
S O F T W A R E D E V E L O P E R ’ S Q U A R T E R L Y

Editor’s Note.. 1

Recent Releases .. 1

MATLAB® and GNU R Integration With VTK 2

Python Trace ... 6

How ACFR Uses Kitware Products... 7

Representation Plugins in Paraview.................................... 10

Paraview Used in a Mining Research Environment............ 12

Building External Projects with CMake 2.8......................... 14

Kitware News ... 18

The Kitware Software Developer’s Quarterly Newsletter
contains articles related to the development of Kitware
projects in addition to a myriad of software updates, news
and other content relevant to the open source community.
In this issue, Thomas Otahal, of Sandia National Labs, dis-
cusses the integration of MatLab and GnuR with Kitware’s
Visualization Toolkit. Pat Marion introduces a new extension
to the ParaView Python interface, called Python trace which
generates human readable Python scripts that mimic user
actions in the GUI. Andrew Maclean, from the Australian
Centre for Field Robotics (ACFR), discusses ACFR’s use of
Kitware’s open-source toolkits in order to manage a devel-
opment environment that is cross-platform, supports code
reuse, and is responsive to change. Utkarsh Ayachit provides
a brief tutorial on adding representation plugins in ParaView.
Andrew Maclean, from ACFR, discusses the use of ParaView
in a mining research environment. And David Cole provides
a tutorial on building external projects with CMake 2.8.

The Kitware Source is just one of a suite of products and
services that Kitware offers to assist developers in getting
the most out of its open-source products. Each project’s
website contains links to free resources including mailing
lists, documentation, FAQs and Wikis. In addition, Kitware
supports its open-source projects with technical books, user’s
guides, consulting services, support contracts and training
courses. For more information on Kitware’s suite of products
and services, please visit our website at www.kitware.com.

Issue 11 • Oct 2009

ITK 3.16
ITK 3.16 was released on September 15, 2009. The main
changes in this release include the addition of classes for
managing labeled images, contributed to the Insight Journal
by G. Lehmann. These classes were the remaining compo-
nents of a 70+ class label map morphology module. They
provide efficient label map representation and enable con-
version from current ITK label images to an efficient format.
Details are available from “Label Object Representation and
Manipulation with ITK”, which can be read in the January
Source or on the Insight Journal (hdl.handle.net/1926/584).

These new classes can be found in the Code/Review Directory
and can be enabled by setting the CMake variable ITK_USE_
REVIEW to ON during the configuration process. Thanks to
Gaetan Lehmann and Sophie Chen for their dedication on
bringing these valuable new functionalities into ITK.

This release offers a fix to a long standing issue in ITK regard-
ing the computation of physical coordinates associated with
pixels. This fix is enabled by default, but if you need to
revert it to the previous behavior for backward compatibility
reasons, you can disable it by turning off the CMake flag:

ITK_USE_CENTERED_PIXEL_COORDINATES_CONSISTENTLY.
Thanks to Tom Vercauteren and Michel Audette for their
hard work on getting this difficult issue fixed.

Many improvements and fixes in the I/O infrastructure were
contributed by Brad Lowekamp, which made it possible to
manage large image files through the streaming infrastruc-
ture of the data pipeline. In particular, Brad contributed
examples illustrating how to process the entire Visible
Human dataset via an ITK pipeline.

For more details about this release, please visit the ITK Wiki
and search for “Release 3.16”.

PARAVIEW 3.6.2
Kitware, Sandia National Laboratories and Los Alamos
National Laboratory will be releasing ParaView 3.6.2 in early
November. This is a minor patch release which includes a few
critical bug fixes and two exciting new features.

ParaView’s Python interface was revamped, an exciting new
extension to the interface is Python trace. The goal is to gen-
erate human readable, not overly verbose, Python scripts that
mimic a user’s actions in the GUI. The “Python Trace” article
on page 6, discusses this functionality in greater detail.

ParaView 3.6.2 also includes a collection of statisti-
cal algorithms to compute: descriptive statistics (mean,
variance, min, max, skewness, kurtosis); compute contin-

2

MATLAB® AND GNU R
INTEGRATION WITH VTK

MATLAB and GNU R are widely used software environments
for technical and scientific computing. Each program envi-
ronment contains large collections of existing software for
many common technical computing tasks, such as: singular
value decomposition, maximum likelihood estimation, linear
system solving, and data plotting. The goal of the work
described in this article is to enable VTK-based applications
to leverage the computing resources available in MATLAB
and GNU R, and to allow the 3D visualization power of VTK
to be accessed from MATLAB and GNU R.

MATLAB (MATrix LABoratory) is a commercial software
product developed and sold by The MathWorks, Inc. MATLAB
programs are written in a scripting language called m, which
can be used interactively in a command line mode, or can
be stored in script files as m-file functions for repeated runs.
MATLAB can also be extended by purchasing The Mathworks
produced add-ons called toolboxes, which are typically large
collections of m-file scripts for a specific domain of technical
interest, such as: control systems, signal processing, and sta-
tistics. MATLAB also provides interfaces to access resources
from external programs.

GNU R is an open source program developed under the GNU
Project. GNU R is primarily used for statistics and graphing of
scientific data. GNU R uses a powerful object oriented script-
ing language based on the S language for writing programs.
GNU R can also be extended through user contributed add-ons
called packages. In a similar fashion to MATLAB, GNU R also
defines interfaces for accessing external programs.

Integrating VTK with large program environments such as
GNU R and MATLAB involve trade-offs in terms of increased
memory usage and slower program execution speed. The
need to copy and convert data between the different envi-
ronments, and the need to run interpreted script code instead
of only compiled C++, all increase memory size and reduce
the compute speed of integrated applications. This trade-off
is acceptable from the point of view of making the large
repository of technical computing code in MATLAB and GNU
R accessible from VTK and vice-versa. This integration allows
VTK developers and users to quickly prototype algorithms,
analyze data, and visualize results without investing large
amounts of time implementing code in C++ that is already
available in MATLAB and GNU R.

MATLAB® INTEGRATION WITH VTK
MATLAB defines two primary interfaces for integration with
external programs. The first interface is called MEX (MATLAB
Executable). The MEX interface allows C/C++ code compiled
as a dynamic library to be called from the MATLAB m script
language as a function, thus providing improved perfor-
mance for a particular algorithm implementation (compiled
code instead of m script code). The MEX interface also pro-
vides access to external libraries and software frameworks.

The second interface is the MATLAB Engine API. The MATLAB
Engine API starts an instance of the MATLAB command inter-
preter as a separate operating system process. This separate
operating system can then be accessed through the Engine
API to pass data and m script commands.

gency tables; perform k-means analysis; examine correlations
between arrays; and perform principal component analysis
on arrays.

For more information about these filters, please visit the
ParaView Wiki and search for “Statistical Analysis”.

CMake 2.8.0
CMake 2.8.0 was released in September 2009. This version
of CMake fixes many open issues and provides some exciting
new features.

The official CMake GUI is now Qt-based, and is distributed
with CMake on Windows, Linux, and Mac OSX. The GUI pro-
vides for quick searching of CMake options, and the ability
to have options with lists of defined options. The ccmake
executable will still be available for command line use on
supported systems.

There is a “--build” option for the cmake executable that can
be used to build any CMake build tree from the command
line, regardless of the generator used. A new External project
module can be used to create custom targets to drive down-
load, update/patch, configure, build, install and test steps of
an external project.

The new CMake has support for Visual Studio 2010. It also
has significant improvements for the Eclipse project gen-
erator. All targets are now available in Eclipse and system
include directories and predefined macros are now detected
for improved syntax highlighting.

CTest now runs many tests in parallel with a –j N command
line option. A new CTest option, CTEST_USE_LAUNCHERS,
can be used to improve error and warning reports on CDash
dashboards. CTest will determine the return value for each
process launched during the build and “log scrapping” is not
required to figure out errors and warnings. CTest can also
work with the new CDash sub-project feature and create
hierarchical dashboards. Support for modern version control
systems Git, Mercurial, and Bazaar were added.

CPack now has the option to use DESTDIR for any CMake
based projects giving more flexibility on final path names for
installers. The Deb generator now computes the arch instead
of hard coding it.

Creating Fortran/C mixed language projects is easier. CMake
automatically computes the runtime libraries for a compiler
and adds them to the link line. In addition, a FortranCInterface
module determines the required name mangling.

Other enhancements include a faster makefile depen-
dency scanner, improved find modules, and support for
manifests when using Intel compilers on Windows. The
xmlrpc dependency has been removed, and a CMAKE_OSX_
DEPLOYMENT_TARGET cache variable has been created to
set the deployment OS for a build on OSX. We also added a
new FindCUDA module that includes the ability to compile
cross-platform GPU Cuda code from CMake projects.

Several new policies were added to the release. For specific
information regarding these policies, and a full list of fea-
tures and bug fixes, check the News on the CMake website.

3

Both the MEX and MATLAB Engine API interfaces pass input
and output data in a data structure called MXARRAY. The
MXARRAY format is the fundamental data structure used by
MATLAB to represent scalars, vectors, matrices, and multi-
dimensional matrices.

The C++ class structure for the MATLAB integration with VTK
is shown in Figure 1. The fundamental class in the integra-
tion is vtkMatlabMexAdapter, which defines static methods
for converting data between vtkDataArray, vtkArray, and
vtkTable to equivalent MATLAB MXARRAY data structures.
The vtkMatlabMexAdapter class is a non-VTK pipeline class
and can be used to implement MATLAB MEX functions that
use VTK resources. The vtkMatlabEngineInterface class is
also a non-VTK pipeline class, which manages a singleton
instance of a MATLAB Engine process through the MATLAB
Engine API. This class defines methods that are similar to
the MATLAB Engine API, to permit data to be passed to and
from the MATLAB Engine process, and to allow MATLAB
m script commands to be executed on the MATLAB Engine
process. The vtkMatlabEngineInterface class also manages
an instance of vtkMatlabMexAdapter to perform data struc-
ture conversions.

file is a shared library that can called from MATLAB m script
like any other MATLAB function.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = 8*sin(R)./R;

X = reshape(X,1,size(X,1)*size(X,2))’;
Y = reshape(Y,1,size(Y,1)*size(Y,2))’;
Z = reshape(Z,1,size(Z,1)*size(Z,2))’;
P = [X Y Z];

vtkpointsurf(P);

The code shown above is a MATLAB m script file which
creates a 3D datapoint representation of the SINC function
(in variables X,Y,Z). The data is then formatted into a 3-com-
ponent vector of XYZ components (via the MATLAB reshape()
command) that the MEX function vtkpointsurf expects as
input. The vtkpointsurf MEX function uses VTK to display a
3D plot of the SINC function data, shown in Figure 2.

