
S O F T W A R E D E V E L O P E R ’ S Q U A R T E R L Y

Editor’s Note ... 1

Recent Releases ... 1

GPU Ray Casting in VTKEdge ... 3

Backward Compatibility in ITK ... 5

Selecting Data in ParaView ... 7

CMake 2.6 .. 11

In Progress ... 13

Kitware News .. 14

The Kitware Software Developer’s Quarterly Newsletter con-
tains articles related to the development of Kitware projects
in addition to a myriad of software updates, news and other
content relevant to the open source community. In this issue,
Dr. François Bertel discusses a new volume rendering tech-
nique for regular, rectilinear grids which utilizes the power
of GPU in order to accelerate ray casting. Bill Hoffman details
the new features of CMake 2.6, the first major release of
CMake since May 2006. Some of our most influential Insight
Toolkit (ITK) users and developers discuss the issue of back-
ward compatibility to express the complexity of the issue
and the variety of diverse opinions about this topic in the
community. And Utkarsh Ayachit provides a use-case driven
approach to demonstrate how selection can be described
and used to support quantitative analysis in ParaView 3.

The Kitware Source is just one of a suite of products and
services that Kitware offers to assist developers in getting
the most out of its open-source products. Each project’s
website contains links to free resources including mailing
lists, documentation, FAQs and Wikis. In addition, Kitware
supports its open-source projects with technical books, user’s
guides, consulting services, support contracts and training
courses. For more information on Kitware’s suite of products
and services, please visit our website at www.kitware.com.

Issue 6 • July 2008

CDaSh 1.0
CDash the open-source, web-based software testing server
has had its first official release. CDash aggregates, analyzes
and displays the results of software testing processes submit-
ted from clients located around the world, conveying the
state of a software system to continually improve its quality.
We have transitioned almost all Kitware software projects
to CDash at this point; the database for the public Kitware
Open Source projects is about 20 gigabytes and at this
point is very reliable and stable. The 1.0 release adds the
following features:

• CDash automatically detects when the timing for a test
has slowed down significantly

• The number of nightly changes is now displayed on the
main project page

• Ability to mark compile warnings, compile errors and test
failures with “fix in progress” or “fixed”

• CTest 2.6 timestamp information is used when available
• Support was added for different cvs/svn web viewers

including Fisheye
• Ability to remove builds that are not valid
• Upload a cvs/svn user name and email address list to CDash

allowing projects to quickly setup all developers
• Output from tests and coverage tests are compressed in

the database by only storing unique information
• Sort by any column on the viewTest and testSummary pages
• Bbuild group links only appear when the mouse is on a

build group
• Clicking on a header for a build group displays a

help dialog

• The project logo is now a hyperlink to the project
home page

• Separate lists for failing tests and passing tests.
• Support for external authentication
• Slow queries have been optimized with better

response times
• Many other small bugs have been fixed

2

CMaKE 2.6
CMake 2.6 is the first major release of CMake since 2.4 was
released in May 2006. A brief list of the significant new
features and bug fixes is provided below. In addition, an
article on the CMake 2.6 release is included in this edition of
the Source.

• Introduction of the cmake_policy command
• New cross platform Qt-based GUI
• Improved Fortran Support
• Mac OSX Framework creation support
• Project generators for Eclipse and CodeBlocks
• Bullseye coverage support
• Uses full paths for linking, and no longer separates into

–L and –l
• CPack supports .deb and rpm creation
• Cross compilation support
• Enhanced find_package that can find project installed

FooConfig.cmake files
• New CMAKE_PREFIX_PATH environment variable to specify

user search directories for find_xxx
• Automatic project reload of project in Visual Studio 7 and

greater if cmake is re-run because a CMakeLists.txt file is
out of date.

• Improved online and built in documentation including the
documentation of CMake variables.

• Ability to change rpath during install instead of relinking
• Ability to import/export targets from a project
• Added functions with local scope variables
• Added return, break, and PARENT_SCOPE to set

ITK 3.6
ITK 3.6 was released on April 15, 2008. The main changes in
this release relate to improvements of the image registra-
tion framework. In particular, a set of multi-threaded image
metric implementations have been added to the Code/
Review directory. Stephen Aylward led the team that devel-
oped these new classes. Team members included Brad Davis,
Sebastién Barré and Matt Turek. Very valuable feedback was
provided by Jim Miller (GE), Serdar Balci (MIT) and Golina
Polland (MIT).

The registration framework was also revised in order to:

• Provide correct management of Oriented Images
• Reduce memory requirements of BSpline deformable

registration
• Reduce memory requirements of Mattes Mutual

Information image metric
• Add nightly testing for 3D image registration cases

There were a limited number of classes added to the Code/
Review directory.

In particular:

• Image Projection Filters
• Helper classes for profiling memory consumption
• Multi-threaded image registration metrics (described

above)

The image projection filters were kindly contributed by
Gaetan Lehmann in a reproducible paper submitted to the
Insight Journal: http://insight.journal.org/midas and search
for “image projections along an axis.”

For a full list of classes added and changes made in this
release, visit itk.org/Wiki and search for “ITK Release 3.6”.

