 • vtkKWMatrixWidget
 • vtkKWMatrixWidgetWithLabel
 • vtkKWMultiColumnListWithLabel
 • vtkKWScaleWithLabelSet

TECHNICAL BOOKS
The Visualization Toolkit: An Object-Oriented Approach
to 3D Graphics, 4th edition (ISBN 1-930934-19-X) has been
recently updated for VTK 5. This new hardcover version is
528 pages long and is printed in full color. It is available from
Kitware’s on-line store (http://www.kitware.com/products/
vtktextbook.html) and from Amazon.com.

RECENT PUBLICATIONS
The January issue of IEEE Software contains an article by
Ken Martin and Bill Hoffman describing Kitware’s software
process. The article focuses on the software engineering tools
and processes used by Kitware for software development.
The process includes communication and documentation,
revision control, build management with CMake, automated
testing with dashboards, and the process for release creation.
If your organization is interested in applying Kitware’s soft-
ware process, please contact Kitware for information about
setting up a course.

IEEE Software, January/February 2007 (Vol. 24, No. 1) , ISSN:
0740-7459.

3

INTRODUCTION
Visualization is most effective when users can interact
with their data. In the earliest incarnations of visualization
systems, this capability was typically supported by provid-
ing interactive scripting interfaces such as Python or Tcl, or
building applications with conventional 2D GUI’s that drove
the underlying visualization pipeline. While effective at
times, such approaches did not realize the full potential of
interactive visualization. Users often want to reach into the
3D scene and directly manipulate the underlying data (for
example, by orientating a cut plane or seeding streamlines).

Over the last couple of years, the VTK community has
responded to the desire for interactive, 3D visualization by
developing a set of widgets. Simply speaking, in VTK a widget
is an object in a scene that responds to user events (e.g.,
mouse clicks) and data changes by corresponding changes
in its appearance or behavior. For example, Figure 1 shows a
simple vtkLineWidget. In this widget, the end points of the
line (which have sphere handles) as well as the line itself can
be directly positioned with the mouse. As the figure illus-
trates, this widget can be used to seed streamlines, as well as
for many other purposes, since the widgets are designed to
be flexible in application.

Figure 1: vtkLineWidget

OVERVIEW
VTK’s widget design is evolving. In large part this is because
no definitive widget sets for 3D visualization have been
created. While researchers at Brown University (http://graph-
ics.cs.brown.edu/research/widgetlib/), at the SCI Institute in
Utah (http://www.sci.utah.edu/stories/2001/fall_haptics.html)
and others have performed leading edge work in this area,
because of the complexity of the underlying data and diver-
sity of applications, the full potential of widget capabilities
has been mostly unrealized. Thus, while the VTK community
is learning from previous work, in many cases we are creat-
ing new technology without established precedent.

The earliest attempts at widgets in VTK created monolithic
objects derived from the vtkInteractorObserver class. This
class simply observes events emitted from the vtkRender-
WindowInteractor class, which is responsible for managing
VTK’s render window event loop. (Note that the interactor
styles, which translate mouse and keyboard events into
camera motion, are also subclasses of vtkInteractorOb-
server. Interactor styles differ from widgets in that they do

not provide a geometric representation in the 3D scene.)
These early widgets, while demonstrating the utility of the
widget concept, suffered from some design deficiencies.
First, they provided no mechanism to change the event
bindings to customize behavior, and second, the monolithic
design combined both the event processing and geometric
representation, meaning that changing the appearance of
the widget was difficult, requiring a complete rewrite. As a
result, a second generation widget design, which is the one
described in this article, has evolved.

Before getting into details about the widget implementa-
tion, you may wish to orient yourself by checking out the
latest CVS version of VTK, and studying the VTK/Widgets
subdirectory. Also, for those wishing more details than this
article can provide, the wiki page http://www.vtk.org/Wiki/
VTKWidgets provides detailed information suitable for the
developer. Figure 2 below illustrates just a few of the many
widgets that are currently extant in VTK.

Figure 2: Some of the many widgets found in VTK.

A brief description of these widgets follows. Note that
this is a subset chosen to exemplify the breadth of VTK’s
current capabilities.

• vtkBoxWidget – a 3D box that can be translated,
scaled, and/or oriented, producing an output transforma-
tion matrix.

• vtkImagePlaneWidget – control planes embedded in
a volume.

VTK’S 3D WIDGETS

�

• vtkImplicitPlaneWidget – orient a plane using its normal
and origin.

• vtkPlaneWidget – manipulate the extent and orientation
of a finite plane.

• vtkScalarBarWidget – position a vtkScalarBar (i.e., data
legend).

• vtkSphereWidget – orient a point in a spherical coordinate
system.

• vtkContourWidget – define and edit contours; typically
used for segmentation.

• vtkRectilinearWipeWidget – display two widgets simulta-
neously in a window pane (used to compare images, the
panes can be interactively positioned).

• vtkSliderWidget – control a scalar value with a 2D or
3D slider.

• vtkBalloonWidget – pop up text and/or images when the
mouse hovers over an object.

• vtkTextWidget – control the position and size of text.
• vtkDistanceWidget – measure the distance between

two points.
• vtkBiDimensionalWidget. – measure in two orthogonal

directions across an image.

Many more widgets exist, but this provides an overview of
the capabilities that can be found in VTK.

IMPLEMENTATION
VTK’s current widget design supports the ability to custom-
ize event bindings and decouples the widget representation
(i.e., its geometry) from event processing. Thus it is possible
to reprogram event bindings and create a new appearance
for a widget. In this section we provide a brief overview of
this capability.

Decoupling Event Processing from Representation. Second
generation VTK widgets are implemented in two parts. The
first, the part responsible for event processing, inherits from
vtkAbstractWidget. The second, the part responsible for
geometric representation, inherits from the abstract class
vtkWidgetRepresentation. This relationship is depicted in
Figure 3.

Figure 3: Overview of VTK widget design.