INCLUDE(${MATLAB_MEX_USE_FILE})
ADD_MATLAB_MEX_FILE(vtkpointsurf
 SHARED
 vtkpointsurf.cxx)

TARGET_LINK_LIBRARIES(vtkpointsurf
 vtkCommon
 vtkIO
 vtkImaging)

The listing above is the CMake file used to compile the MEX
function vtkpointsurf. The INCLUDE(${MATLAB_MEX_USE_
FILE}) command provides all necessary macros and definitions
to compile MEX and MATLAB Engine-based code. The ADD_
MATLAB_MEX_FILE macro creates a dynamic library MATLAB
MEX file for the vtkpointsurf function.

void mexFunction(int nlhs,
 mxArray *plhs[],
 int nrhs,
 const mxArray *prhs[])
{
vtkDataArray* pointdata = (vtkDataArray*)
vtkMatlabMexAdapter::mxArrayTovtkDataArray(prhs[0]);

 vtkPoints* points = vtkPoints::New();

 points->SetData(pointdata);
 pointdata->Delete();
 vtkPolyData* pointCloud = vtkPolyData::New();
 pointCloud->SetPoints(points);
 points->Delete();
 vtkDelaunay2D* d2d = vtkDelaunay2D::New();
 d2d->SetInput(pointCloud);
}

The above code is an excerpt from the vtkpointsurf MATLAB
MEX function implementation. The standard mexFunction
argument signature specifies the arguments passed into
the MEX function from MATLAB (prhs), and the arguments
passed out of the function to MATLAB (plhs). The 3D point
data for the SINC function is passed in from MATLAB via
prhs[0], and converted to a vtkDataArray with the vtkMat-
labMexAdapter class. The 3D point data is then triangulated
as a surface and rendered on screen using VTK, Figure 2.

The second MATLAB integration example uses the MATLAB
Engine filter to perform a calculation on a VTK input dataset.
The example then places the result of the calculation on the
output VTK dataset.

The vtkMatlabEngineFilter class (Figure 1) is a VTK pipeline
object that operates in a similar manner to the vtkCalcu-
latorFilter. It allows data arrays on the filter input to be
passed to the MATLAB Engine for processing, and places
the resulting arrays returned from the MATLAB Engine on
the filter output. Other similar custom pipeline filters can be
developed with this design, using an instance of the vtkMat-
labEngineInterface as a convenient interface to MATLAB.
The vtkMatlabEngineFilter can also be accessed through the
Paraview GUI when loaded as a ParaView plugin.

MATLAB® INTEGRATION EXAMPLES
A licensed MATLAB software installation must be present
in order to compile and run any MATLAB dependent code
in VTK. The MATLAB integration code can be activated by
turning on the VTK CMake build option. The CMake system
will then attempt to locate the root directory of your MATLAB
installation to find the necessary libraries and header files
for compilation of MATLAB related code in VTK.

The first example is a MATLAB MEX dynamic library built using
the MATLAB integration CMake commands. The example is
implemented with the data conversion methods defined on
the vtkMatlabMexAdapter class. Recall that a MATLAB MEX

Figure 1: Class diagram for MATLAB integration with VTK.

4

INCLUDE(${MATLAB_MEX_USE_FILE})
ADD_EXECUTABLE(bumpmap bumpmap.cxx)

TARGET_LINK_LIBRARIES(bumpmap
 vtksnlInfovisMatlabEngine)

The above listing is the CMake file used to compile the
second example (bumpmap), and again the CMake
INCLUDE(${MATLAB_MEX_USE_FILE}) statement is used to
make all necessary MATLAB library and include files avail-
able to the build system.

#include “vtkMatlabEngineFilter.h”
#include “vtkSphereSource.h”
#include “vtkWarpVector.h”

int main()
{

 vtkSphereSource* ss = vtkSphereSource::New();
 vtkMatlabEngineFilter* ef =
 vkMatlabEngineFilter::New();
 vtkWarpVector* wv = vtkWarpVector::New();

 ss->SetThetaResolution(100);
 ss->SetPhiResolution(100);

 ef->SetInputConnection(ss->GetOutputPort());

 ef->PutArray(“Normals”, “N”);

 ef->SetMatlabScript(
 “rv = randi([-1,1],size(N,1),1);\
 N(:,1) = N(:,1).*rv;\
 N(:,2) = N(:,2).*rv;\
 N(:,3) = N(:,3).*rv;”);

 ef->GetArray(“N”, “N”);

 wv->SetInput(ef->GetOutput());
}

GNU R INTEGRATION WITH VTK
GNU R has several options for interfacing to external pro-
grams. The first interface is the R API, which exposes a C
callable API for fundamental mathematical and statistical
operations such as integration, probability distributions,
and numerical derivatives. The second interface is the .Call
interface for calling C/C++ code from GNU R. This interface
is similar to the MATLAB MEX interface described previously.
GNU R also permits an instance of the R script interpreter
engine to be embedded in a C/C++ program, allowing the
R compute engine to be driven by another program in a
manner similar to the MATLAB Engine. The basic data type
defined by R for interfacing with C/C++ program code is the
SEXP (S expression). SEXPs are used to represent vectors,
matrices, lists, and frames.

The class structure for the GNU R integration with VTK is
shown in Figure 4. The design is identical to the MATLAB
integration shown in Figure 1, primarily due to the similarity
in the external interface definitions of MATLAB and GNU R.

The class vtkRAdapter defines static methods for converting
vtkDataArray, vtkArray, and vtkTable data structures into
equivalent R SEXP data structures. This class can be used to
write C/C++ functions using the GNU R .Call external inter-
face to make VTK code accessible from GNU R.

The vtkRAdapter class is a non-VTK pipeline class. The
vtkRInterface is also a non-VTK pipeline class that manages a
singleton instance of an embedded R interpreter, and creates
a vtkRAdapter class for data conversion between GNU R and
VTK. The R API of callable C functions can also be accessed
through an instance of the vtkRInterface class.

The vtkRCalculatorFilter class is a VTK-pipeline object that
operates like the vtkMatlabEngineFilter class. It allows filter
input array data to be passed to GNU R for computations, and
places the resulting array on the filter output. The vtkRCal-
culatorFilter can also be accessed through the Paraview GUI
when loaded as a ParaView plugin.

Figure 2: VTK rendering of the SINC function.

Figure 3: VTK rendering of the bumpy sphere.

The program listing excerpt shown below is from the
bumpmap example implementation. The program creates a
sphere using vtkSphereSource, and passes it as input to an
instance of a vtkMatlabEngineFilter. The vtkMatlabEngine-
Filter passes the Normals data array from the sphere input to
MATLAB via the PutArray() method. The Normals data array
is copied to the MATLAB Engine and appears in the MATLAB
Engine as the variable N. The SetMatlabScript method
defines a MATLAB m file script that randomly reflects the
direction of each normal vector in the array variable N. The
GetArray() method places the result array N on the filter
output. The remainder of the program (not shown) uses VTK
to display the sphere after the application of vtkWarpVector
filter (warped by the new vector data in the array N) to give
the sphere a “bumpy” appearance, as shown in Figure 3.

5

The GNU R integration example shown below uses an
instance of the embedded R interpreter to run a k-means
clustering algorithm on a set of 3D points, and each point is
assigned to one of three possible clusters.

INCLUDE(${R_USE_FILE})
ADD_EXECUTABLE(kmeans kmeans.cxx)

TARGET_LINK_LIBRARIES(kmeans vtksnlRintegration)

The CMake file used to build the GNU R example (called
kmeans) is shown above. The INCLUDE(${R_USE_FILE}) CMake
statement makes the necessary libraries and include files for
compiling GNU R related code available.

A section of the kmeans program implementation is shown
below. The program creates three clusters of points (each
cluster has 50 normally distributed random 3D data points)
using vtkRrandomTableSource, which is a data source that
uses the R C callable API to create vtkTable data with particu-
lar statistical distributions (Normal, Chi-Square, Exponential,
etc). The three clusters of normally distributed points (cluster
centers are located at 1.0 along the X, Y, Z axes) are then gath-
ered into one large table and passed as input to an instance
of the vtkRCalculatorFilter. The input table is passed to GNU
R via the PutTable() method, and a variable is created inside
GNU R called x which contains the table data. The SetRscript()
method specifies an R command script that runs a k-means
algorithm on the input data points, and classifies each point
to one of three possible clusters. The resulting classification
data is added as a column to the table data inside GNU R
via the cbind() function. The table is then assigned to the
variable m. The result table m is passed back to VTK with the
GetTable() method. The set of 3D points are given classifica-
tion colors by the k-means algorithm, the rendered result is
shown in Figure 5 (display related code omitted for brevity).

#include “vtkRCalculatorFilter.h”
#include “vtkRrandomTableSource.h”
#include “vtkMergeTables.h”
#include “vtkTable.h”

int main()
{

 vtkRCalculatorFilter* rcf =
 vtkRCalculatorFilter::New();
 vtkRrandomTableSource* rts1=
 vtkRrandomTableSource::New();
 vtkRrandomTableSource* rts2=
 vtkRrandomTableSource::New();
 vtkRrandomTableSource* rts3=
 vtkRrandomTableSource::New();
 vtkTableToPolyData* tpd =
 vtkTableToPolyData::New();

 vtkMergeTables* mt1 = vtkMergeTables::New();
 vtkMergeTables* mt2 = vtkMergeTables::New();

 rts1->SetNumberOfRows(50);
 rts1->SetStatisticalDis(NORMAL,1.0,0.5,0.0,”X”,0);
 rts1->SetStatisticalDis(NORMAL,0.0,0.5,0.0,”Y”,1);
 rts1->SetStatisticalDis(NORMAL,0.0,0.5,0.0,”Z”,2);

 rts2->SetNumberOfRows(50);
 rts2->SetStatisticalDis(NORMAL,0.0,0.5,0.0,”X”,0);
 rts2->SetStatisticalDis(NORMAL,1.0,0.5,0.0,”Y”,1);
 rts2->SetStatisticalDis(NORMAL,0.0,0.5,0.0,”Z”,2);

 rts3->SetNumberOfRows(50);
 rts3->SetStatisticalDis(NORMAL,0.0,0.5,0.0,”X”,0);
 rts3->SetStatisticalDis(NORMAL,0.0,0.5,0.0,”Y”,1);
 rts3->SetStatisticalDis(NORMAL,1.0,0.5,0.0,”Z”,2);

 mt1->SetInput(0,rts1->GetOutput());
 mt1->SetInput(1,rts2->GetOutput());
 mt2->SetInput(0,mt1->GetOutput());
 mt2->SetInput(1,rts3->GetOutput());

 rcf->SetInput(mt2->GetOutput());
 rcf->PutTable(“x”);

 rcf->SetRscript(“m = do.call(cbind,x)\n \
 cl <- kmeans(m,3)\n \
 m = cbind(m,cl$cluster)\n \
 colnames(m)[4] = \”cluster\”\n”);

 rcf->GetTable(“m”);

 tpd->SetInput(rcf->GetOutput());
 tpd->SetXColumn(“X”);
 tpd->SetYColumn(“Y”);
 tpd->SetZColumn(“Z”);

}

Figure 4: Class diagram for Gnu R integration with VTK.

Figure 5: VTK rendering of k-means classified input points.