The release of ITK 3.8 is currently scheduled for the
end of July 2008: http://www.itk.org/Wiki/ITK_Release_
Schedule#Release_3.8_Schedule.

Results of an image registration performed with ITK on MRI
images, and visualized with VTK surface rendering.

VTK 5.2
VTK 5.2 is the first major release of VTK since 5.0 was released
in January 2006. This release includes:

• The new Infovis kit for processing and visualizing
“information”(non-geometric) data

• The new Views kit to combine groups of filters, visualiza-
tion techniques, interaction, and selection mechanisms
into a render window to view data

• A new Widgets architecture and more than a dozen new
3D widgets

• Improved time support
• Improved multi-block / composite data support
• Improved Java wrapping
• Improved Mac OS X support
• New Utilities: freerange, verdict, libxml2, metaio, sqlite
• Updated Utilities: freetype, zlib
• More than 300 new C++ classes since VTK 5.0

• More than 100 new C++ tests since VTK 5.0

A 128*128*128 dataset of a mummy head visualized
using the GPU Ray Cast Mapper.

3

GPU Ray CaSTING IN VTKEDGE
Volume rendering is a visualization technique for repre-
senting volumetric data in a 2D image. It is a powerful tool
for visualizing biomedical data or the results of volumetric
simulations (e.g., weather analysis, astrophysical simula-
tion). This article covers a new volume rendering technique,
for regular, rectilinear grids (vtkImageData), that utilizes the
power of GPU in order to accelerate ray casting. This new
volume mapper is called vtkKWEGPURayCastMapper and is
available as part of VTKEdge. Please read the Kitware news
article on VTKEdge in this edition of the Source for more
information on this new open-source toolkit.

OVERVIEW
VTK supports several volume rendering techniques for both
regular, rectilinear grids (vtkImageData), and tetrahedral
meshes (represented by vtkUnstructuredGrid). Some of
these volume mappers primarily utilize the CPU (relying on
the GPU only for the final display of the resulting image),
while other mappers make use of the resources available
on the GPU such as 2D and 3D texture memory and texture
mapping functionality. The new vtkKWEGPURayCastMapper
in VTKEdge uses the latest advancements available on recent
GPUs including fragment programs with conditional and
loop operations, multi-texturing and frame buffer objects
in order to deliver significantly improved performance over
the CPU-based ray casting, while still maintaining high ren-
dering quality.

The basic ray casting concept is quite simple. For each pixel in
the final image a ray is traced from the camera through the
pixel and into the scene. As the ray passes through a volume
in the scene the scalar data is sampled along the ray and those
samples are processed and combined to form a final RGBA
result for the pixel. The implementation of the ray casting
algorithm within an object-oriented visualization system,
such as VTK, that utilizes object-order rendering (polygonal
projection) for other data objects in the scene is a bit more
complex, requiring the ray casting process to consider the
current state of the frame buffer in order to intermix the
volume data with other geometric data in the scene.

In our GPU implementation of ray casting, the volume data
is stored on the GPU in 3D texture memory. Ray casting is ini-
tiated by rendering a polygonal representation of the outer
surface of the volume. A fragment program is executed at
each pixel to traverse the data and determine a resulting
value that is combined with the existing pixel value in the
frame buffer computed during the opaque geometry phase
of rendering.

BLENDING OPERaTIONS
The vtkKWEGPUVolumeRayCastMapper supports three basic
blending operations for the values encountered along the
ray. These are:

1. Maximum Intensity Projection (MIP): With a MIP blending
operation, the ray caster determines the maximum scalar
value encountered along the ray, and then passes this value
through the user-defined transfer functions to produce a
color and opacity. This technique is often used to view
data where the highest scalar values represent the most
important features. Typically the color transfer function is
set to constant white, while the opacity transfer function

is allowed to linearly vary from 0.0 at the minimum scalar
value to 1.0 at the maximum scalar value.

2. Minimum Intensity Projection (MinIP): The MinIP projection
is similar to the MIP projection, but instead determines the
minimum value along the ray. This blending operation is
useful when the minimum data values represent the most
important features. A reverse opacity ramp (going from
1.0 at the minimum scalar value to 0.0 at the maximum
scalar value) would be used for MinIP visualizations.

3. Composite Method: For a composite projection, the ray
caster will consider each sample encountered along the ray
and blend these values using a standard “over” operation.
If the alpha component approaches 1.0 (and therefore
further data samples would not contribute to the image)
the computation along the ray can be terminated. If
shading is enabled in the volume property, then a gradient
value will be computed using a central differences method
on the GPU at each sample and used as a normal vector for
lighting calculations.

Composite rendering without shading.
Data courtesy of the Terascale Supernova Initiative.

CURRENT FEaTURES
The vtkKWEGPUVolumeRayCastMapper currently supports
a diverse set of standard volume visualization features.
These include:

• Input Scalar Type: The mapper can accept input data of
any scalar type from unsigned char through double. Note
that internal calculations are performed at single precision
floating point accuracy.

