Arslan Basharat will be presenting the paper ‘Real-time Multi-Target Tracking at 210 Megapixels/second in Wide Area Motion Imagery’ during Short Oral + Poster Session 5. The paper is co-authored by Arslan Basharat, Matt Turek, Yiliang Xu, Chuck Atkins, David Stoup, Keith Fieldhouse, Paul Tunison, and Anthony Hoogs.

We present a real-time, full-frame, multi-target Wide Area Motion Imagery (WAMI) tracking system that utilizes distributed processing to handle high data rates while maintaining high track quality. The proposed architecture processes the WAMI data as a series of geospatial tiles and implements both process- and thread-level parallelism across multiple compute nodes. Each tile is processed independently, from decoding the image through generating tracks that are fi nally merged across all tiles by an inter-tile linker (ITL) module. A high performance PostgreSQL database with GIS extensions is used to control the flow of intermediate data between each tracking process.

High quality tracks are produced efficiently due to robust, effective algorithmic modules including: multi-frame moving object detection and track initialization; tracking based on the fusion of motion and appearance with a goal of very pure tracks; and online track linking based on multiple features. In addition, we have configured a high-performance compute cluster using high density blade servers, Infiniband networking, and an HPC filesystem. The compute cluster enables full-frame, state-of-the-art tracking of vehicles or dismounts at the WAMI sensor’s native 1.25Hz frame-rate, while only taking 7u of rack space and providing 210 megapixels/second throughput.

Physical Event