GNU R INTEGRATION EXAMPLE
An installation of the GNU R software (downloaded and
compiled from source code) must be present in order to
compile and use the GNU R integration code in VTK. The
GNU R integration code can be activated by turning on the
VTK CMake build option. The CMake system will then try to
locate the root directory of your GNU R installation.

CONCLUSION AND FUTURE WORK
The goal of this integration work is to provide VTK users and
developers with a convenient way to leverage the power
of MATLAB and GNU R. Developers can quickly create new
filters and sources whose computations primarily use script

6

Python Trace

code developed in these external software environments.
ParaView users can access program scripts in MATLAB and
GNU R through the ParaView GUI, thus reducing the need to
create equivalent code inside of VTK.

Integration between distinct software environments
requires trade-offs in terms of memory size and compute
performance. Future work in creating reliable shallow copy
data reuse between VTK, MATLAB, and GNU R will help to
mitigate some performance issues. There is also interest in
creating VTK wrappers (similar to Python) for the GNU R
and MATLAB script languages. This would allow VTK to be
scripted from the command line of MATLAB or GNU R, and
would facilitate the creation of a programmable VTK filter
that uses script programs from either MATLAB or GNU R.

The source code for this integration work currently resides
in the Sandia National Laboratories private VTK repository.
The author anticipates the source code will be made publicly
available in VTK shortly after this article is published.

ACKNOWLEDGMENTS
This work was done in part at Sandia National Laboratories.
Sandia is a multi-program laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security
Administration under Contract DE-AC04-94AL85000.

Thomas Otahal is a software developer
working under contract at Sandia National
Laboratories. He works with the Sandia
Data Analysis and Visualization department
on a variety of projects using the Titan/VTK
Informatics toolkit and ParaView.

ParaView is a scientific visualization application offering a
variety of data processing and rendering algorithms. The cli-
ent-server architecture enables data-parallel processing in a
distributed memory environment. Users don’t need a cluster
to run ParaView. Perhaps the most common use of ParaView
is a built-in mode where the client and server co-exist in a
single process running on a desktop. Whether operating on
a supercomputer or on a MacBook, the ParaView power-user
can always take advantage of the Python scripting language
to streamline his or her work. The ParaView Python inter-
face allows efficient control over most tasks that can be
performed through the GUI including: opening data files,
constructing visualization pipelines, adjusting the camera,
and exporting post-processed data or animations.

An exciting new extension to the ParaView Python interface
is Python trace. This feature will be available in the 3.6.2
release. The goal of trace is to generate human readable,
and not overly verbose, Python scripts that mimic a user’s
actions in the GUI. The scripts can be used for a variety of
purposes, but there was one particular use case considered
for driving development of Trace—rapid prototyping of
scripts for batch or in-situ/co-processing and visualization.

The idea is that a user could open a small representative
piece of their data in the ParaView GUI, interactively build

a visualization pipeline, and then save a trace script to be
used in batch mode on full-size data. Alternatively, the script
could be called from a co-processing module enabling data
to be post-processed and visualized as it is produced by
simulation codes without the need for writing the data to
a disk to be collected and processed elsewhere. The script
should be more or less ready to go, although it may have to
be modified slightly to account for different pathnames or
to replace a reader with a bridge to a co-processing library.

Now we’ll take a brief look at how trace is implemented in
order to understand what we can expect from trace, then
we’ll get started with a tutorial. First a quick word about the
ParaView architecture and its Python interface.

In ParaView, the data and C++ objects that filter, process,
and render the data reside on the server. There is a proxy
object on the client for each object on the server. Proxies
have states which are represented by properties. Changing
a proxy property on the client means the property value is
streamed to the server where an appropriate C++ function
is called to set the value on the proxy’s server-side object. So
how does this work in the Python interface? Take the follow-
ing Python code:

 s = Sphere()
 s.Center = [1, 0, 0]

The call to Sphere() creates a client-side proxy object which, in
turn, creates a server-side object—vtkSphereSource. Setting
the proxy property Center to the list [1, 0, 0] streams the
values to the server where vtkSphereSource::SetCenter(1,
0, 0) is called. So what does this mean for trace? It means
you can mimic most actions the user performs when clicking
around in the GUI by creating proxies and setting their prop-
erty values. Unfortunately, not all actions in the GUI can be
represented with such proxy manipulations, so trace won’t
work for all cases.

LET’S WALK THROUGH AN EXAMPLE
You can try this at home if you download the 3.6.2 release
of Paraview. Fire up the ParaView client and then go to the
Tools menu and select Python Shell. The Python dialog
will open, showing an interactive interpreter on the left and
some tools on the right in tabbed panels. Switch to the tab
labeled Trace and click the button Start Trace. For this
example we will use generated data, but you could also use
a reader to load a dataset from disk. Go to the Sources
menu, select Octree Fractal, and then click Apply in the
Properties tab of the Object Inspector panel. Now
click the Show Trace button in the Python dialog.

The Trace tab in the Python Dialog

7

Already we have accumulated quite a bit of Python code
with only two clicks of the mouse. Let’s look at what we
have so far. You’ll see Python code that: creates the octree
fractal source; creates a color lookup table for the source’s
point data; creates a display representation for the fractal
source; sets the ColorArrayName property of the display
to ‘FractalIterations’; assigns the lookup table using the
LookupTable property; and finally sets the camera position
and orientation properties to render the current scene.

Now let’s see how trace reacts to a simple property change.
Go to the Properties tab of the Object Inspector
and change the Dimension property from 2 to 3, then
click Apply. Click Show Trace again in the Python dialog.

You’ll see the same output that was printed before and
then some new code for our latest changes. The Dimension
property has been modified and the lookup table has also
been modified to account for the new scalar range of the
FractalIterations array.

Now we will build a simple pipeline. Go to the Filters
menu and choose Contour, click Apply. In the Pipeline
Browser change the selected source back to the fractal
source and then apply a Clip filter from the Filters
menu. Adjust the clipping plane if you want, and then click
Apply. Now go to the View menu and choose Show Color
Legend. Adjust the camera angle to something a little more
interesting and we’re done! Click Stop Trace.

Now there is just one final thing to do before we’re ready to
send our script to a 1024 node cluster. Click Edit Trace and
enter this line at the end of the script:

WriteImage(‘output.png’)

Happy tracing! For more information on Python trace,
please visit the ParaView Wiki and search for “ParaView/
Python Scripting”, “IEEE Vis09 ParaView Tutorial”, “Python
GUI Tools”, or “ParaView#Python Scripting”.

ACKNOWLEDGMENTS
This work was funded in part by EDF (www.edf.fr).

Pat Marion is an R&D Engineer in Kitware’s
Chapel Hill, NC office where he works on
a variety of scientific visualization and
medical projects. Pat has hiked the Pacific
Crest Trail from Mexico to Canada and spent
five months working on organic farms in
Spain and Italy.

The ARC Centre of Excellence for Autonomous Systems (CAS)1
is a partnership between the Australian Centre for Field
Robotics (ACFR) at the University of Sydney2, The Artificial
Intelligence3 and Mechatronics Groups at the University of
New South Wales4 and the Mechatronics and Intelligent
Systems Group5 at the University of Technology Sydney.

In 2008, the CAS had over 230 staff members, approximately
40 PhD commencements and 17 completions. The research
program at CAS is focused around four themes: perception,
control, learning, and systems.

These multiple research themes are integrated to build a series
of experimental demonstrations that explore autonomous
system research issues, such as: human-machine interaction,
persistence and cooperative operations. Demonstrations are
developed into a range of collaborative research programs
undertaken with research partners in industry. The latter
aspect is very important because it brings our research into
the real world and the application of this research then drives
the development of our fundamental research programs.

There is a diversity of research and development going on
in the Centre and a corresponding need for many different
types of hardware and software which can be called on to
operate underwater, at sea, on land or in the air.

The hardware in use at the Centre ranges from specialized,
purpose-built units, such as PC104 stacks, to more general
units, such as PC’s. Because of our industry links, we design
and build for operation in the field, so equipment is often
built to withstand extreme environmental conditions.

ACFR and Kitware
In the Australian Centre for Field Robotics (ACFR), the current
main operating systems in use are Linux, Mac OS, Microsoft
XP, QNX Neutrino and a few Microsoft Vista platforms. Linux,
XP and QNX are the major development platforms. CPU

How ACFR Uses
Kitware Products

Result image of the trace tutorial

Human-Machine interaction is an important part of the research
at ACFR. This exhibition titled “FishBird” has toured museums in
Australia, the US and Europe. The robots (wheelchairs) interact
with the public and each other through a printer that publishes
enigmatic phrases. In this picture, the red chair has decided to

move over to talk to another person. This project provides useful
information on how the public reacts to robots.

8

speeds range from 200MHz upwards. RAM memory require-
ments range from the very small to several GB with disk sizes
ranging from as low as 20GB to some hundreds of TB.

Currently, most software is developed in C++ and C utiliz-
ing gcc, Visual Studio, Borland C++ and Eclipse. With respect
to GUI’s, Qt and WxWidgets are the main ones in use with
some development done using OpenGL directly. Code reus-
ability and modular development is a big factor with several
common in-house libraries in use.

A wide range of hardware, multiple operating systems and
compilers are now in use. Interoperability of platforms and
software is the driving concern. We do not restrict develop-
ment to one platform, language or compiler. This contributes
to the robustness and strength of our solutions.

ACFR allows its developers to build and implement systems
using tools they are most familiar with or the tools which
are best-suited for a given task. Our systems are built for
utilization on many different platforms and they are tested
on many different platforms. Whenever possible we reuse
code. And we pride ourselves on our ability to foster innova-
tion and collaboration.

most shared development work at the time was that people
had different setups on their machines. You could not just
copy the Visual Studio build from machine to machine and
expect it to work. We quickly realized that CMake removed
this limitation and its usage became more widespread. The
big attraction of CMake was the fact it generated the IDE!

Simultaneously, the need for cross-platform development
was beginning to arise but it was not seen as a major
requirement. Development was still mainly in a Windows
environment, with QNX applications being largely distinct.

However, with the appearance of more and more Linux
platforms and applications there was a need for good cross-
platform development. VTK provided a good model in that
it was using CMake, and it was built on many platforms. We
began to develop in-house libraries that utilized CMake and
went through a fairly steep learning curve in relation to the
challenges of cross-platform development.

One open source project that was converted to use CMake
by the project maintainers in ACFR was Orca6, which is used
to build component-based robotic systems. It took signifi-
cant effort to move it from a Linux-based automake system
to a cross-platform system.

We also realized that our libraries needed testing on the
many platforms we use. So we dedicated test platforms for
QNX, Windows, Linux and Mac OS both 64-bit and 32-bit.
Once again the Kitware model of “write on one platform,
compile on many platforms” was used.

At the same time, we migrated from using Visual Source Safe
as a code repository to CVS. This was driven primarily by the
need to work in a cross-platform environment. Eventually
we replaced CVS with Subversion.