Of special note is that widget representations are a subclass
of vtkProp. This means that, like all actors in VTK, they can
be added to vtkRenderer and appear in the scene. However,
they have the added distinction that they can cooperate with
appropriate subclasses of vtkAbstractWidget to create a 3D
widget. This separation, besides providing a relatively easy
way to change the appearance of a widget (by swapping
out its representation), is important in parallel processing or
client server applications. In such situations, a single client
widget may drive multiple representations (e.g., imagine a
power wall display where a single sequence of events on
the client may control multiple representations distributed
across multiple processors).

Customized Event Bindings. The first generation VTK
widgets were implemented with hard-wired event bindings;

vtkInteractorObserver

vtkAbstractWidget

vtkProp

vtkWidgetRepresentation

e.g., a “LeftButtonPressEvent” was directly implemented
to execute a particular action. Changing the action/event
binding could not be changed without re-coding the widget.
This is a problem when users desire different bindings due
to personal preference, use of different interaction devices,
etc. To address this problem, the second generation widgets
create a separation between VTK events and widget events.
An event translator is used to translate a VTK event into a
widget event. In turn, the widget event is mapped into a
method invocation. Figure 4 provides a logical overview of
this process.

Figure 4: Widget event translation.

Other Considerations. VTK’s widget design allows multiple
widgets to be active simultaneously and in conjunction with
camera manipulators (i.e., instances of vtkInteractorStyle
or any other subclass of vtkInteractorObserver). This works
because most widgets are spatially sensitive and/or beacuse
event processing can be ordered. When events are emitted
by the interactor, active widgets may receive the event if
they have registered to receive it, and if so, they further
evaluate the event to determine whether it lies within the
spatial domain encompassed by the widget. If so, the widget
will process the event, and usually abort the processing of
the event so that other widgets do not also react to it. If
not processed, the event is processed by the next registered
observer. VTK’s event processing system enables observers to
prioritize themselves through a combination of setting their
priority and tracking the order in which they register for
events. Thus users can manage multiple widgets and control
situations in which contention for events or other resources
is a possibility.

Users will also notice that carefully implemented widgets
invoke cursor change requests to provide hints to the user
that a widget is active and what the behavior is likely to be.
For example, when passing the mouse cursor over a corner
of the text widget, the cursor changes to indicate that a
resize operation may take place.

ExAMPLES
With this brief introduction behind us, it is time to examine
how this plays out in practice. Creating a widget requires
instantiating the widget and its representation, and then
associating them with each other as follows.

vtkWidgetEventTranslator

vtkWidgetCallbackMapper

VTK Event

LeftButtonPressEvent Select

LeftButtonReleaseEvent EndSelect

MiddleButtonPressEvent Translate

MiddleButtonReleaseEvent EndTranslate

RightButtonPressEvent Scale

RightButtonReleaseEvent EndScale

MouseMoveEvent Move

StartEvent

Select SelectAction()

EndSelect EndSelectAction()

Translate TranslateAction()

EndTranslate EndTranslateAction()

Scale ScaleAction()

EndScale EndScaleAction()

Move MoveAction()

SizeHandles SizeHandlesAction()

SizeHandles

Widget Event

Widget Event

Widget Event

VTK Event

Callback

Method
Invocation

�

 vtkLogoRepresentation *rep =
 vtkLogoRepresentation::New();
 rep->SetImage(image1->GetOutput());
 rep->GetImageProperty()->SetOpacity(0.67);

 vtkLogoWidget *widget = vtkLogoWidget::New();
 widget->SetInteractor(iren);
 widget->SetRepresentation(rep);

Here we create a logo widget and its representation. This
widget simply provides a method to position and resize an
image on the renderer’s overlay plane (the image may be
translucent). The representation typically requires specific
data members to be specified. (Here the image is provided
and its opacity specified.) Then the representation is asso-
ciated with the widget. Finally, widgets must know which
vtkRenderWindowInteractor they are observing; this is speci-
fied via the SetInteractor(vtkRenderWindowInteractor*)
method.

(Note: often widgets are created in the “off” state, that
is, they are not listening to any events except the acti-
vation event which is typically defined as “keypress i.”
Alternatively, invoking the widget->On() method will activate
the widget.)

The next example is more complex because we position the
widget in the scene, set up its appearance, and override
some event bindings as follows.

vtkSliderRepresentation3D *sliderRep =
 vtkSliderRepresentation3D::New();
sliderRep->SetValue(0.25);
sliderRep->SetTitleText(“Spike Size”);
sliderRep->GetPoint1Coordinate()->
 SetCoordinateSystemToWorld();
sliderRep->GetPoint1Coordinate()->SetValue(0,0,0);
sliderRep->GetPoint2Coordinate()->
 SetCoordinateSystemToWorld();
sliderRep->GetPoint2Coordinate()->SetValue(2,0,0);
sliderRep->SetSliderLength(0.075);
sliderRep->SetSliderWidth(0.05);
sliderRep->SetEndCapLength(0.05);

vtkSliderWidget *sliderWidget =
 vtkSliderWidget::New();
sliderWidget->GetEventTranslator()->SetTranslation(
 vtkCommand::RightButtonPressEvent,
 vtkWidgetEvent::Select);
sliderWidget->GetEventTranslator()->SetTranslation(
 vtkCommand::RightButtonReleaseEvent,
 vtkWidgetEvent::EndSelect);
sliderWidget->SetInteractor(iren);
sliderWidget->SetRepresentation(sliderRep);

Typically the widget representations provide special methods
that couple the widget to data. For example, the vtkCheck-
erboardRepresentation provides methods to associate the
widget with vtkImageData. Thus interacting with the widget
can directly modify the image and any data processing pipe-
line dependent upon it. Further, in some cases more than one
representation is available; for example the representations
vtkSliderRepresentation2D and vtkSliderRepresentation3D
provide slider behavior in a 2D (overlay) and 3D implementa-
tion, respectively.