• Speed / Accuracy Trade-Off: The computed image resolu-
tion is independent of the screen resolution and will be
automatically adjusted to achieve the allocated rendering
time for the volume. The computed image is rendered to
the frame buffer using bilinear interpolation. Typically,
the number of rays cast can be reduced by a factor of 4 to
9 during interaction (resulting in frame rates of nearly 4 to
9 times faster) with only a small loss in image quality.

• Camera Projection: The mapper works for both parallel
and perspective camera projections.

• Intermixing: Opaque geometry will be correctly intermixed
with the volume rendering produced by this mapper.
Multiple volumes that do not overlap can be correctly
rendered together provided that the vtkFrustumCover-
ageCuller (or another vtkCuller subclass) is used to order
the volume in a back to front manner.

• Point Data / Cell Data: This mapper supports rendering of
both point data and cell data.

4

• Contrast and Brightness: A window / level operation can
be applied to the final image before display in order to
adjust the contrast and brightness.

• Clipping / Cropping: The mapper supports data axis-aligned
cropping as well as arbitrary clipping planes.

• Large Data: If the volume data is too large to fit in texture
memory, it will be streamed from the CPU to the GPU in
slabs to perform rendering.

Composite rendering with shading of a
DICOM medical image data set.

REQUIREMENTS
The vtkKWEGPUVolumeRayCastMapper uses the OpenGL
shading Language (GLSL) as well as several advanced features
of OpenGL that are only available on recent mid-to-high
end graphics cards. The specific features required to use this
mapper are:

• GL_ARB_shading_language_100 or OpenGL>=2.0
• GL_ARB_shader_objects or OpenGL>=2.0
• GL_ARB_fragment_shader or OpenGL>=2.0
• GL_ARB_GL_ARB_texture_non_power_of_two

or OpenGL>=2.0
• GL_ARB_draw_buffers or OpenGL>=2.0
• GL_EXT_framebuffer_object
• GL_ARB_depth_texture or OpenGL>=1.4

The optional (used if present) OpenGL features are:

• GL_ARB_texture_float
• GL_ARB_pixel_buffer_object or OpenGL>=2.1
• GL_ARB_vertex_buffer_object or OpenGL>=1.5

The card is required to support “while” statements in the
fragment shader. NVIDIA GeForce 5 series does not support
the fragment shader; it should work with an NVIDIA GeForce
6 or higher series.

EXaMPLE
The vtkKWEGPUVolumeRayCastMapper can be utilized in the
same manner as any other volume mapper, and it should be
a simple process to change existing code to use this mapper.
However, since this mapper uses some advanced OpenGL
features, you must check at run-time to see if the mapper is
supported by calling IsRenderSupported(). If the mapper is
not supported due to hardware limitations on the platform,
then an alternate mapper should be created. The following
example illustrates this process.

// Create and initialize the mapper
vtkKWEGPUVolumeRayCastMapper *mapper =
 vtkKWEGPUVolumeRayCastMapper::New();
mapper->

 SetInputConnection(reader->GetOutputPort());
mapper->SetBlendModeToComposite();

// Create and initialize the volume
vtkVolume *volume = vtkVolume::New();
volume->SetMapper(mapper);
volume->SetProperty(property);

// Create the renderer and render window
vtkRenderWindow *renwin = vtkRenderWindow::New();
vtkRenderer *ren = vtkRenderer::New();
renwin->AddRenderer(ren);

// Make sure we have a valid OpenGL context
renwin->Render();

// Check for support
if(mapper->IsRenderSupported(renwin, property))
 {
 ren->AddViewProp(volume);
 renwin->Render();
 }

In the preceding example, if the support check fails, a differ-
ent volume mapper that is supported on the current OpenGL
context given the properties of the volume would need to be
created. Note that several other VTK volume mappers (e.g.
vtkVolumeTextureMapper3D, vtkVolumeProVP1000Mapper)
have this same requirement of checking for support. VTK
Edge provides a convenience volume mapper called vtkKW-
EVolumeMapper that will check the hardware capabilities at
run-time and will create and delegate to the best supported
volume mapper given current OpenGL context, properties of
the volume, and the allocated render time of the volume.

aLGORIThM DETaILS
The first step of the rendering process is to ensure that
all the necessary data is located in texture memory. This
includes the 3D texture representing the volumetric data, as
well as some 1D textures representing the transfer functions
mapping scalar value to color and opacity. Care is taken to
copy these textures from main memory to the GPU texture
memory only when they have changed.

The next step is to create a bounding polyhedron that rep-
resents the bounding box of the volume clipped with the
near, far, and arbitrary clipping planes that may be applied
to the volume. The back-facing polygons of the bounding
polyhedron are drawn into the current Zbuffer in order to
facilitate ray termination during the ray casting process. This
ZBuffer also contains the depth values for the opaque geom-
etry in the scene which was rendered prior to the start of the
volume rendering phase.