One consequence of having libraries used by many people on
different platforms was the need to have some automated
way of running compiles on many platforms once code was
checked in. This is where Dart played a role as a dashboard.
While it generally worked, it was difficult to configure and
we had a lot of unexplained failures which seemed to be
related to the Java virtual machine. When Kitware released
a beta version of CDash, we moved our applications to it and
everything has worked well since.

So, within ACFR, we now use Subversion for our code reposi-
tory, CDash for our dashboards, Mantis for bug reporting,
CMake, VTK, ParaView, and Boost.

At this point, I must emphasize that our interactions with
Kitware have been a two-way process. In the case of VTK,
I provided a set of non-parametric surface generators that
Will Schroeder and I incorporated into VTK1. This was an
excellent learning exercise and it gave me a good apprecia-
tion for problems related to cross-platform development and
code standards. We also worked with Bill Hoffman to port
CMake to QNX. We provide nightly and experimental testing
on this platform for Kitware. The latter port was critically
important, as it simplified our cross-platform development.

With respect to development Kitware’s CMake and CDash,
along with other open source products like Subversion
and Mantis, are critical. They have enabled us to manage
cross-platform development using a variety of compilers and
platforms. Subversion also plays a key role. Since we are a
research and teaching organization, we have students who

While it may be initially thought that the management of
such a system is like herding cats, this is not so. There are
many good tools around to manage this type of environ-
ment. In particular, the open source software developed by
Kitware has been a major contributor to our success.

Our relationship with Kitware began in 2000 with the use of
VTK. We were looking for off-the-shelf graphics programs
and VTK perfectly fitted this requirement. Its initial use was
in surface building for laser scans. With time, other people
began to use it for their applications. I spent a consider-
able amount of time developing a visualizer using VTK for
general use in ACFR. This was called Topological Zoo. At that
time ParaView was in a very early stage of development, so
it was not considered.

CMake had made its appearance in VTK so some of us began
to use it in our development process. One impediment to

The interior of a stope in a mine. The stope is about 80m deep
and 20m across. This was visualized using radar and the surface
constructed using TopologicalZoo. The arrow points to infalling

material from the roof of the stope. In this case, because of
multipathing and other spurious returns from the radar, surface

reconstruction is a fine art, lots of filtering needs to happen.

9

The Orca framework was used to develop the software
components running on each robot’s host computer. Orca
uses ZeroC’s Ice for inter-component communication - both
within and between the hosts. These robots communicate
with each other to negotiate plans when they are close by,

and they also communicate to a base station.

work on projects and then graduate and leave. All of their
project code is stored in the Subversion repository so future
students can work on it and enhance it. Subversion is sup-
porting code reuse and enhancement along with its primary
role of being a repository. Mantis is a good communication
tool among the developers and users.

These tools provide us with the ability to manage a devel-
opment environment that is cross-platform, supports code
reuse, and is responsive to change.

Another aspect that is often overlooked is user induction.
When our graduate students begin their PhD or Master’s
courses we run short courses to familiarize them with:
coding standards, including testing; CMake; Boost, and the
Standard Template Library; template usage and exception
handling; and the available libraries in ACFR.

A further aspect of these tools is that we have world-wide
collaborative activities and these tools have been instrumen-
tal in their success.

In my particular area, we develop systems for semi-auton-
omous mine operations that are deployed in Australia and
Chile. These systems provide situational awareness to opera-
tors of vehicles, such as mining trucks, that are very large,
have limited visibility or are under adverse working condi-
tions such as dust, fog and high altitude operations (e.g.,
at or above 4000 meters). To provide information to users,
a peer-to-peer communication system operates over a mesh
network using rules which can be customized. We commer-
cialize this through Acumine Pty Ltd. (www.acumine.com).

This is a transcontinental project. The software is developed
in the ACFR at the University of Sydney in Australia and the
hardware is developed in the Universidad Nacional del Sur in
Argentina. Our two research groups are separated in time,
space and (sometimes) language. We circumvent these prob-
lems by utilizing Skype for video or phone conversations; a
Subversion repository for code; Mantis for bug reporting;
and, of course, CMake is used routinely.

One particular advantage is that if a software problem is
noted in Argentina we generally fix it while they are sleep-
ing. So by the time they wake up the next morning they have
a fix. Of course we utilize the same procedure if there are
problems with the hardware. Australia and the US are also
well placed for this type of work (early morning in Australia
is afternoon in the US - of the previous day).

The future
As we look forward, we plan to further utilize VTK and
ParaView and hope to work with ITK as well. ParaView has
already become the rapid visualization of choice for many
researchers. VTK and the use of TCL are also seen as useful
tools for rapid visualization. ITK has a lot of potential for
image analysis, particularly in the area of perception;
however it is not used at present. To increase awareness of
VTK and ITK we’re considering adding short courses on each
to the existing short courses we provide graduate students.

Our testing of libraries also needs to become more through,
CMake and CDash are a big help here. We achieve around
60% coverage for our libraries on all platforms tested.

Overall, the open source tools that are developed and pro-
vided by Kitware and Kitware’s Quality Software Process

have provided us with a model that allows us to be innova-
tive and flexible in our development process. This innovation
and flexibility has significantly contributed to our success.

Acknowledgements
This work has been supported by the CRC Mining Australia,
the Australian Centre for Field Robotics and the ARC Centre
of Excellence Program, funded by the Australian Research
Council (ARC) and the New South Wales State Government.

Further Reading
Parametric Surfaces vtk.org/VTK/help/documentation.html

References
1.	 ARC Centre of Excellence for Autonomous Systems,

www.cas.edu.au

2.	 Australian Centre for Field Robotics at the University of
Sydney, www.acfr.usyd.edu.au

3.	 The Artificial Intelligence Group at the University of New
South Wales, http://ai.cse.unsw.edu.au/index.html

4. 	 The Mechatronics Group at the University of New South
Wales, www.mech.unsw.edu.au/content/plans/mecha-
tronic/Mechatronics_Home.cfm?ss=12

5.	 Mechatronics and Intelligent Systems Group at the
University of Technology Sydney, www.eng.uts.edu.au/
Research/areas_EMMS.htm

6 .	 Orca, http://orca-robotics.sourceforge.net/orca/index.html

Andrew Maclean is a Technical Officer who
has been working at the Australian Centre
for Field Robotics, University of Sydney. His
main interests include: visualization of data-
sets, database design and the development
of good, efficient and well tested code.

In ParaView, representations are the entities that control
how data from a source is shown in a view. For a 3D view, the
representation is typically comprised of a geometry filter that
extracts the polygonal surface from the dataset, a mapper
that maps the geometry to OpenGL calls, and an actor that
controls other appearance parameters of the dataset in the
rendered scene.

Support for adding representations from plugins for new
view types from was introduced in ParaView 3.4. Since then
there has been an increase in the number of requests for
support to be added to representations for the regular 3D
view from the user community. ParaView’s 3D view is the
most commonly used view for showing polygonal or volu-
metric data. This support is useful if you want to incorporate
a new mapper into ParaView that uses hardware shaders,
for example.

By default, ParaView provides representation-types for
showing the dataset as surface, wireframe, points and pos-
sibly slice and volume (depending on the data type). This
article explains how to add representations using plugins
that extend this set of available representation-types that
can be shown in ParaView’s 3D View. Note that this is a very
recent addition to ParaView and is not yet supported by the
3.6 releases. If you want to try the examples discussed in this
article, you will have to use the CVS repository.

Representation plugins are meant for advanced developers
since representations and views can get pretty complex, pretty
quickly. This article assumes that the reader is familiar with
the ParaView Server Manager and the plugin framework.

Standard Representations in 3D View
Before we start looking at how to write such a plugin, we
need to gain some understanding of the 3D view and its rep-
resentations. The 3D view uses 3 basic representation proxies
for rendering all types of data:
• (representations, UnstructuredGridRepresentation) – for

vtkUnstructuredGrid or a composite dataset consisting of
vtkUnstructuredGrid.

• (representations, UniformGridRepresentation) – for
vtkImageData or a composite dataset consisting of vtkIm-
ageData

• (representations, GeometryRepresentation) – for all other
data types.

Each of these representation proxies are basically
composite-representation proxies that use other repre-
sentation proxies to do the actual rendering. For example,
GeometryRepresentation uses SurfaceRepresentation for
rendering the data as wireframe, points, surface and surface-
with-edges and OutlineRepresentation for rendering an
outline for the data. Subsequently, the 3 composite-represen-
tation proxies provide a property named “Representation”
that allows the user to pick a representation type for viewing
the data. The composite-representation proxy has logic to
enable one of its internal representations based on the type
chosen by the user.

These 3-composite representation types are fixed and cannot
be changed by plugins. What plugins can do is add more

internal representations to any of these 3 composite repre-
sentations to support new representation types that the user
can choose from the representation type combo box on the
display tab or in the toolbar.

10

Representation PLugins
in paraview

Next, we will discuss a couple of examples that illustrate how
such plugins can be coded. The source code for these exam-
ples is available under ParaViewSource/Examples/Plugins in
the ParaView CVS repository.

representations TO ADD a new Mapper
First let’s consider a simple yet a common example where we
want to add a new mapper to ParaView. The source code for
this example is available under ParaViewSource/Examples/
Plugins/Representation.

Let’s say the mapper is called vtkMySpecialPolyDataMapper
which is simply a subclass of vtkPainterPolyDataMapper. In
practice, vtkMySpecialPolyDataMapper can internally use
different painters to do perform special rendering tasks.

To integrate this mapper into ParaView, first we need to
create a vtkSMRepresentationProxy subclass that uses this
mapper. In this example, since the mapper is a simple replace-
ment for the standard vtkPainterPolyDataMapper, we can
define our representation proxy as a specialization of the
“SurfaceRepresentation” by merely overriding the proxies it
uses for creating the mappers as follows:

<ServerManaerConfiguration>
 <ProxyGroup name=”mappers”>
 <SourceProxy name=”MySpecialPolyDataMapper”
 class=”vtkMySpecialPolyDataMapper”
 base_proxygroup=”mappers”
 base_proxyname=”PolyDataMapper”>
 <!-- And any extra properties
 for this mapper -->
 </SourceProxy>
 </ProxyGroup>

 <ProxyGroup name=”representations”>
 <SurfaceRepresentationProxy
 name=”MySpecialRepresentation”
 base_proxygroup=”representations”
 base_proxyname=”SurfaceRepresentation”>
 <Documentation>
 This is the new representation type we are
 adding. This is identical to the
 SurfaceRepresentation except that we are
 overriding the mapper with our mapper.
 </Documentation>

 <InputProperty name=”Input”
 command=”NotUsed”>
 <InputArrayDomain name=”input_array_any”
 attribute_type=”any”>

Figure 1: Representation type combo box allows
users to choose a sub-representation to use.