WRITING YOUR OWN WIDGET
Writing your own widget is not for the novice. It requires
knowledge of VTK’s rendering process, event processing,
transformations, and geometry engine. It also requires
dogged determination to polish the widget’s appearance
and behavior. Ask any widget implementer, and they will
likely tell you they are never completely satisfied with the

behavior or appearance of the widget in certain conditions.
As is typical in many implementation tasks, the best place to
start is to study existing implementations, focusing closely
on those implementations that are similar to the new one.
For example, if you are creating a widget that renders in
the 2D overlay plane, study the various widgets that do the
same. Also a subtle but critically important issue regards
the coordinate system in which widget interaction and
display occurs. User events naturally occur in the renderer’s
x-y display space; however 3D widgets are defined in the
x-y-z world space. Managing the events and transforming
between coordinate systems can be difficult to implement
correctly without careful consideration.

If you are programming a new representation to plug into an
existing widget, the API between the representation and its
associated widget is defined. Thus the developer’s attention
should be focused on the appearance and behavior of the
representation based on a known set of method invocations.
Designing the geometry requires an eye towards creating
a simple, intuitive interface that is easy to interact with.
Further, the widget author must carefully consider the poten-
tial widget states and the resulting appearance, including
highlighting handles, changing the cursor, and enabling/dis-
abling annotation. It is also important to anticipate extreme
interaction behavior. For example, what happens when a
widget, such as vtkBoxWidget, is turned inside out?

If you are designing an entirely new widget, then the
event processing must be taken into account as well as its
representation. This requires defining an API between the
two classes. The starting point is to subclass the necessary
methods from vtkWidgetRepresentation, and to make the
API consistent with other, pre-existing widgets. (vtkWidget-
Representation cannot fully specify the entire API for all its
subclasses because widget behavior is so complex. Rather
it defines a framework which subclasses should utilize.)
Further, an initial mapping between VTK events and widget
behavior must be defined. This requires defining a sequence
of callbacks that correspond to events. Of course, you will
subclass from vtkAbstractWidget and implement the virtual
methods as appropriate.

Finally, before implementing your widget, look for
superclasses from which to derive widget behavior. The
vtkBorderWidget and its associated representation supports
rectangular-box resizing and expects subclasses to place their
representation inside the border (e.g., vtkTextWidget). The
vtkHoverWidget sets a timer when the mouse stops moving;
subclasses can intercept the timer to take action (e.g., dis-
playing text and/or an image next to the cursor, which the
subclass vtkBalloonWidget does). The ContourWidget (and
associated classes including vtkPointPlacer) defines a frame-
work for creating contours on objects.

WHAT’S NExT
VTK’s widget design and implementation is an ongoing
effort. At Kitware, our customers have expressed strong
interest in this technology. Due to generous support from
the US National Library of Medicine, the National Centers
for Biomedical Computing (see na-mic.org), the National
Science Foundation, and several commercial custom-
ers, we are adding new widgets and addressing several
design issues.

Most of the new widgets currently in development are
aimed at applications in biomedical computing. For example,

6

PACKAGING SOFTWARE
WITH CPACK

widgets to segment or register image data are becoming
increasingly important. Another emerging capability in VTK,
that of information visualization, is placing demands on
tools for interacting with meta-data.

Many of the current design issues address resource con-
tention. When scenes are populated with many widgets,
it is necessary to coordinate events and rendering so that
widgets are rendered appropriately, including displaying
cursor shape requests correctly. For example, if widgets are
prioritized in a particular order, the rendering process must
render the widget geometry in consistent fashion.

CONCLUSION
VTK’s 3D widgets have shown themselves to be powerful,
useful additions to the toolkit. While the current suite of pos-
sible widgets is relatively small compared to what is possible,
and active development continues, VTK’s widget technology
is mature enough to benefit most visualization applications.
Many users find that once they begin using widgets, their
applications become inherently more interactive and pow-
erful. We encourage you to incorporate VTK’s widgets into
your own work, and provide the community with the neces-
sary feedback to make this technology even better.

Dr. William J. Schroeder is President and
co-founder of Kitware, Inc. His current
interests include human-computer interac-
tion, open source software systems, and
visualization technology.

Software development and deployment typically consists
of several stages including design, coding, testing, and
distribution. Each stage imposes some cost on the project
since it requires time and effort to complete it. This is why
even a small amount of automation of these stages can be
extremely helpful.

A big part of distribution of software is a good packaging
strategy. However, most developers opt for a manual pack-
aging technique. This may include manually adding a list of
files to be distributed into an external packaging tool, or
even developing their own packaging tool. This strategy may
work on static projects, but on today’s highly agile software
projects, the packaging can quickly become out of date with
the actual software project. This introduces bugs that soft-
ware developers generally do not see. Furthermore, when
developing software in a cross-platform fashion, packaging
bugs can be introduced because developers do not have
access to all the platforms.

CPack is a simple packaging tool that is attempting to
solve this problem. Its first technology preview release is
distributed with CMake 2.4. CPack uses a familiar notion of
generators from CMake to abstract platform specific pack-
aging requirements. It then internally invokes the native
system packaging tool. Using this approach, the developers
do not actually have to have access to all the platforms. They
are only required to ensure their platform works properly,
and then CPack will perform the work on other platforms.

Currently, there are several generators available. The first
group of generators consists of compress-only generators.
They include ZIP, TZ (Tar compress), TGZ (Tar GZip), and TBZ2
(Tar BZip2). The second group contains generators that
actually perform installation on the system. They include
self-extracting Tar GZip for Unix systems (STGZ), Mac OSX
Package Maker (PackageMaker), and MS Windows Null Soft
Installer System (NSIS). TBZ2, ZIP, and NSIS rely on system-
installed programs in order to create the packages. For
example the NSIS generator requires the Null Soft Installer
System to be installed.