In the next step, the front-facing polygons of the bound-
ing polyhedron are rendered, and the rasterization of each
face automatically triggers on each pixel a stream proces-
sor to execute the fragment shader code. The fragment
shader uses the pixel position as the starting point to trace
a ray through the 3D texture representation of the volume.
The scalar values sampled from the 3D texture are used as
texture coordinates into the 1D textures defining the color
and opacity mappings. If shading is enabled, additional
3D texture samples are taken to perform a central differ-
ence operation to estimate the gradient. The properties of
the samples are processed and combined according to the
selected blending mode. Ray traversal is terminated when
either the ray passes the depth value stored in the ZBuffer,
or full opacity is reached.

5

In order to support the ability to decrease rendering time
(at the expense of image quality) the frame buffer object
(FBO) into which the image is rendered is independent in
size from the pixel dimensions of the renderer. This size can
be adjusted to control rendering speed. The last stage is to
render a quad the size of the window on which the color
buffer of the FBO is mapped. During the rasterization of the
quad, another fragment shader is triggered to manage final
brightness and contrast of the rendered image.

aCKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation under award number OII-0548729.

Dr. François Bertel is a technical developer in
Kitware’s Clifton Park, NY office. His current
interests include GPU programming applied
to visualization.

The topic of backward compatibility has generated animated
discussions among ITK users and developers for several years.
We have gathered multiple points of view on this topic from
some of our most influential users and developers. Condensed
versions of these position statements are published in this
article; the full text can be found on the ITK wiki at http://
www.itk.org/Wiki (search with the keyword “backward” to
find it.) The purpose of this article is not to declare a conclu-
sive solution, but rather to show the complexity of the issue
and the variety of diverse opinions in the community. We
welcome your feedback on this controversial topic.

POSITION STaTEMENT 1 (BILL LORENSEN)
One of the major criticisms of open-source software is
that new revisions are not compatible with old revi-
sions. Breaking compatibility impedes the acceptance and
utility of open-source software. On the other hand, strict
backward compatibility polices can impede innovation in
software. The tension between these two viewpoints is not
easily resolved.

As projects mature and the customer base grows, backward
compatibility becomes more important. Commercial hard-
ware and software products call this customer base, the
installed base. Commercial products usually have a known
customer base consisting of those who have purchased or
licensed the software. Also, commercial systems seldom
expose internal API’s. Open source projects rarely know the
identities of their customers. And, since the source is open,
customers have access to all public and protected classes,
methods and data in the code. For open source software, it
is almost impossible to determine how the customer base is
using the software.

During the early years of ITK development, API changes were
required as we refined the system architecture and refactored
code contributed by the distributed ITK development team.
Now, ITK is over eight years old. The ITK developers have the
responsibility to ITK’s customers to ensure that released soft-
ware conforms to software guidelines, respects intellectual
property, and compiles and runs on supported platforms.

BaCKWaRD COMPaTIBILITy IN ITK

It must always be difficult to change an existing API. Every
change, no matter how small, should be questioned. The
burden for change is on the ITK developers. The primary
goal is to minimize API changes, but when necessary, those
changes should never cause user code to fail to compile.
Compilation errors cannot report to a user how to correct
the code in error. Documentation in user mailing lists or
online forums like wiki’s is not acceptable as the only venues
for reporting how to achieve backward compatibility.

Bill Lorensen is a software engineer resid-
ing in Ballston Lake, NY. Bill is one of the
original authors of the Visualization Toolkit
software/text and a main developer of the
Insight Toolkit. He is a co-author of the
textbook Object-Oriented Modeling and

Design. His current interests include open source software
quality and golf.

POSITION STaTEMENT 2 (STEVE PIEPER)
This is primarily a policy discussion, and so the central issue
is how to effectively communicate with users of the toolkit
about what they get when they use a particular piece of
code. The general policies could be summarized as:

• Different things should have different names.
• Similar things should have similar names.
• If two things have the same name, you can assume they

will behave the same.

A way to interpret this is that if you come up with non-
backwards compatible version of an algorithm, you should
give it a new class name, like MyFilter2, rather than relying
on the toolkit version number to indicate that it is differ-
ent. Deprecation warnings at compile time can inform the
developer that MyFilter is out of date. Dropping support for
deprecated classes should happen when the toolkit itself
gets a new name (like ITK4 instead of ITK3). Developers can
choose when to migrate to a new class and/or a new version
of the toolkit.

We should keep in mind that it is basically impossible to be
absolutely backwards compatible. Even adding a new class
or method could lead to a compile error if it conflicts with
a name the user selected, so we are always talking about
degrees of backwards compatibility which again emphasizes
the importance of setting a policy that allows change and
effectively communicates when these changes take place.

In addition to formulating naming conventions that explic-
itly indicate changed behavior, I would also propose that the
community develop something that might be called ‘testing
contracts’ between toolkits and their users. That is, toolkit
users should be able to submit code that makes use of the
toolkit in explicitly the way they depend on it behaving.
These tests would be independent of the user’s own evolv-
ing code so that anytime the tests fail it would be known
to come from changes in the toolkit. A cross-platform build
farm that continually rebuilt these ‘testing contracts’ would
be a great service to the community.