 <SubProxy>
 <Proxy name=”MySpecialRepresentation”
 proxygroup=”representations”
 proxyname=”MySpecialRepresentation”>
 </Proxy>
 <ShareProperties
 subproxy=”SurfaceRepresentation”>
 <Exception name=”Input” />
 <Exception name=”Visibility” />
 <Exception name=”Representation” />
 </ShareProperties>
 </SubProxy>
 </Extension>
 </ProxyGroup>
</ServerManagerConfiguration>

The CMakeLists.txt file is not much different from what it
would be like for adding a simple filter or a reader.

ADD_PARAVIEW_PLUGIN(Representation “1.0”
 SERVER_MANAGER_XML Representation.xml
 SERVER_MANAGER_SOURCES
 vtkMySpecialPolyDataMapper.cxx)

Once this plugin is successfully loaded into ParaView,
“Special Mapper” will show up as a representation type that
the user can choose. Note that a representation plugin does
not affect any representations already created. Hence, it’s a
good idea to load the representation plugins first, before
creating any sources or filters.

Hardware Shaders in a Representation
One common use-case for adding new representations is to
employ specialized hardware shaders written using shading
languages such as GLSL or Cg to perform specialized render-
ing. Such special rendering algorithms can be encapsulated
in a special mapper or a vtkPainter subclass. If the special ren-
dering algorithm is encapsulated in a vtkPainter subclass you
will need to make a special mapper that uses the painter.

In this example, we have a new vtkPainter subclasses
vtkVisibleLinePainter that uses shaders to prune hidden lines
from a wireframe rendering. The source for this example
is available under ParaViewSource/Example/Plugins/
HiddenLinesRemoval.

Following is the CMakeLists.txt

Compile-in all GLSL files are strings.
const char* with the names same as that of the
file then become available for use.
encode_files_as_strings(ENCODED_STRING_FILES
 vtkPVLightingHelper_s.glsl
 vtkPVColorMaterialHelper_vs.glsl
 vtkVisibleLinesPainter_fs.glsl
 vtkVisibleLinesPainter_vs.glsl
)

add_paraview_plugin(
 HiddenLinesRemoval “1.0”
 SERVER_MANAGER_XML
 HiddenLinesRemovalPlugin.xml

 SERVER_MANAGER_SOURCES
 vtkVisibleLinesPolyDataMapper.cxx

 SOURCES vtkPVColorMaterialHelper.cxx
 vtkPVLightingHelper.cxx
 vtkVisibleLinesPainter.cxx
 ${ENCODED_STRING_FILES}
)

 </InputArrayDomain>
 </InputProperty>

 <SubProxy>
 <Proxy name=”Mapper” proxygroup=”mappers”
 proxyname=”MySpecialPolyDataMapper”
 override=”1” />
 <ExposedProperties>
 <Property name=”LookupTable” />
 ….
 </ExposedProperties>
 </SubProxy>

 <SubProxy>
 <Proxy name=”LODMapper”
 proxygroup=”mappers”
 proxyname=”MySpecialPolyDataMapper”
 override=”1”/>

 <ShareProperties subproxy=”Mapper” >
 <Exception name=”Input” />
 </ShareProperties>
 </SubProxy>

 <!-- End of SurfaceRepresentation -->
 </SurfaceRepresentationProxy>
</ServerManaerConfiguration>

Note the use of the “override” attribute since the
“SurfaceRepresentation” proxy already defines a Mapper as
well as a LODMapper subproxy.

Next we need to register this new type with the any (or all)
of the 3 standard composite representations so that it will
become available for user selection in the representation
type combo box.

To decide which of the 3 composite representations we
want to add our representation to, we must first consider
the input data types our representation supports. If it can
support any type of dataset, then we can add our represen-
tation to all the 3 representations (as is the case with this
example). However, if we are adding a representation for
volume rendering of vtkUnstructuredGrid then we will only
add it to the UnstructuredGridRepresentation. This is done
by using the Extension xml tag. It simply means that we are
extending the original XML for the proxy definition with the
specified additions.

To make this representation available as a type to the user,
we use the <RepresentationType /> element, with “text”
attribute used as the text shown for the type in the combo
box, “subproxy” attribute used to identify the name of the
representation subproxy to be activated when the user
chooses the specified type. Optionally, one can also specify
the “subtype” attribute which, if present, is the value set on
a property named “Representation” for the subproxy when
the type is chosen. This allows for the subproxy to provide
more than one representation type.

<ServerManagerConfiguration>
 <Extension name=”GeometryRepresentation”>
 <Documentation>
 Extends standard GeometryRepresentation by
 adding MySpecialRepresentation as a new type
 of representation.
 </Documentation>

 <!-- this adds to what is already defined in
 GeometryRepresentation -->
 <RepresentationType
 subproxy=”MySpecialRepresentation”
 text=”Special Mapper” subtype=”1” />

11

12

Paraview used in a mining
Research environment

Within the Australian Centre for Field Robotics (http://www.
acfr.usyd.edu.au/) many Kitware Open Source toolkits are
used. VTK is often used for visualization. While open source
tools have their advantages, there are times when we want
to manipulate and visualize data received from various
sources without going through the process of developing
software to do so. One product that has become increasingly
useful to us is ParaView.

An oft used technique is the conversion of data from various
sensors into particles with associated scalar properties which
can be visualized and manipulated. For example, laser and
radar data in their raw form consist of range, bearing and
often other data such as intensity. The data is manipulated
though the use of special purpose software to produce
Cartesian coordinates along with the associated properties
of each particle. Associated properties can be scalars, such
as color or intensity. Once the data is manipulated, it is a
simple matter to convert the particle data to something that
ParaView can use. Within ParaView, the user can build sur-
faces and or apply other filters as desired. The final results
can then be saved as a new data file.

In ParaView it is possible to produce animations, for example
an animation of the progress of surface mining. Examples of
ParaView and VTK use can be found in (1),(2).

Since we often deal with particle data, it is necessary to
provide ParaView with a format it can easily use. Another
consideration is that we need to utilize the results from
ParaView e.g., clipped or smoothed data. Often outliers or
noise must be eliminated. To do this we need to take the

ParaView data and convert it back to particles that are used
in other applications.

In order to do this, a program was developed that reads the
point data and creates a file of type VTP that can be used in
ParaView. This program, called ReadXYZ, uses VTK to provide
a view of the data in its GUI. It also reads files of type VTP
and converts the points into the file to a text of x,y,z values
and a scalar. There is minimal information in the GUI as it is
essentially a filter. Its interface looks like this:

It has a relatively simple and clean interface, with a help
screen and an information screen giving the dimensions of
the image and the number of points.

One example of the utility of software like this is a reader
that reads the dxf formatted mapping files from a mine.
From this we can create a three dimensional map of the
mine that can then be rendered in ParaView. Of course, a big
advantage here is that you can selectively switch off selected
parts of the pipeline to emphasise features like roads or
buildings. In this illustration the lines comprising the roads
and buildings have been thickened.

Once this is done we can superimpose tracks of vehicles and
display properties such as GPS satellite visibility. There are
many possibilities here.

As an example of quite sophisticated work using ParaView,
one of us (Shrihari) (3),(4) addressed the issue of large scale
terrain modelling for a mobile robot. In this process, the two
products, ReadXYZ and ParaView, played an important role.

The Rio Tinto Centre for Mining Automation (RTCMA) uses
ParaView as the default data visualization and manipulation

vtkVisibleLinesPolyDataMapper is simply a vtkPainterPoly-
DataMapper subclass, like the previous example, which
inserts the vtkVisibleLinesPainter at the appropriate location
in the painter chain. The server manager configuration xml
doesn’t look much different from the “Using a new Mapper”
example, except that we replace the mapper with vtkVisible-
LinesPolyDataMapper.

Conclusions
We recently added support for adding representations for the
standard 3D view in ParaView using plugins. Representation
plugins make it possible to extend ParaView by adding new
mappers that use hardware shaders using GLSL or other
shading languages. Although representation plugins are not
for casual ParaView developers, given their complexity, it will
allow power developers to try new rendering techniques in
ParaView. This functionality is available in ParaView CVS and
is still evolving. It will be included in the next major release
of ParaView.

ACKNOWLEDGMENTS
This work was funded by EDF (www.edf.fr).

Utkarsh Ayachit is a Technical Leader in
Kitware’s Clifton Park, NY office. He is one
of the leading developers on ParaView.
Currently, Utkarsh is leading the effort to
add collaboration support to ParaView.

13

engine for some of their projects, in particular the large
scale terrain modelling project. Data sources for this project
typically include plain text files (consisting of lines of x,y,z,
data) or VRML/WRL files containing coordinates and color
data. ReadXYZ is used to handle the text files but ParaView
is used to directly handle the VRML files.

We have found that the interface of Paraview is superb in
comparison to other software. Most of the buttons, options,
and menus are tailor-made for rapid visualization and con-
tribute to rapid development in any application. The tools
that ParaView provides (i.e. the filters) are extremely useful
as well.

The figures below show some of the visualization and
manipulation work for a large-scale terrain modelling project
which employed ParaView. A visualization tool for such proj-
ects will need to provide at least the following capabilities:

• The software needs to load and handle large datasets
(upwards of 1-2 million points per dataset).

• Tools for filtering out noise and clipping out chunks of the
data for specific purposes.

• Visualization tools including coloring the points in differ-
ent ways (by depth, distance from one end, etc.).

• Triangulation methods to generate surface maps from
point clouds.

• Methods to overlay datasets / surfaces to enable a com-
parison.

• Convenient methods/interfaces for taking snapshots of the
data in various views.

ParaView provided a single, complete and convenient visu-
alization platform for doing all of these tasks. Hence it has
been adopted as the data visualization and manipulation
standard for this project. With each new attempt at using
ParaView in our project, we discover new exciting features
that enhance our work. Some examples of the terrain visual-
ized using ParaView are found in the following illustrations:

modelling of a mine pit, see (3),(4) for more details. This
map was generated from a dense elevation map of about 1
million points.

The second image above shows the result of modelling a
mine pit about 1.8 x 0.5 sq km in area. The significant aspects
of this dataset are the characteristic features on the sides and
the resulting complexity. Thus, ParaView provided a quick
and convenient means of visualizing complex terrain data
and a means for manipulating such datasets. In addition, the
tools provided by ParaView are very useful for visually vali-
dating our experimental results – for instance, by a simple
triangulation of point data one can easily verify, at least on a
preliminary basis, if the data captures certain features.

We acknowledge that there have been major improve-
ments in ParaView particularly in respect to the GUI and
the inclusion of Python as a programming language within
it. However one of the key uses of ParaView its ability to
quickly visualize and manipulate data without the need to
write filters, etc. Enhancements in this area will always be
appreciated.

Acknowledgements
This work has been supported by the Rio Tinto Centre for
Mine Automation and the ARC Centre of Excellence Program,
funded by the Australian Research Council (ARC) and the
New South Wales State Government.

Further Reading
1. Widzyk-Capehart E., Brooker G.M., Scheding S.J.,

Maclean A.J., Hennessy R.C., Lobsey C.R., Sivadorai
M., Millimetre Wave Radar Visualisation System:
Practical Approach to Transforming Mining Operations
Mechatronics and Machine Vision in Practice, Springer-Verlag
Berlin Heidelberg, 2008, p. 139-165, ISSN. 978-3-540-74026-1.