GENERATING INPUT FOR CPACK
To use CPack, the following line must be added to the CMake
list file.

include(CPack)

This line will include the CPack module that will examine the
project and pick defaults for the package. CMake will inter-
nally create CPackConfig.cmake and CPackSourceConfig.
cmake files in the build directory. These files include all the
necessary settings that CPack uses to install the project.

The CPack module sets a list of parameters based on certain
defaults. However, the user can overwrite all these defaults.
For example, by default CPACK_PACKAGE_NAME (used as
a base for the package name) is set to the current CMake
project name. The user can overwrite this by setting the
appropriate CMake variables before including the CPack
module.

project(MyProject)
...
set(CPACK_PACKAGE_NAME “MySpecialProject”)
...
include(CPack)

In addition to including the CPack module, one or more
INSTALL commands must be used to specify the actual files
to be installed. The INSTALL command can be used to install
files, libraries, and executables, and even to invoke custom
CMake scripts.

CPack can be also used without CMake. When using CPack
with CMake, CMake can report to CPack all the necessary
configuration options. However, when using CPack without
CMake, the developer will have to provide all the needed
information. The developer also has to make sure that there
is an appropriate install script available. This install script is
then used by CPack to populate the directories that will be
compressed in the package.

RUNNING CPACK
Once the input files for CPack are provided, the CPack execut-
able can be invoked to generate the actual package. When
using CMake to generate CPack input files, CMake will also
generate packaging targets in the Make, Visual Studio, or
Xcode files. This way the user can simply invoke the packag-
ing target as shown below.

make package

7

Alternatively, the user may invoke the CPack executable
directly. For example on Mac OSX, the user may invoke the
following command.

cpack --config CPackConfig.cmake -G PackageMaker

To get other command line option, the --help command line
option can be used with the CPack executable. This option
will also show the list of packaging generators.

CPACK SETTINGS
CPack uses several variables for packaging the project. These
variables can be generator-independent or generator-depen-
dent. Generator-independent ones include the following.

CPACK_GENERATOR
 - Generator used to create package
CPACK_INSTALL_CMAKE_PROJECTS
 - For each project (path, name, component)
CPACK_CMAKE_GENERATOR
 - CMake Generator used for the projects
CPACK_INSTALL_COMMANDS
 - Extra commands to install components
CPACK_INSTALL_DIRECTORIES
 - Extra directories to install
CPACK_PACKAGE_DESCRIPTION_FILE
 - Description file for the package
CPACK_PACKAGE_DESCRIPTION_SUMMARY
 - Summary of the package
CPACK_PACKAGE_EXECUTABLES
 - List of pairs of executables and labels
CPACK_PACKAGE_FILE_NAME
 - Name of the package generated
CPACK_PACKAGE_ICON
 - Icon used for the package
CPACK_PACKAGE_INSTALL_DIRECTORY
 - Name of directory for the installer
CPACK_PACKAGE_NAME
 - Package project name
CPACK_PACKAGE_VENDOR
 - Package project vendor
CPACK_PACKAGE_VERSION
 - Package project version
CPACK_PACKAGE_VERSION_MAJOR
 - Package project version (major)
CPACK_PACKAGE_VERSION_MINOR
 - Package project version (minor)
CPACK_PACKAGE_VERSION_PATCH
 - Package project version (patch)

Some NSIS generator specific variables follow.

CPACK_PACKAGE_INSTALL_REGISTRY_KEY
 - Name of the registry key for the installer
CPACK_NSIS_EXTRA_UNINSTALL_COMMANDS
 - Extra commands used during uninstall
CPACK_NSIS_EXTRA_INSTALL_COMMANDS
 - Extra commands used during install

FULL ExAMPLE
For this example, we assume we have a shared library, an
executable, some header files, and documentation. The
CMake list file would look like this.

project(WetFox)

add_library(wetfoxlib ...)
add_executable(WetFox ...)
target_link_libraries(WetFox wetfoxlib ...)

install(TARGETS wetfoxlib WetFox
 # .exe, .dll
 RUNTIME DESTINATION bin COMPONENT Runtime
 # .so, .sl, ...
 LIBRARY DESTINATION lib COMPONENT Runtime
 # .a, .lib
 ARCHIVE DESTINATION lib COMPONENT Develop
)
install(FILES
 ${WetFox_SOURCE_DIR}/wetfox.h
 DESTINATION include
 COMPONENT Develop)

set(wf_version_major “0”)
set(wf_version_minor “3”)
set(wf_version_patch “19”)

set(CPACK_PACKAGE_DESCRIPTION_SUMMARY
 “WetFox is an alternative to FireFox”)
set(CPACK_PACKAGE_VENDOR “WetWare”)
set(CPACK_PACKAGE_DESCRIPTION_FILE
 “${CMAKE_CURRENT_SOURCE_DIR}/ReadMe.txt”)
set(CPACK_RESOURCE_FILE_LICENSE
 “${CMAKE_CURRENT_SOURCE_DIR}/Copyright.txt”)
set(CPACK_PACKAGE_VERSION_MAJOR
 “${wf_version_major}”)
set(CPACK_PACKAGE_VERSION_MINOR
 “${wf_version_minor}”)
set(CPACK_PACKAGE_VERSION_PATCH
 “${wf_version_patch}”)
set(CPACK_PACKAGE_INSTALL_DIRECTORY
 “WetFox
 ${wf_version_major}.${wf_version_minor}”)
set(CPACK_SOURCE_PACKAGE_FILE_NAME
 “wetfox-${wf_version_major}.
 ${wf_version_minor}.${wf_version_patch}”)
if(WIN32 AND NOT UNIX)
 # There is a bug in NSIS that does not handle full
 # unix paths properly. Make sure there is at least
 # one set of four (4) backslashes.
 set(CPACK_PACKAGE_ICON
 “${WetFox_SOURCE_DIR}/
 Utilities/Release\\\\WetFox.bmp”)
 set(CPACK_NSIS_INSTALLED_ICON_NAME
 “bin\\\\WetFox.exe”)
 set(CPACK_NSIS_DISPLAY_NAME
 “${CPACK_PACKAGE_INSTALL_DIRECTORY} a FireFox
 alternative”)
 set(CPACK_NSIS_HELP_LINK
 “http:\\\\\\\\www.wetware.com/WetFox”)
 set(CPACK_NSIS_URL_INFO_ABOUT
 “http:\\\\\\\\www.wetware.com”)
 set(CPACK_NSIS_CONTACT “fox@wetware.com”)
else(WIN32 AND NOT UNIX)
 set(CPACK_STRIP_FILES “bin/WetFox”)
 set(CPACK_SOURCE_STRIP_FILES “”)
endif(WIN32 AND NOT UNIX)
set(CPACK_PACKAGE_EXECUTABLES “WetFox” “Wet Fox”)