Steve Pieper is CEO of Isomics, Inc. in
Cambridge, MA. Dr. Pieper works on several
NIH sponsored research projects involving
application of medical image computing
technologies to research and therapeutic
applications. Dr. Pieper is active in both
academic and commercial uses of advanced
technologies.

6

POSITION STaTEMENT 3 (STEPhEN ayLWaRD)
Backward compatibility is paramount in a toolkit, particu-
larly one that is used by researchers. If a toolkit continually
requires researchers to re-develop/re-test code that had
previously worked, the toolkit will become viewed as an
impediment to their work and eventually the user-pool
will dwindle.

Backward compatibility applies to the API and the operation
of a toolkit. One person’s bug is another person’s feature.
An incorrectly spelled function name is not a bug once that
function has been called by a user. Subsequently, changing
the function’s name to the correct spelling does create a bug
in the user’s code. The same bug/feature dichotomy exists
when the API of a set of functions is perceived to be inconsis-
tent. The same bug/feature dichotomy may even exist when
a function has side-effects that are perceived as unwanted
or even when a function has outputs that are perceived as
incorrect. The guiding philosophy should be: Once a function
is released and it performs a particular operation, even if the
operation it performs is not what was originally intended, its
operation cannot be considered a bug.

Admittedly, radical changes are occasionally needed in a
toolkit to keep it current. When making those changes, it is
important to apply an otherwise contrary adage: “if you are
going to break a standard, then you should REALLY break
the standard.” That is, the changes to the toolkit should be
planned and drastic. Planned means that the changes (1)
should be announced and discussed well in advance of their
release; (2) should be well supported, with clear transition
paths and documentation; and (3) should be driven by the
needs of the community. Drastic means that the changes
should be extensive. If the changes being introduced are
subtle then they could instead be done in a backward com-
patible way or as an extension of the existing framework.
Breaking backward compatibility should only be allowed if
the collective voice of the user community calls for a change
that necessitates the complete overhaul of a framework
or function to support the trends in research, hardware
or compilers.

Balancing the above issues is best handled by a systematic
process for adopting new features, testing backward compat-
ibility and implementing alternative frameworks. The Insight
Toolkit has a well established method for adopting new fea-
tures: the Insight Journal. Testing backward compatibility is
enabled by CTest and coverage counts, but disciplined appli-
cation of those technologies are and will probably always be
a challenge. An established mechanism for implementing,
reviewing and releasing alternative frameworks does not
currently exist. Establishing such a mechanism (policy and soft-
ware) is critical to the continued success of the Insight Toolkit;
if such a mechanism could be provided, then daily backward
compatibility challenges would have a controlled outlet.

Stephen R. Aylward, Ph.D. is Chief Medical
Scientist at Kitware, Inc. and manager of
their North Carolina office. Dr. Aylward’s
research has recently focused on develop-
ing model-to-image registration strategies
for intra-operative images and statistically
characterizing vascular network variations
for disease detection. He is working at

Kitware to integrate those technologies into commercial
products and to collaborate with other companies and uni-
versities on funded research.

POSITION STaTEMENT 4 (SIMON WaRFIELD)
Backward compatibility in the Insight Toolkit is an important
issue that must balance the needs of the Insight community
for stability, innovation and clarity.

One of the key reasons for the success of open source soft-
ware has been the credo of ‘release early, release often’.
With this approach, the early deployment of software before
it is fully tested and validated, has been found to enable
the rapid development of useful and important software. A
consequence of this approach is that software is deployed
to the community as it is developed rather than after it
is developed.

In a young code base undergoing rapid expansion code can
be implemented and regression tested faster than the com-
munity can fully appreciate. When this occurs, the interface
to functionality erected by a particular implementation
needs to be considered on its merits and not regarded as
a sacrosanct interface. Being first doesn’t mean being best,
and shouldn’t mean immortality. A regression test will
ensure that the implementation achieves what the developer
wanted, but doesn’t ensure that what the developer wanted
was what the community comes to understand is the best
strategy to preserve under the obligation of backward com-
patibility. Indeed, it may be valuable to trial several different
interfaces to particular functionality before it becomes clear
what will be easiest to use and what will lend the greatest
clarity to the largest number of developers.

In general, maintaining compatibility with previously
released versions is desirable, because it allows code that
utilizes prior releases to adopt new releases easily, with no
burden on the developer community, while providing the
benefits of new or improved functionality included in the
new release. However, an excessive insistence on backward
compatibility can hamper innovations, prevent bugs from
being fixed, and destroy the aesthetic pleasure of a well-
designed application programmer interface.

In particular, when a bug is discovered, a decision to maintain
and preserve code that functions incorrectly for the sake of
backward compatibility is wrong. Bugs should be fixed, and
in cases where external code depends on wrong results from
a function to operate correctly, those in the community who
chose to adopt new versions or new releases of the code
base, will need to be updating their code when new code to
establish correct operation is implemented.

Similarly, code that implements a poor API or which has
made wrong design choices, needs to be carefully and
thoughtfully eliminated as the toolkit matures, rather than
having that code add to the cost and investment that the
user community makes in maintaining the toolkit.