2.	 Brooker G.M., Hennessy R.C., Bishop M.V., Lobsey C.R. and
Maclean, A.J. Millimetre Wave 3D Imaging for Industrial
Applications Proceedings of the 2nd International Conference
on Wireless Broadband and Ultra Wideband Communications
2007. Presented at the 2nd International Conference on Wireless
Broadband and Ultra Wideband Communications, Sydney,
Australia, August 27 - 30, 2007.

3. 	 Vasudevan. S. Ramos, F. Nettleton, E. Hugh Durrant-Whyte, H.,
& Blair, A. Gaussian. Process Modeling of Large Scale Terrain,
ICRA 2009.

4. 	 Shrihari Vasudevan, Fabio Ramos, Eric Nettleton and Hugh
Durrant-Whyte, Gaussian Process Modeling of Large Scale
Terrain. To appear in Journal of Field Robotics.

Andrew Maclean is a Technical Officer who
has been working at the Australian Centre
for Field Robotics, University of Sydney. His
main interests include: visualization of data-
sets, database design and the development
of good, efficient and well tested code.

Shrihari Vasudevan is a Research Fellow at
the Australian Centre for Field Robotics,
University of Sydney. His research interests
span Robotics, Sensor fusion, Machine
Learning, Computer Vision and related
fields. His current work is with the Rio Tinto
Centre for Mine Automation and addresses
issues pertaining to modelling large scale
and complex terrain.

Each of these datasets spans several kilometers squared in
area and typically contains anywhere between 500K and 2
million points per dataset. We typically deal with several
such datasets at any time in our project.

The first image above shows the output of a triangulation
performed on the output of the research component for

14

Building External Projects
with Cmake 2.8
The ExternalProject module in CMake 2.8 makes it easier
to build projects dependent upon external software com-
ponents. An “external project” is one that you can get the
source code for, but does not readily build with a simple
ADD_SUBDIRECTORY call in your CMakeLists.txt file. The
ExternalProject_Add function makes it possible to say “down-
load this project from the internet, run its configure step,
build it and install it” with just a few lines of code added to
your CMakeLists.txt file. The time intensive processing for
each step is deferred until build time, making the CMake
configuration of an ExternalProject_Add lightning fast.

The basic concept of ExternalProject is simple: given an exter-
nal source of software (url to a .tar.gz file, cvs repository, svn
repository, local directory), execute the sequence of com-
mands necessary to build and install that software so that
you can refer to it (include, link, run) from your project.

ExternalProject_Add is presently implemented in terms of a
CMake custom target and several CMake custom commands.
The custom target represents the external project itself, and
each custom command is an “external project build step”.
Some of the custom commands execute the important steps
and some are just for housekeeping details. The following
image illustrates custom command dependencies and the
order of execution for one ExternalProject_Add call:

After each step is successfully executed, a stamp file is pro-
duced indicating that the step is up-to-date with respect to
its input. If an upstream step re-executes because its input
changed, then all downstream steps will also re-execute.
Steps that are always out of date will always re-execute when
built. For example, the update step of a cvs or svn checkout is
always considered out of date.

Whenever you build, the update step will execute and
retrieve the latest copy of the source from the repository.

Since an external project is a CMake custom target, you can
set up dependencies among multiple external projects and
between your own CMake targets and the external projects.
When a step in an external project re-executes, the down-
stream targets that depend on that project will also rebuild.

A call to ExternalProject_Add that downloads, configures,
builds and installs CMake 2.6.4 looks like this:

include(ExternalProject)
ExternalProject_Add(
 CMake-2-6-4
 CVS_REPOSITORY :pserver:anonymous:cmake@
 www.cmake.org:/cvsroot/CMake
 CVS_MODULE CMake
 CVS_TAG -r CMake-2-6-4
 CMAKE_ARGS -DCMAKE_INSTALL_PREFIX:
 PATH=<INSTALL_DIR>
 UPDATE_COMMAND “”
)

Network connectivity is assumed if external project sources
are downloaded via a URL to a remote computer or from a
remote cvs or svn repository.

ExternalProject Build Steps
The first step to execute at build time is the download step.
The download step could be a file download from an internet
site, a checkout from a cvs or svn repository, or a reference
to a pre-existing local file or directory. CMake supports local
or downloaded *.tar/*.tar.gz/*.tgz files and cvs and svn
repositories. For other download types, override the built-in
download step with a custom DOWNLOAD_COMMAND.

The next step is either update or patch. By default, if the
download step is a checkout from cvs or svn, then the update
step is the appropriate cvs or svn update call. Otherwise, the
update step is omitted. There is no default patch command. To
patch a source tree, provide a custom PATCH_COMMAND.

After that, the configure step executes. By default, the con-
figure command is used to run the same CMake command
used to configure the calling project. To use a specific version
of CMake, provide a CMAKE_COMMAND value. To use a
configure script or some other custom configuring program,
provide a custom CONFIGURE_COMMAND.

After configure, the build step executes. If CMake was used
to configure the project, then ‘cmake--build’ is used to build
the project. If a configure script was used, then ‘make’ is
used to build the project. If a custom configure command
was given, provide a custom BUILD_COMMAND, too.

The test step is omitted based on the assumption that
ExternalProject_Add calls will be made to build stable snap-
shots of the target software. If TEST_BEFORE_INSTALL 1 or
TEST_AFTER_INSTALL 1 is specified, the test step is executed
before or after the install step. CMake configured projects
run CTest. Configure script projects are tested with ‘make
test’. Override by providing a custom TEST_COMMAND.

The grayed out nodes are the housekeeping steps, the bold
ones are the important steps that actually execute commands.
An arrow between steps points to a “step that I depend on”
or a “step that runs before I run.” All steps are shown in the
above diagram: some steps are optional; all have reasonable
default commands; each may be omitted or overridden.

15

The final step in an external project build sequence is the
install step. CMake configured projects use cmake--build
with the install target to execute the install step. Configure
script projects use ‘make install’. Override by providing a
custom INSTALL_COMMAND.

ExternalProject_Add Arguments
Relative paths are interpreted with respect to the build
directory corresponding to the source directory in which
ExternalProject_Add is invoked in the calling project.

The first argument to ExternalProject_Add is the name for
the custom target representing the external project. It should
be a valid CMake target name and it must be unique across
the set of all target names in your CMakeLists.txt files. This
follows the same rule as other CMake targets: library, execut-
able and custom target names must be globally unique.

The DEPENDS argument takes the names of other CMake
targets that must build first before the current external
project will build successfully. These could be library, exe-
cutable target, external project, or CMake custom target
names. If you need to make your own CMake target depend
on an external project use the CMake ADD_DEPENDENCIES
command. The target name will be the first argument and
the external project <name> will be the second argument.

[PREFIX dir]

The *_DIR options specify directories for the project, with
default directories computed as follows. If the PREFIX option
is given to ExternalProject_Add() or the EP_PREFIX directory
property is set, then an external project is built and installed
under the specified prefix:

TMP_DIR = <prefix>/tmp
STAMP_DIR = <prefix>/src/<name>-stamp
DOWNLOAD_DIR = <prefix>/src
SOURCE_DIR = <prefix>/src/<name>
BINARY_DIR = <prefix>/src/<name>-build
INSTALL_DIR = <prefix>

If the EP_BASE directory property is set then components of
an external project are stored under the specified base:

TMP_DIR = <base>/tmp/<name>
STAMP_DIR = <base>/Stamp/<name>
DOWNLOAD_DIR = <base>/Download/<name>
SOURCE_DIR = <base>/Source/<name>
BINARY_DIR = <base>/Build/<name>
INSTALL_DIR = <base>/Install/<name>

If no PREFIX, EP_PREFIX, or EP_BASE is specified then the
default is to set PREFIX to “<name>-prefix”. Relative paths are
interpreted with respect to the build directory corresponding
to the source directory that invokes ExternalProject_Add.

[LIST_SEPARATOR sep]
Sep to be replaced by ; in cmd lines

Sometimes it’s necessary to pass a semi-colon delimited string
through to CMake as a -D argument. It’s impossible to pass
a semicolon in a string and then re-extract it later. So, if you
need to pass a list, use some other string (that isn’t used else-
where in your ExternalProject_Add arguments) to separate
items. Then pass that other string as the LIST_SEPARATOR.
For example, to pass:

CMAKE_ARGS -Dmylist:STRING=item1;item2;item3;item4

Use something like:

CMAKE_ARGS -Dmylist:
 STRING=item1^^item2^^item3^^item4
LIST_SEPARATOR ^^

[TMP_DIR dir]

The temp directory is used as a place to extract *.tar.gz files,
for other custom steps, or during configure and build of the
calling project.

[STAMP_DIR dir]

The stamp files that indicate the last time each external
project build step ran are stored in this directory. For multi-
configuration build systems like Visual Studio and Xcode, the
stamp files are stored in per-configuration subdirectories.

Download step
For the download step specify a URL; CVS_REPOSITORY
and CVS_MODULE; SVN_REPOSITORY; or DOWNLOAD_
COMMAND. If all of these and SOURCE_DIR are omitted, it
is an error. If there is no download step, then use an empty
string for DOWNLOAD_COMMAND “”.

[DOWNLOAD_DIR dir]

If URL points to a file to download from the internet then
the downloaded file will be stored in this directory.

[DOWNLOAD_COMMAND cmd...]

DOWNLOAD_COMMAND provides a custom download
command. For example, to extract from a different archive
format than the .tar.gz files that CMake can handle.

The download command should ensure that there is a source
directory at <SOURCE_DIR> when it is done; it executes with
the working directory set to <DOWNLOAD_DIR>.

[CVS_REPOSITORY cvsroot]

“:pserver:” or “:ext:” (or other) protocol string to the root of
the CVS repository.

[CVS_MODULE mod]

Name of the module to checkout relative to the root of
CVS_REPOSITORY.

[CVS_TAG tag]

-r tagname or -r branchname or -D 2009-09-10. If omitted,
the checkout gets no sticky tag or date, so you sync with the
HEAD of the CVS repository.

[SVN_REPOSITORY url]

URL to an svn repository. Usually includes “trunk”, a branch,
or a tag and the source directory.

[SVN_REVISION rev]

-r revisionNumber or -r {2009-09-10} date stamp. If omitted,
you sync with the latest revision from the SVN repository.

[URL /.../src.tgz]

16

URL to an internet-based file or name of a local file or pre-
existing already extracted source directory. Examples:

URL ${CMAKE_CURRENT_SOURCE_DIR}/Externals/Proj1
URL ${CMAKE_CURRENT_SOURCE_DIR}/tarballs/proj2.tgz
URL http://www.cmake.org/.../cmake-2.6.4.tar.gz

The download step will copy the local dir or the extracted
contents of the archive file to <SOURCE_DIR>. To support
other archive types, or avoid the copy, provide a custom
DOWNLOAD_COMMAND instead of using URL.