CONCLUSION
CPack is a work in progress, and new features are added on a
daily basis. Some improvements for the future include more
generators, such as RPM for RedHat and Fedora Linux, as
well as Cygwin support. Additionally a scripting mode will

8

be added to allow automatic packaging of projects. With
better uploading and downloading capabilities of CMake,
CPack will be able to automatically package and upload the
packages to the download directory.

Andy Cedilnik is a project lead in Kitware’s
Clifton Park, NY, office. Mr. Cedilnik is the
principle developer behind CTest and CPack,
as well as one of the principle developers
behind CMake. He is also a project manager
for ParaView Enterprise Edition

One of the most powerful features of ParaView is its extensi-
bility. This allows ParaView users and developers to add new
functionality to ParaView in the form of readers, sources, and
filters. We will demonstrate the process of adding new algo-
rithmic functionality to ParaView as well as the user interface
(GUI) to support it. There are three different methods you
may use to create a new filter and make it available within
ParaView 2.6. You may directly modify the ParaView source
code; you may create your new filter outside of ParaView,
but then link it into ParaView at compile time; or you may
create your new filter outside of ParaView and import it into
the application at run-time. This final option is the one we
will discuss in this article. We will demonstrate this step-by-
step process using a very simple filter, but more complex
algorithms can be added to ParaView in the same manner.

The eight steps outlined in this article may be applied for
any new filter you wish to add to this application. If the
filter you wish to enable in ParaView already exists in VTK,
you may skip steps 1, 4, and 5. To demonstrate the required
steps when the filter does not already exist in ParaView, we
will create a filter to flip the coordinates of a VTK dataset
by negating the X-, Y-, or Z-coordinate of each point in the
dataset. After applying this filter, the dataset will use left-
handed coordinates rather than right-handed ones.

1. WRITE A VTK FILTER
Before we can add a filter to ParaView, we must first write
the new VTK filter, a subclass of vtkAlgorithm. For this
example, the filter, named vtkFlipCoordsFilter, will operate
on and produces as output a dataset with explicit points (i.e.,
subclasses of vtkPointSet: vtkPolyData, vtkUnstructuredGrid,
and vtkStructuredGrid), so the filter will be a subclass
of vtkPointSetAlgorithm. The header file for this class is
shown below.

#ifndef __vtkFlipCoordsFilter_h
#define __vtkFlipCoordsFilter_h

#include “vtkPointSetAlgorithm.h”

class VTK_EXPORT vtkFlipCoordsFilter :
public vtkPointSetAlgorithm
{
public:
 static vtkFlipCoordsFilter* New();
 vtkTypeRevisionMacro(vtkFlipCoordsFilter,
 vtkPointSetAlgorithm);
 void PrintSelf(ostream& os, vtkIndent indent);

ADDING A NEW FILTER TO
PARAVIEW 2.6

 // Description:
 // Set/get which axis’ coordinates should
 // be negated.
 // X = 0, Y = 1, Z = 2.
 vtkSetClampMacro(Axis, int, 0, 2);
 vtkGetMacro(Axis, int);

protected:
 vtkFlipCoordsFilter();
 ~vtkFlipCoordsFilter() {}

 int RequestData(vtkInformation *,
 vtkInformationVector **,
 vtkInformationVector *);

 int Axis;

private:
 vtkFlipCoordsFilter(const vtkFlipCoordsFilter&);
 void operator=(const vtkFlipCoordsFilter&);
};

#endif

The Axis variable will determine which coordinate of the
points will be negated. It can have any of the integer values
0, 1, or 2. For this reason, we use a vtkSetClampMacro to
create the SetAxis method. The last two parameters passed
to this macro specify the range of the Axis variable. If you
try to set the variable to a value outside this range, it will be
clamped to this range.

Notice that in the header file for this filter, the constructor
and destructor are protected rather than public. VTK objects
are created and deleted using New() and Delete() methods
rather than calling new and delete directly. This allows VTK
to perform certain functions on every vtkObject that is
created or deleted.

Also notice the RequestData method. This is the method
where most of the work of this filter is done. The VTK pipe-
line calls this method to request that the filter perform its
operation on the data. Shown below is the implementation
of the RequestData method.

int vtkFlipCoordsFilter::RequestData(
 vtkInformation* vtkNotUsed(request),
 vtkInformationVector** inputVector,
 vtkInformationVector* outputVector)
{
 // get the information objects
 vtkInformation *inInfo =
 inputVector[0]->GetInformationObject(0);
 vtkInformation *outInfo =
 outputVector->GetInformationObject(0);

 // get the input and output
 vtkPointSet *input = vtkPointSet::SafeDownCast(
 inInfo->Get(vtkDataObject::DATA_OBJECT()));
 vtkPointSet *output = vtkPointSet::SafeDownCast(
 outInfo->Get(vtkDataObject::DATA_OBJECT()));

 // Copy the structure of the input dataset
 // to the output.
 output->CopyStructure(input);

 int numPts = input->GetNumberOfPoints();
 vtkPoints *points = input->GetPoints();
 vtkPoints *newPts = vtkPoints::New();
 newPts->SetNumberOfPoints(numPts);

 double pt[3];
 int i;