Dr. Simon Warfield is the founder and
Director of the Computational Radiology
Laboratory (CRL) in the Department of
Radiology at Children’s Hospital Boston, a
Research Affiliate of CSAIL at Massachusetts
Institute of Technology and an Associate
Professor of Radiology at Harvard Medical
School. His research in the field of medical

image analysis has focused on methods for quantitative
image analysis through novel segmentation and registration
approaches, and in real-time image analysis, enabled by high
performance computing technology, in support of surgery.

7

POSITION STaTEMENT 5 (ROSS WhITaKER)
In this case of backward compatibility we should exercise
moderation, and avoid the extremes. The extremes are both
a) we change what we need to, when we need to and the
users beware and b) that we must support, indefinitely, every
feature that has ever been introduced into the API. The right
solution is somewhere in between, and the proper choice
depends on the use of the toolkit, the number of users, the
types of users, they way they use the product, and the mech-
anisms by which the product is supported and maintained.

The argument to support legacy interfaces and functional-
ity is clear. If we want serious users, who build big systems
or products, we need to offer a degree of stability. Failing
to be backward compatible is a serious concern, and once
people have invested time and money and have been burned
by a changing toolkit that fails to support their legacy
code, we lose an important base of customers, supporters,
and developers.

So why not have a policy of full backward compatibility that
continues indefinitely? Supporting every feature indefinitely
in every API is neither practical nor desirable. A community
supported, cutting edge toolkit such as ITK must evolve.
Furthermore, size matters. If a toolkit is too big or too confus-
ing to understand it is not useful. A toolkit such as ITK must be
organized in such a way that it is comprehensible to people
in a reasonable amount of time. All of this is undermined
by a huge set of redundant interfaces or functionalities that
are to support the legacy of code. Furthermore, legacy code
must be maintained, and we have limited resources.

If we decide on full backward compatibility, it seems to
me that we decide that the interface is either stagnant or
constantly growing. In either case we reduce the lifetime of
the active code (the active lifetime, the legacy uses could
continue indefinitely). Developers and users who want real
change will have to start with a clean slate (this is currently
under discussion among some developers in the ITK com-
munity). Furthermore, full backward compatibility should
not be expected of users. It is not such a worthwhile goal.
Users of the API will change their code to account for new
hardware, operating systems, drivers, and compilers. There
is no reason to expect to compile the same unmodified,
applications against ITK over a space of more than a couple
of years.

The middle ground is achieved by careful, thoughtful, well-
implemented changes to the API combined with tools and
procedures for helping users with legacy code manage this
process. How can we be careful? Changes to the API that are
not backward compatible must be proposed and reviewed by
diverse groups who have a vested interest, not by single indi-
viduals who may not understand all the issues. Second, we
need to allow these changes to proceed slowly with proper
warnings to users during compile time. Thirdly, we need to
provide users who don’t want to modify their legacy code
a way out, for instance, building against old versions. They
might not have access to bug fixes and new functionality,
but expecting full compatibility and progress is not realistic.
Finally, we need to inform users of our policy and what they
can expect in terms of compatibility if they decide to use
our tools.

Dr. Ross Whitaker is an Associate Professor
in the School of Computing and a faculty
member of the Scientific Computing and
Imaging Institute at the University of Utah.
He teaches image processing, computer
vision, and scientific visualization. His
research interests include computer vision,
image processing, medical image analysis,
surface modeling and visualization.

INTRODUCTION
One of the major design goals of ParaView 3 is to add
support for quantitative analysis. In addition to better chart-
ing, Python-based filtering and statistical analysis tools, we
have been working on the capability of focusing the analysis
on a specific subset of a dataset. This can be achieved using
the selection mechanism described in this article.

Selection is the mechanism for identifying a subset of a
dataset by using user specified criteria. This subset can be
a set of points or cells or blocks in a composite dataset.
This functionality allows users to focus on a smaller subset
that is important. For example, the elements of a finite-
element mesh that have pressure above a certain threshold
can be identified very easily using the threshold selection.
Furthermore, this selection can be converted to a set of
global element IDs in order to plot the attribute values of
those elements over time.

ParaView supports a single active selection. This selection
is associated with a data source (here data source refers to
any reader, source or filter) and is shown in every view that
displays the data source’s output. This article uses a use-case
driven approach to demonstrate how this selection can be
described and used. In the next section, we introduce the
main GUI components that are used in the article. The subse-
quent sections address different use cases.

Please note that many features discussed in this article are
recent additions and are not available in 3.2. You may want
to download a development snapshot or build your own
binary from the CVS source base. Otherwise, you will have
to wait until 3.4 is out.

SELECTION INSPECTOR
ParaView provides a selection inspector (referred to simply
as the inspector in this article) to inspect and edit the details
about the active selection. One can toggle the inspector vis-
ibility from the View menu. The inspector can be used to
create a new active selection, view/edit the properties of the
active selection as well as change the way the selection is
displayed in the 3D window (e.g., change the color, show
labels, etc.).

We will look at each of these options as we try to explore the
different selection types in ParaView.