Update/Patch step
If the download step is based on a CVS_REPOSITORY or SVN_
REPOSITORY then the default value for the update command
will be a call to cvs or svn to update the source tree. In this
case, the update command will always re-run at build time.
To avoid the update step use UPDATE_COMMAND “”.

[UPDATE_COMMAND cmd...]

The default UPDATE_COMMAND for non-repository down-
load steps is “”. The update command executes with the
working directory set to <SOURCE_DIR>.

[PATCH_COMMAND cmd...]

By default, there is no patch step. If you have a patch file
to apply on top of a download or cvs checkout, use PATCH_
COMMAND. For example:

PATCH_COMMAND patch -p2 -t -N < ${dir}/proj1.patch

The patch command executes with the working directory set
to <SOURCE_DIR>.

Configure step
If SOURCE_DIR is explicitly set to an existing directory, the
project will be built from it.

[SOURCE_DIR dir]

Otherwise a download step must be specified using one of
the DOWNLOAD_COMMAND, CVS_*, SVN_*, or URL options.
The URL option may refer to a local directory or source
tarball, or to a remote tarball (e.g., http://.../src.tgz).

[CONFIGURE_COMMAND cmd...]

Command used to configure the project before building it. If
a project uses a configure script to achieve this then use:

CONFIGURE_COMMAND <SOURCE_DIR>/configure
 --prefix=<INSTALL_DIR>

The configure command executes with the working direc-
tory set to <BINARY_DIR>.

[CMAKE_COMMAND /.../cmake]

If project uses CMake to configure, and it uses a different
CMake than the one being used to configure the calling
project, use:

CMAKE_COMMAND ${full_path_to_other_cmake}

A project that configures with CMake uses the same CMake
as the calling project. The CMake command executes with
the working directory set to <BINARY_DIR>.

[CMAKE_GENERATOR gen]

If project requires a different CMAKE_GENERATOR than the
one used for the calling project, use:

CMAKE_GENERATOR “Visual Studio 8 2005”

[CMAKE_ARGS args...]

To make builds consistent, specify all of the configuration
settings used to build the project using CMAKE_ARGS.

CMAKE_ARGS -DCMAKE_BUILD_TYPE:STRING=Release
 -DPROJ_OPTION1:BOOL=ON
 -DPROJ_OPTION2:BOOL=OFF

You do not need to specify the “-G generator” part or the
source directory part of the CMake command line in CMAKE_
ARGS. The source directory is always automatically appended
as the last argument to the CMake configure command line,
and the generator defaults to the same as the calling project
unless you use the CMAKE_GENERATOR arg.

If you need to pass a list of items through a CMAKE_ARGS -D
argument, see the LIST_SEPARATOR documentation.

Build step
There is a reasonable location for the binary tree for the
external project, underneath ${CMAKE_BINARY_DIR} for the
calling project.

[BINARY_DIR dir]

If you would like to specify a different binary directory, use:

BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/MyBinaryDir

[BUILD_COMMAND cmd...]

CMake-based projects build with ‘cmake--build’. Others
build using ‘make’. Use BUILD_COMMAND to customize the
build step. The build command executes with the working
directory set to <BINARY_DIR>.

[BUILD_IN_SOURCE 1]

For projects that do not build properly in a separate binary dir,
or that want to build in the source tree, BUILD_IN_SOURCE 1
means set BINARY_DIR to be the same as <SOURCE_DIR>.

Install step
The INSTALL_DIR is underneath the calling project’s binary
directory. Use INSTALL_DIR to specify a different location.
Note that in addition to setting INSTALL_DIR, you also have
to pass -DCMAKE_INSTALL_PREFIX or --prefix to the CMake
or configure command. It is not used automatically in the
configure step since not all projects follow this convention.

[INSTALL_DIR dir]

You can refer to the install directory in your configure
command, for example:

17

CONFIGURE_COMMAND <SOURCE_DIR>/configure
 --prefix=<INSTALL_DIR>

[INSTALL_COMMAND cmd...]

CMake-based projects use ‘cmake--build’ to build the
install target. Other projects use ‘make install’. Use
INSTALL_COMMAND to customize the install step. Use
INSTALL_COMMAND “” to omit the install step. The install
command executes with the working directory set to
<BINARY_DIR>.

Test step
The test step is omitted to save time based on the assump-
tion that external projects are stable and well-tested. The
code you depend on will ultimately be tested by your own
project’s tests, anyway, right? It’s easy to activate the test
step, however. Simply add TEST_BEFORE_INSTALL 1 or TEST_
AFTER_INSTALL 1 to execute the test command either before
or after the install step. Or add a custom TEST_COMMAND if
the default one isn’t sufficient.

[TEST_BEFORE_INSTALL 1]
[TEST_AFTER_INSTALL 1]
[TEST_COMMAND cmd...]

By default, cmake based projects use ‘ctest’ to test the build
tree. Other projects use ‘make test’. Use TEST_COMMAND to
customize the test step.

Adding Custom Steps
Perhaps you still have a build step that the standard sequence
does not account for.

For even finer grained control than ExternalProject_Add
already gives you, you can add your own custom build steps
in lieu of, or in addition to, the steps already provided. To add
your own custom build step, use the function ExternalProject_
Add_Step after a call to ExternalProject_Add.

The ‘ExternalProject_Add_Step’ function adds a custom step
to an external project. The signature looks like this:

ExternalProject_Add_Step(<name> <step>
[COMMAND cmd...]
[COMMENT “text...”]
[DEPENDEES steps...]
[DEPENDERS steps...]
[DEPENDS files...]
[ALWAYS 1]
[WORKING_DIRECTORY dir]
)

“Silly example” calls that just echo some strings to the build
output stream after the standard build and install steps for
the external project “proj1” look like this:

ExternalProject_Add_Step(proj1 e1
 COMMAND ${CMAKE_COMMAND} -E echo e1
 DEPENDEES build
 DEPENDERS install
)
ExternalProject_Add_Step(proj1 e2
 COMMAND ${CMAKE_COMMAND} -E echo e2
 DEPENDEES install
)

These silly example calls would result in two additional build
steps. Step e1 executes after the build step and before the
install step, while step e2 executes after the install step.

The command line, comment, and working directory of
every standard and custom step is processed to replace
tokens <SOURCE_DIR>, <BINARY_DIR>, <INSTALL_DIR>, and
<TMP_DIR> with corresponding property values.

The following names are reserved step names used for the
standard external project build steps. Do not use these as
step names in calls to ExternalProject_Add_Step. These are
mine: mkdir, download, update, patch, configure, build,
test, install, complete, done. Use your own.

Properties
After an ExternalProject_Add call, you can call ExternalProject_
Get_Property to retrieve the properties of that project. For
example, if you need to use its install location in another
project’s configuration command…

ExternalProject_Get_Property(proj1 install_dir)

…puts the value of the INSTALL_DIR property for proj1 into
the CMake variable “install_dir”. You may then refer to it in
a subsequent configure command for proj2. For example:

CMAKE_ARGS -Dproj1_DIR:PATH=${install_dir}

The names of the variables used in an ExternalProject_Get_
Property call must match the names of the corresponding
properties that you retrieve.

Conclusion
The “external project” approach allows for consistent builds
across many machines because it is dependent upon a call
to ExternalProject_Add in your CMakeLists.txt file. Whereas,
relying on several people to set different variables to the
same set of values may not always yield consistent results.

In addition to consistency, automatically building external
projects saves developers time because they don’t have
to spend time manually configuring and building project
dependent components. Developers can configure a project,
crank up the build and voila: all those components are built
for them by ExternalProject’s automagic goodness.

One drawback, however, is ExternalProject’s lack of full
dependency analysis. Changes in header files of an external
project may not cause an incremental rebuild of the affected
sources that depend on those headers. This is because the
build step might not re-run. A complete list of header files
is not given as input to the build step, so there is nothing
to indicate that the build step should re-run. This problem
can be circumvented by touching or deleting a build step’s
corresponding stamp file which will force it to run.

For more information on ExternalProject, please visit the
CMake mailing list.

David Cole is an R&D Engineer in Kitware’s
Clifton Park, NY office. David has con-
tributed code to the VTK, CMake, ITK,
ParaView, KWWidgets and gccxml open-
source projects. He has also contributed to
Kitware’s proprietary products including
ActiViz and VolView.

18

Kitware news

Kitware held its 2nd Biomedical Visualization Contest to find
the best visualization made using VTK and ITK. Judging for
this contest was completed in a secure online environment
and the winners were announced at MICCAI 2009.

This years’ submissions employed the following software
applications in creating their contest submissions: caBIG-XIP,
3D Slicer, Osirix, MedINRIA, IRCAD’s VR-Render, and MITK.
Each of these applications was built on top of Kitware’s VTK
and/or ITK open source toolkits.

To create the first place image, ITK features (morphological
mathematics, topological, geometrical and textural opera-
tors) included in IRCAD’s 3DVPM software were used to
complete the image segmentation. VTK is used by IRCAD
VR-Render software for direct volume rendering. VTK and

Second Place Winner, Stephan Gerhard and Patric Hagmann
from Ecole Polytechnique Fédérale de Lausanne

Brain Connectivity as Network Visualization

To create the second place image, ConnectomeViewer was
used to render the image. The ConnectomeViewer applica-
tion’s framework was built using Enthought Envisage, with
Mayavi2 using TVTK as plugin. TVTK wraps VTK to trait-
enable Python.

Kitware would like to thank the following community
members for helping to make this contest possible:

• Nicholas Ayache, INRIA, Sophia-Antipolis

• Stephen Aylward, Kitware

• J. Michael Fitzpatrick, Vanderbilt University

• Alejandro Frangi, Pompeu Fabra University

• Henkjan Huisman, Radboud University Nijmegen Medical Centre

• Julien Jomier, Kitware

• Nico Karssemeijer, Radboud University Nijmegen Medical Centre

• Dean Inglis, McMaster University

• Marc Niethammer, The University of North Carolina

• Steve Pieper, Isomics, Inc.

• Patrick Reynolds, Kitware

• Daniel Rueckert, Imperial College London

• Julia Schnabel, University of Oxford

• Martin Styner, The University of North Carolina

• Debora Testi, BioComputing Compentence Centre

• Marco Viceconti, Istituto Ortopedico Rizzoli

• Betty Yue, Imperial College London

kITWARE IS AWARDED NAMIC Qt Supplement
for biomedical computing
Kitware has been awarded a two year, approximately $350K,
supplement to the NAMIC National Center for Biomedical
Computing project. The goal of the project is to rewrite
the Slicer KWWidgets-based GUI with Qt. Jean-Christophe
Fillion-Robin, Julien Finet and Sébastien Barré will be the
primary implementers of this technology.

KITWARE WINS Phase i ARL SBIR for mobile
ad-hoc network analysis
In this Phase I SBIR awarded by the Army Research Lab,
Kitware will develop a mobile ad hoc network platform for
ingestion, processing, and visualization of network simula-
tion and scenario data. This platform will be based on an
open-source, extensible system. The proposed technology
will integrate statistics algorithms; use graph algorithms
from the Boost Graph Library; and will make use of the
open-source Visualization Toolkit (VTK) and OverView, an
application designed to support informatics analysis and
visualization methods.