�

 for (i = 0; i < numPts; i++)
 {
 // Negate the specified coordinate.
 points->GetPoint(i, pt);
 pt[this->Axis] *= -1;
 newPts->SetPoint(i, pt);
 }

 output->GetPointData()->CopyNormalsOff();
 output->GetPointData()->PassData(
 input->GetPointData());
 output->GetCellData()->CopyNormalsOff();
 output->GetCellData()->PassData(
 input->GetCellData());

 output->SetPoints(newPts);
 newPts->Delete();

 return 1;
}

Early in this method we get the input and output datasets.
In VTK, filters operate on input datasets to produce output
datasets; the input dataset is not modified. Next we set
the number of points in the output dataset to be the same
as the number in the input. We also copy the structure of
the input dataset since only the point coordinates will be
changing. We then loop through the points, negating the
specified component of each coordinate. Then we pass any
point-centered or cell-centered data from the input dataset
to the output dataset, with the exception of normals, since
they would now point in the wrong direction.

Once we have completed the required operations for this
method, we return a value of 1, indicating that the method
completed successfully. A value of 0 may be returned if
you need to exit from this method without completing the
desired operation. Please see the source code available from
http://www.kitware.com/products/newsletter.html for the
rest of the implementation details of this filter.

2. WRITE MYCUSTOM.xML.IN
Once the new filter has been written, we must write two
XML files in order to make it accessible from ParaView.
The first of these files specifies the user interface elements
ParaView should use when presenting this filter to a user.
In the case of the vtkFlipCoordsFilter, a ParaView user must
be able to choose the input to the filter and which portion
of the point coordinates to negate to change the handed-
ness of the dataset. We will use an InputMenu to specify
the input dataset and a SelectionList for choosing whether
to negate the X-, Y-, or Z-coordinate. The contents of
the XML file (myCustom.xml.in) for specifying the user inter-
face follow.

<ModuleInterface>
 <Library name=”@MODULE_NAME@”
 directory=”@LIBRARY_OUTPUT_PATH@”/>
 <ServerManagerFile name=”@MODULE_NAME@.pvsm”/>

 <!-- Start of ParaView plugin interface
 specification. -->
 <Module name=”MyCustom”
 menu_name=”Flip Coords”
 root_name=”FlipCoords”
 module_type=”Filter”
 long_help=”Custom filter to demonstrate
 importing filters to ParaView.”
 short_help=”Custom imported filter.”>
 <Filter class=”vtkFlipCoordsFilter”>
 <Input name=”Input”
 class=”vtkPointSet”/>

 </Filter>
 <InputMenu trace_name=”Input” label=”Input”
 property=”Input”
 help=”Set the input to this filter.”
 input_name=”Input”/>
 <SelectionList property=”Axis”
 trace_name=”Axis”
 label=”Axis”
 help=”Select which coordinate to negate.”>
 <Item name=”X”
 value=”0”/>
 <Item name=”Y”
 value=”1”/>
 <Item name=”Z”
 value=”2”/>
 </SelectionList>
 <Documentation>
 This filter is here to demonstrate how to
 Import filters to ParaView. It can be imported
 during run time or compiled into the code.
 </Documentation>
 </Module>
 <!-- End of ParaView plugin interface
 specification. -->
</ModuleInterface>

Each filter added to ParaView contains a starting and ending
<Module> </Module> XML tag. In this example, the name
of the Module is MyCustom; this is the name that will be
referenced by the XML file for the ParaView server; see the
next section for details. The menu_name lists the name that
that will be used for this filter in ParaView’s Filter menu. The
root_name is used by ParaView internally to determine a
unique name for each instance of this filter in a ParaView
session. The module_type specifies that this is a filter, not a
source or a reader, etc.

Inside the Module tag is a Filter tag. It specifies the name of
the VTK class that implements this filter. It also specifies the
type(s) of datasets on which this filter operates.

Following this is an XML tag for each user interface element
needed by this filter. Each user interface element has an
associated property in the server XML file; the name of
that property is listed in the XML tag for that user interface
element. Also listed will be a trace_name, used by ParaView
to identify the user interface element in its trace files. The
label is the text that is shown by that particular element
in the user interface for this filter. Additionally, for the
SelectionList (a drop-down menu listing options from which
the user may choose) we must specify what value to associate
with each option in the list. Our SelectionList will show the
values “X”, “Y”, and “Z”, but the values 0, 1, and 2 should
be passed to the filter.

At the beginning of the user interface XML file are two
XML tags after the opening ModuleInterface tag: Library
and ServerManagerFile. They contain a series of variables
enclosed in “@” symbols. These variables will be filled in
during the configuration and compilation process described
later in this article. In the Library XML tag, the directory
element will point to the location of the library we will build
containing the new filter. In the ServerManagerFile tag, the
name element lists the name of the server-side XML file.

3. WRITE MYCUSTOM.PVSM.IN
In addition to the user interface XML file, an associated
server-side XML file must also be created. The XML tags
contained in this file describe proxies (one per source, filter,
reader, etc.), properties (one per user interface element), and
domains (to specify what values are acceptable for a given

10

property). The server-side XML file (myCustom.pvsm.in) for
the example filter is shown below.

<ServerManagerConfiguration>
 <ProxyGroup name=”filters”>
 <SourceProxy name=”MyCustom”
 class=”vtkFlipCoordsFilter”>
 <InputProperty
 name=”Input”
 command=”SetInputConnection”>
 <ProxyGroupDomain name=”groups”>
 <Group name=”sources”/>
 <Group name=”filters”/>
 </ProxyGroupDomain>
 <DataTypeDomain name=”input_type”>
 <DataType value=”vtkPointSet”/>
 </DataTypeDomain>
 </InputProperty>
 <IntVectorProperty
 name=”Axis”
 command=”SetAxis”
 number_of_elements=”1”
 animateable=”1”
 default_values=”1” >
 </IntVectorProperty>
 <!-- End MyCustom-->
 </SourceProxy>
 </ProxyGroup>
</ServerManagerConfiguration>

The SourceProxy in the server-side XML file corresponds
to the Module in the user interface XML file. Within the
SourceProxy tag, the “name” element must match the
“name” element of the Module tag in the user interface
XML file; this is how ParaView determines which user inter-
face description matches which server-side description.