SPREaDShEET VIEW
Spreadsheet View provides data exploration capabilities. One
of the common complaints many users have is not being able
to look at the raw data directly; spreadsheet view allows the

SELECTING DaTa IN PaRaVIEW

8

user to look at the raw cell data, point data or field data
associated with a dataset.

ParaView treats spreadsheet view exactly like the other
views such as the 3D view and Bar Chart view. To create the
spreadsheet view, first split the workspace and then choose
Spreadsheet View from the options listed. At this time if
any source is currently selected in the Pipeline Browser, the
spreadsheet view will automatically shows its point data.
We can choose the source whose output we want to view
using the eyeball in the Pipeline Browser, which is equiva-
lent to turning on the visibility of the source in this view.
Spreadsheet view can only show one dataset at a time.

When the spreadsheet view is active (selected by clicking on
its toolbar) and the visible source is selected in the pipeline
browser the Display tab in the Object Inspector panel can be
used to control what is shown. This panel contains a selector
that can be used to toggle between point and cell data. For
composite datasets (multi-block and AMR datasets) it shows
a Composite Data Structure tree that can be used to select
the block that is shown in the view. Another widget named
Show only selected elements can be selected to restrict what
is shown in the spreadsheet to only selected cells or points.
We will revisit this check box later.

Figure 1: Spreadsheet View in ParaView showing the display tab
for a source producing a multi-block dataset. The selected cells are

highlighted in the 3D view as well as the spreadsheet view. The
active selection can be inspected using the selection inspector.

CREaTE a SELECTION
In this section we will discuss different ways of creating
a selection.

SELECT CELLS/POINTS ON ThE SURFaCE
One of the simplest use-cases is to select cells or points on
the surface of the dataset. It is possible to select surface cells
by drawing a rubber-band on the 3D view. With 3D view
showing that the dataset is active click on Select Cells (or
Points) On in the Selection Controls toolbar or under the Edit
menu (you can also use the ‘S’ key as a shortcut for ‘Select
Cells On’). This will put ParaView into a selection mode. In
this mode, click and drag over the surface of the dataset in
the active view to select the cells (or points) on the surface. If
anything was selected it will be highlighted in all the views
showing the data and the source producing the selected
dataset will become active in the Pipeline Browser. ParaView
supports selecting only one source at a time. Hence even
if you draw the rubber band such that it covers data from

multiple sources, only one of them will be selected (the one
that has the largest number of selected cells or points).

As mentioned earlier, when data from a source is selected
all the views displaying the data show the selection, this
includes spreadsheet view as well. If the spreadsheet view
will show cell or point attributes of the selected data, then
it will highlight the corresponding rows. When selecting
points, the spreadsheet view will show the selection only if
point attributes are being displayed. When selecting cells,
it will highlight the cells in the cell attribute mode and
highlight the points forming the cells in the point attribute
mode. For any decent sized dataset it can be a bit tricky to
locate the selected rows. In that case, the Show only selected
elements on the display tab can be used to hide all the rows
that were not selected.

When selecting cells (or points) on the surface, ParaView
determines the cell (or point) IDs for each of the cells (or
points) rendered within the selection box. The selection is
simply the IDs for cells (or points) thus determined.

SELECT CELLS/POINTS USING a FRUSTUM
This is similar to selecting on the surface except that instead
of selecting the cells (or points) on the surface of the dataset,
it selects all cells (or points) that lie within the frustum
formed by extruding the rectangular rubber band drawn on
the view into 3D space. To perform a frustum selection, we
use Select Cells (or Points) Through in the Selection Controls
toolbar or under the Edit menu. As with surface selection,
the selected cells/points are shown in all the views in which
the data is shown including the spreadsheet view. Unlike
surface selection, the indices of the cells or points are not
computed after a frustum selection. Instead, ParaView per-
forms intersections to identify the cells (or points) that lie
within the frustum. Note that this selection can produce a
very large selection. This may be time consuming and can
increase the memory usage significantly.

Figure 2: Selection using a Frustum. Note that all cells that lie
within the specified frustum are selected. The selection

inspector shows the details of the selection.

9

SELECT BLOCKS IN a COMPOSITE DaTaSET
Composite datasets are multi-block or AMR (adaptive mesh
refinement) datasets. In the case of multi-block datasets,
each block may represent different components of a large
assembly (e.g., tires, chassis, etc.) for a car dataset. Just like
selecting cells or points, it is possible to select entire blocks.
To enter the block selection mode use Select Block in the
Selection Controls toolbar or under the Edit menu (you can
also use the ‘B’ key as a shortcut for Select Block). Once in
block selection mode, you can simply click on the block in
the 3D view to select a single block or click and drag to
select multiple blocks. When a block is selected its surface
cells will be highlighted.

Figure 3: Selecting a block in multi-block dataset. All the cells in
the selected block are highlighted. The selection

inspector shows the selected block.