Kitware wins phase ii NIH STTR for
Web-based Image Analysis
This National Institutes of Health award “High Throughput
Web-based Image Analysis of Mouse Brain MR Imaging
Studies” will focus on developing a server-side processing
infrastructure to the MIDAS system for the analysis of mor-
phometry and connectivity for neuro-developmental and
neuro-degenerative diseases.

KITWARE WINS phase i DOE SBIR for
visual workflow
Kitware has been awarded a Phase I SBIR by the Department
of Energy to develop an integrated visual workflow environ-
ment which supports increasingly data intensive scientific
processes. The work will focus on the data management,

ITK also work with other Open Source systems like wxWid-
gets (for GUI), gdcm/dcmtk (for loading DICOM), vtkinria3d,
vgSDK or Boost which were also employed.

First Place Winner, Luc Soler and Jacques Marescaux from IRCAD
Computer Assisted Surgery of Pancreas Using Augmented Reality

19

comparison and evaluation of extremely large datasets.
The open source visualization systems ParaView and VisIt,
as well as other emerging data management tools such as
MIDAS and the Globus Metadata Catalog Service will be
used. Kitware plans to develop a flexible architecture so that
other computational tools may be used in place of these in
the future.

KITWARE WINS phase ii DOE SBIR for
Collaborative visualization
Kitware and the Stanford Linear Accelerator Center (SLAC)
were awarded a Phase II SBIR by the Department of Energy to
develop collaborative visualization tools for large-scale data.
The proposed work will address the typical problems faced
by geographically and organizationally separated research
and engineering teams, who produce large data and wish to
work together to analyze and understand that data.

require a much smaller cluster than is currently needed to
load and view entire AMR volumes.

LATE FALL/WINTER Conferences
If you’re interested in meeting with a Kitware representative
at one of these events, email us at kitware@kitware.com.

Qt Developer Days 2009
November 2 - 4, in San Francisco, CA. Bill Hoffman will be
presenting a Qt in Use Session entitled “Case Study Open
Source Showcase: Open Source in a Commercial Setting”on
Tuesday, November 2. https://edit.qt.troll.no/qtdevdays2009

Business of Software Conference
November 9-11, in San Francisco, CA. The Business of
Software Conference aims to bring together entrepreneurs
and developers interested in building long-term, sustainable
and profitable software businesses. David Cole will be in
attendance. www.businessofsoftware.org

OpenCFD Conference
November 11 - 12, Barcelona, Spain. Dr. Will Schroeder,
President and CEO of Kitware, will present an invited keynote
presentation at the OpenCFD conference. The talk entitled
“Scientific Computing with Open-Source Software” will
describe the business model and approach used to develop
successful open-source projects, with particular focus on the
ParaView parallel visualization system. Dr. Schroeder will
also lay out future development plans for ParaView and
the underlying VTK visualization system. http://www.open-
sourcecfd.com/conference2009

Supercomputing 2009
November 14 - 20, 2009, in Portland, OR. Kitware, along with
Sandia National Labs, will be presenting a half-day tutorial
on “Large Scale Visualization with ParaView” on Sunday,
November 15. http://sc09.supercomputing.org

RSNA’s 95th Scientific Assembly and Annual Meeting
November 29 - December 4, 2009, at the McCormick Place
Convention Center in Chicago, IL. Rick Avila will be presenting
a paper on the “Quantitative Estimation of Individual Lung
Cancer Risk” on Wednesday December 2. Kitware will also
be providing a showcase exhibit at the “Toward Quantitative
Imaging: Reading Room of the Future” on quantitative mea-
surement of lung cancer response to therapy. The Reading
Room of the Future will be located in Hall E of the Lakeside
Learning Center. http://rsna2009.rsna.org

IEEE Winter Vision Meetings 2009
December 7 - 10, 2009 in Snowbird, Utah. Anthony Hoogs,
Director of Computer Vision, and Eran Swears are present-
ing a paper at the IEEE Workshop on Motion and Video
Computing entitled “Functional Scene Element Recognition
for Video Scene Analysis”. Dr. Hoogs is also the Program
Co-Chair for the IEEE Workshop on Applications of Computer
Vision. http://vision.cs.byu.edu/wvm2009/wvm.php

Symposium on Interactive 3D Graphics and Games
February 18 - 21, 2010, at the Hyatt Regency in Bethesda,
MD. I3D is the leading-edge conference for real-time 3D com-
puter graphics and human interaction, and 2010 marks the
24th year since the first conference gathering. Dr. Stephen
Aylward, Kitware’s Director of Medical Imaging, will be in
attendance. http://www.i3dsymposium.org

Kitware wins phase i NLM SBIR for
biomedical research
Kitware has been awarded a Phase I SBIR by the National
Library of Medicine to develop a flexible information visu-
alization and analysis platform for biomedical research. This
contracted effort will develop tools in support of ‘omics
(genomics, proteomics, metabalomics) research by enabling
the visualization of interrelated data in publicly available
databases. Kitware is teamed with Michelle Williams from
the University of Washington and Thomas O’Connell from
the University of North Carolina.

Kitware wins phase i NCRR sbir for dect
angiography bone removal
This Phase I SBIR awarded by the National Center for Research
Resources will develop tools for dual energy segmentation
and removal of bone from the vicinity of the carotid arteries.
This technology will enable contrast enhanced angiography
studies where the bone and vasculature anatomy can be
confounded for a single energy CT scan. Kitware is teamed
with Sandy Napel of Stanford University on this effort.

Kitware wins Phase I DOE SBIR for
AMR Streaming
In this Phase I Department of Energy award, Kitware plans
to extend its open source parallel visualization application,
ParaView, to process Applied Mathematical Research (AMR)
datasets by “streaming” them. Only the data that is being
viewed will be loaded, processed and displayed. This will

The interaction between genes and miRNA sequences
in Drosophila, using the TargetScanFly dataset showing

the full set of genes and miRNA sequences.

20

Kitware’s Software Developer’s Quarterly is published by
Kitware, Inc., Clifton Park, New York.

Contributors: Lisa Avila, Utkarsh Ayachit, Stephen Aylward,
Jeff Baumes, David Cole, Katie Cronen, Berk Geveci, Bill
Hoffman, Luis Ibàñez, Julien Jomier, Steve Jordan, Charles
Law, Andrew Maclean, Pat Marion, Thomas Otahal, Patrick
Reynolds, Niki Russell, Will Schroeder, Wes Turner and
Shrihari Vasuderan.

Design: Melissa Kingman, www.elevationda.com

Editor: Niki Russell

Copyright 2009 by Kitware, Inc. or original authors.

No part of this newsletter may be reproduced, in any form,
without express written permission from the copyright
holder. Kitware, ParaView, and VolView are all registered
trademarks of Kitware, Inc.

To contribute to Kitware’s open source dialogue in future
editions, or for more information on contributing to specific
projects, please contact the editor at kitware@kitware.com.

In addition to providing readers with updates on Kitware
product development and news pertinent to the open
source community, the Kitware Source delivers basic infor-
mation on recent releases, upcoming changes and detailed
technical articles related to Kitware’s open-source projects.
These include:

•	 The Visualization Toolkit (www.vtk.org)
•	 The Insight Segmentation and Registration Toolkit

(www.itk.org)
•	 ParaView (www.paraview.org)
•	 The Image Guided Surgery Toolkit (www.igstk.org)
•	 CMake (www.cmake.org)
•	 CDash (www.cdash.org)
•	 BatchMake (www.batchmake.org)
•	 VTKEdge (www.vtkedge.org)

Kitware would like to encourage our active developer
community to contribute to the Source. Contributions may
include a technical article describing an enhancement you’ve
made to a Kitware open-source project or successes/lessons
learned via developing a product built upon one or more
of Kitware’s open-source projects. Authors of any accepted
article will receive a free, five volume set of Kitware books.

NEW HIRES

Casey Goodlett
Casey joined Kitware's North Carolina office in August 2009
as an R&D Engineer for the Biomedical Imaging team. Prior
to joining Kitware, Casey was a member of the Scientific
Computing and Imaging (SCI) Institute at the University of
Utah where he completed his PhD in Computing.

Marcus Hanwell
Marcus Hanwell joined Kitware in October 2009 as an R&D
Engineer for the Scientific Computing team. Marcus is one of
the core developers of Avogadro and an active member of
the Gentoo and KDE communities. He completed his BS and
PhD in Physics from the University of Sheffield. His PhD and
post-doctoral research involved both experimental and com-
putational research, concerned primarily with the electrical
and structural characteristics of nanomaterials.

Matt Leotta
Matt joined Kitware in September 2009 as an R&D Engineer
for the Computer Vision team. Matt completed a dual BS
in Computer Science and Computer Systems Engineering
from RPI and his MS in Applied Mathematics from Brown
University. He is currently in the final stages of his PhD in
Engineering at Brown University.

Zach Mullen
Zach joined Kitware in August 2009 as an R&D Engineer and
is currently working as a developer on CMake. Prior to joining
Kitware, Zach worked as a co-op at IBM where he devel-
oped the Common Launchpad, a framework for abstracting
cross-platform development issues. Matt received his BS in
Computer Science from The University of North Carolina at
Chapel Hill.

Sangmin Oh
Sangmin joined Kitware in September 2009 as an R&D
Engineer for the Computer Vision team. Dr. Oh received his
BS in Computer Science from Seoul National University, and

his MS and PhD in Computer Science from Georgia Tech.
While at Georgia Tech his research focused on applying
temporal models such as switching linear dynamic systems
to learn and recognize patterns that occur in multi-channel
time-stream data.

David Stoup
David joined Kitware in August 2009 as an R&D Engineer for
the Computer Vision team. Prior to joining Kitware, David
built large Java applications as a consultant for the State of
New York. He received his BS in Computer Science from the
University of Massachusetts in Amherst.

NEW INTERNS

Steve Jordan
Steve joined Kitware in September 2009 as a graphic design
intern. Steve is a graduate of the College of Saint Rose where
he completed a BFA in Graphic Design.

rpi career fair
Kitware will be attending the RPI Career Fair on February
3, 2010, to recruit top engineering talent for full-time and
internship positions.

EMPLOYMENT OPPORTUNITIES
Kitware is always looking for talented candidates, passion-
ate about software development, to work with leaders in
the fields of computer vision, medical imaging, visualization,
3D data publishing and technical software development.

Kitware team members enjoy our small company environ-
ment, flexibility in work assignments and high levels of
independence and responsibility. We offer comprehensive
benefits including: flexible work hours; six weeks paid time
off; a computer hardware budget; 401(k); health insurance;
life insurance; short-and long-term disability; visa process-
ing; and free drinks and snacks.

Qualified candidates, especially those with experience in
computer vision and scientific computing, are encouraged
to send their cover letter and resume to jobs@kitware.com.