Each Property element in the above XML file (InputProperty
and IntVectorProperty) specify a name for the property and
a command. The property name must match the “prop-
erty” entry of the corresponding user interface element
in the user interface XML file. The command is the name
of the VTK method to call to pass values to the VTK filter
we have written. The method SetInputConnection (in the
InputProperty XML tag) is defined in the vtkAlgorithm class
(the direct superclass of vtkPointSetAlgorithm from which
vtkFlipCoordsFilter is derived). The SetAxis method men-
tioned in the IntVectorProperty tag is in the filter we wrote;
it is defined by the vtkSetClampMacro.

The InputProperty specifies the input to the filter. It has
two domains to specify acceptable values for it. The
ProxyGroupDomain says that the input dataset may be the
result of any sources (including file readers) or filters in
ParaView. The DataTypeDomain limits the type of dataset to
vtkPointSet and its subclasses.

The IntVectorProperty sets the value of the Axis variable in
vtkFlipCoordsFilter. It is not using any domains. Its default_
values element determines the default value ParaView will
use when this filter is loaded. (In this case, the default value
is 1, the Y-coordinate.) The number_of_elements entry deter-
mines the number of parameters that should be passed to
the SetAxis method; this method only takes one parameter.
The animateable element determines whether this property
of this filter may be used in creating a ParaView animation;
the “1” value specifies that it may be animated.

Please see The ParaView Guide for a more complete descrip-
tion of the XML tags that may be used in ParaView’s user
interface and server-side XML files.

�. WRITE CMAKELISTS.TxT
In order to compile the source code and configure the XML
files we have written, we must write a CMakeLists.txt file
that CMake can use to create appropriate Makefiles or
project files (depending on the compiler to be used). The
CMakeLists.txt file will allow us to create a library contain-
ing the new filter. It will also fill in the MODULE_NAME and
LIBRARY_OUTPUT_PATH variables in the user interface XML
file. The CMakeLists.txt file used is shown below.

PROJECT(ParaViewCustomFilter)

FIND_PACKAGE(ParaView REQUIRED)
INCLUDE(${PARAVIEW_USE_FILE})

Configure output directories.
SET (LIBRARY_OUTPUT_PATH “${PROJECT_BINARY_DIR}”
 CACHE INTERNAL “For libraries.”)
SET (EXECUTABLE_OUTPUT_PATH “${PROJECT_BINARY_DIR}”
 CACHE INTERNAL “For executables.”)
INCLUDE_DIRECTORIES(“${CMAKE_CURRENT_SOURCE_DIR}”
 “${CMAKE_CURRENT_BINARY_DIR}”)

specify the sources
SET(mySrcs “vtkFlipCoordsFilter.cxx”)

specify the name of the module
SET(MODULE_NAME myCustom)

Create vtk client/server wrappers for the classes.
VTK_WRAP_ClientServer(“${MODULE_NAME}” wrappedSrcs
 “${mySrcs}”)

Build the package as a plugin for ParaView.
ADD_LIBRARY(“${MODULE_NAME}” MODULE ${wrappedSrcs}
 ${mySrcs})
TARGET_LINK_LIBRARIES(“${MODULE_NAME}”
 vtkClientServer
 vtkPVServerManager)

Place the package configuration file into the build
tree.
CONFIGURE_FILE(
 ${CMAKE_CURRENT_SOURCE_DIR}/myCustom.xml.in
 ${CMAKE_CURRENT_BINARY_DIR}/myCustom.xml
 @ONLY IMMEDIATE)

Place the package configuration file into
the build tree.
CONFIGURE_FILE(
 ${CMAKE_CURRENT_SOURCE_DIR}/myCustom.pvsm.in
 ${CMAKE_CURRENT_BINARY_DIR}/myCustom.pvsm
 @ONLY IMMEDIATE)

The first line of the CMakeLists.txt file specifies a name for
this project. The following two lines specify that we need
to find a version of ParaView on this computer. We then set
two path variables and list the “include” directories.

The following line (SET(mySrcs “vtkFlipCoordsFilter.
cxx”)) allows you to specify a space-separated list of C++
files to compile. The ADD_LIBRARY line specifies that these
files will be used for creating a library. The TARGET_LINK_
LIBRARIES line allows you to specify additional libraries to
which the new library needs to link.

The line, SET(MODULE_NAME myCustom), lists the MODULE_
NAME that will replace the variables enclosed in @’s in the
user interface XML file. The CONFIGURE_FILE lines configure
the XML files appropriately and specify that versions of them
without the “.in” should be placed in the bin directory for
this project when it is compiled.

The VTK_WRAP_ClientServer line expresses that the new
C++ classes should be wrapped in ParaView’s client/server

11

language. ParaView uses this language for message passing;
a fuller description of this language is outside the scope of
this article.

�. COMPILE
Once you have written the CMakeLists.txt file, you can
run CMake, and specify the source and binary directories
you wish to use. If CMake cannot find ParaView on your
system, you must specify it in CMake’s interface (ccmake on
unix platforms or CMakeSetup on Windows). Once CMake
has completed the configuration process, it will have (as
described earlier) created appropriate Makefiles or project
files for the selected compiler.

Then you can compile the new module as you would any
other project. When the compilation finishes, a library file
will have been created, and the files myCustom.xml and
myCustom.pvsm will be located in the top level of the
binary directory.

6. LOAD THE MODULE INTO PARAVIEW
Now that you have compiled the new module, it must be
loaded into ParaView in order to be used. There are two
methods for accomplishing this. The most straightforward
is to first launch ParaView. Then select “Import Package”
from the file menu. While this method is the easier of the
two options, it must be performed each time ParaView
is launched if you wish to use the new filter in that
ParaView session.

If you wish to use the new filter often, then a better option
is to set the PV_INTERFACE_PATH environment variable. This
variable must point to the location of the user interface and
serve-side XML files. When ParaView starts, it will attempt
to load any modules specified by the XML files found in the
specified location.

7. LOAD DATA
In order to apply the filter that has now been imported into
ParaView, we must first load some data to which this filter
may be applied. For the purposes of this demonstration, we
will use ParaView’s cone source, but any structured grid,
unstructured grid, or polygonal dataset could be used. To
use the cone source, select Cone from ParaView’s Source
menu, and click the Accept button on the Parameters tab.

Figure 1: A cone loaded in ParaView 2.6

8. APPLY FILTER
Now that data has been loaded into ParaView, select
Flip Coords from the Filter menu. The interface (as speci-
fied by the user interface XML file) appears in ParaView’s
left panel.

Figure 2: User interface for the vtkFlipCoordsFilter

The Input and selection menus appear as expected. The
default value in the Input menu is the Cone1 dataset from
the previous step. By default ParaView uses the dataset that
was selected when a filter is applied as the input to that
filter. If more vtkPointSet datasets were loaded in ParaView
when this filter was applied, they would also be listed in the
Input menu. The Axis selection menu contains the values X,
Y, and Z, as we specified in the user interface XML file. Notice
that the default value is Y, as we specified in the server-side
XML file. Select X from the Axis menu (so the results will be
more readily visible). Click the Accept button to apply the
filter to the cone dataset. It will be flipped across the X axis
because the X coordinates were negated.

Figure 3: The cone dataset after the vtkFlipCoordsFilter
has been applied

Amy Squillacote is a technical developer in
Kitware’s Clifton Park, NY, office. She is a
contributor to both VTK and ParaView. She
is also the primary author of “The ParaView
Guide.”

12

Kitware’s Software Developer’s Quarterly is published by Kitware, Inc., Clifton Park, New York.

Contributors: Stephen Aylward, Sebastien Barre, Andy Cedilnik, David Cole, Berk Geveci, Bill Hoffman, Luis Ibanez, Will Schroeder,
Amy Squillacote and Yumin Yuan.

Design: Melissa Kingman, www.elevationda.com

Editor: Lisa Avila

Copyright 2007 by Kitware Inc. or original authors.

No part of this newsletter may be reproduced, in any form, without express written permission from the copyright holder. Kitware,
ParaView, and VolView are all registered trademarks of Kitware, Inc.

To contribute to future editions of this publication, please contact the editor at kitware@kitware.com.

ITK PARALLELIzATION
Brigham and Women’s Hospital, Surgical Planning Lab, has
funded a subcontract to Kitware to optimize ITK for multi-
core and multi-processor, shared memory systems. Initially
the work will focus on the optimization of ITK’s image resam-
pling and non-rigid registration methods, particularly those
involving the b-spline transform. The optimized methods
and various ITK performance studies will be published in an
Insight Journal article.

AUTOMATIC SEGMENTATION
The DOD Air Force Research Lab has awarded Kitware a two-
year, Phase II SBIR for automated image segmentation and
volumetric model editing. The image segmentation methods
to be developed will include image-driven and atlas-driven
segmentation methods, and combinations thereof. The
volumetric model editing work will feature vtk3DWidget
technology. A unifying theme of these development efforts
will be an emphasis on workflow, i.e., encoding image seg-
mentation and model editing domain knowledge into an
intuitive sequence of operations that can be quickly and
consistently applied by novice users.

INSIGHT JOURNAL CONTRIBUTIONS TO ITK
ITK is adopting code from
contributions submitted to
the Insight Journal. In prepa-
ration for the release of ITK
3.2, a group of papers from
the Insight Journal has been
selected to be integrated
with the toolkit. The source
code from these papers is
currently being reorganized

and refactored in the Code/Review directory of the Insight
Toolkit CVS repository. The new code will stay in this direc-
tory for one release, and it will be moved to its final location
in the toolkit by the following release. The purpose of this
mechanism is to perfect the API and coding style of the
classes before they officially become part of the toolkit.
Once the classes are moved to their final destination, the
backward compatibility policy of ITK will prevent developers
from making significant API changes to the classes.

The new contributions include a variation of the Mesh class
that is intended to represent 2D manifolds with consistent
orientation, a filter for mapping 2D manifolds to spheres and
planes, a family of projection filters, and an implementation
of the marching squares algorithm.

The Insight Journal is an Open Access online publication
that enforces the verification of reproducibility in papers.
Submissions to the Insight Journal are expected to be accom-
panied by the full source code and data that will allow any
reader to replicate the work reported by the authors. The
journal also supports open, public peer-review and continu-
ous online dialog between authors, reviewers and readers.

UPCOMING PARAVIEW FEATURES
It has been over a year since ParaView 2.4 was released. We
have been working hard on the next generation of ParaView
(ParaView 3) that has a completely overhauled user interface.
Meanwhile, we added several important features to ParaView
2. These will be featured in the upcoming 2.6 release. The
highlights from 2.6 include support for parallel volume ren-
dering of uniform rectilinear datasets (vtkImageData), new

techniques for volume rendering unstructured grid datas-
ets, support for hardware accelerated offscreen rendering
on all supported platforms (using OpenGL framebuffers),
improved opacity support (depth-peeling algorithm), several
new readers (including Fluent, OpenFOAM, LSDyna, and
AcuSolve), ffmpeg support, improved multi-block and AMR
support, and a Python client. The beta for 2.6 will be released
in January 2007.

We also continue to work on ParaView 3. The monthly
development snapshots are posted at http://paraview.org/
Wiki/ParaView_III_snapshots. We hope to release a beta
version in the second quarter of 2007. Important new fea-
tures of ParaView 3 include a completely new user interface
based on Trolltech’s Qt toolkit, support for multiple views,
improved support for quantitative data analysis, first class
Python support, and undo/redo support.