SELECT USING ThE SPREaDShEET VIEW
Until now we have been looking at defining the selection
on the 3D view. Now we will see how to create selections
using the spreadsheet view. As we discussed earlier, the
spreadsheet view simply shows the raw cell (point or field)
data in a table. Each row represents a unique cell (or point)
from the dataset. Like with any other spreadsheet applica-
tion, one can select a cell (or a point) by simply clicking on
the row to select. One can expand the selection using Ctrl,
Shift keys while clicking. If the spreadsheet view is currently
showing point attributes, then selecting on it will create a
point based selection. Similarly, if it’s showing cell attributes
then it will create a cell-based selection. Selection cannot be
created when showing field attributes which are not associ-
ated with any cell or point.

We know that all views showing a selected dataset show
the selection. The spreadsheet view showing the data from
a source selected in the 3D view highlights the correspond-
ing cells/points. Conversely, when we create a selection in
the spreadsheet view, the corresponding cell (or point) gets
highlighted in all of the 3D views showing the source.

SELECT USING ThE SELECTION INSPECTOR
We have seen how to use the different views for creating
different types of selections however sometimes you may
want to tweak the selection or create a new selection with

a known set of cell (or point) IDs or create selections based
on values of any array, location, etc. This is possible using the
selection inspector.

Whenever a selection is created in any of the views it becomes
the active selection. The active selection is always shown in
the selection inspector. For example, if you select cells on
the surface of a dataset, as shown in Figure [1], the selection
inspector will show indices for the cells selected.

The selection inspector has three sections: the topmost
Current Object and Create Selection are used to choose the
source whose output you want to create a selection on.
The Active Selection group shows the details of the active
selection, if any. The Display Style group makes it possible to
change the way the selection is shown in the active 3D view.

To create a new selection, choose the source whose output
needs to be selected in the Current Object combo-box
and then hit Create Selection. An empty selection will be
created and its properties will be shown in the active selec-
tion group. Alternatively, you can use any of the methods
described earlier to create a selection. It will still be shown in
the selection inspector.

When you select cells (or points) on the surface or using the
spreadsheet view, the selection type is set to IDs. Creating
a frustum selection results in a selection with the selection
type set to Frustum, while selecting a block in a compos-
ite dataset creates a Block selection. Field Type indicates
whether cells or points are to be selected. In the active selec-
tion group, Selection Type indicates the type of the active
selection. One can change the type by choosing one of the
available options.

As shown in Figure [1], for IDs selection, the inspector lists
all the selected cell or point indices. You can edit the list of
IDs to add or remove values. When connected to a parallel
server, cell or point IDs are not unique. Therefore, one has
to additionally specify the process number for each cell or
point ID. Process number -1 implies that the cell (or point) at
the given index is selected on all processes. For multi-block
datasets, we also need to indicate the block to which the cell
or point belongs; for AMR datasets, we need to specify the
(AMR level, index) pair.

As shown in Figure [2], for Frustum selection, currently only
the Show Frustum option is available. When this option is
turned on, ParaView shows the selection frustum in the
3D view. In the future, we will implement a 3D widget to
modify the frustum. As shown in Figure [3], for Block selec-
tion, the full composite tree is shown in the inspector with
the selected blocks checked. Using the selection inspector,
one can create a selection based on thresholds for scalars
in the dataset. Choose the scalar array and then add value
ranges for the selected cells (or points).

Selection inspector can be used to create location based
selections. When field type is CELL, cells at the indicated
3D locations will be selected. When field type is POINT,
the point closest to the location within a certain threshold
is selected. If Select cells that include the selected points is
checked, then all the cells containing the selected point are
selected. It is possible to specify more than one location. To
aid in choosing positions, one can turn the Show location
widgets option on and ParaView will show crosshairs in the
active 3D view which can be moved interactively (as shown
in Figure [4]).

10

Figure 4: Location based selection showing the cross hairs
used to specify the locations.

Selection inspector also provides a means to create global
ID-based selection. This is similar to index-based selection
however since global IDs are unique across all processes and
blocks, one does not need to specify any additional IDs as
needed by the ID-based selection.

CONVERT SELECTIONS
Selection inspector can also be used to convert a selection
of one type to another. With some valid active selection
present, if one changes the selection type then ParaView
will try to convert the current selection to the new type, still
preserving the cells (or points) that were selected, if possible.
For example, if one creates a frustum-based selection and
then changes the selection type to IDs, ParaView will deter-
mine the indices for all the cells (or points) that lie within the
frustum and initialize the new index-based selection with
those indices. Note that the number of cells or points that
get selected in frustum selection mode can potentially be
very large; hence this conversion can be slow and memory
expensive. Similarly, if the dataset provides global IDs, then
it is possible to convert between ID selection and global
ID-based selection.

It is not possible to convert between all types of selections
due to obvious reasons. Conversions between ID-based and
global ID-based selections, conversions from frustum to
ID-based selections, and conversions from frustum to global
ID-based selections are supported by the selection inspector.

LaBEL SELECTED CELL/POINTS
Once an active selection is created, we can label the selected
cells or points in a 3D view. This can be done using the selec-
tion inspector. At the bottom of the selection inspector
panel there are two tabs, Cell Label and Point Label, which
can be used to change the cell or point label visibility and
other label attributes such as color and font. These tabs are
enabled only if the active view is a 3D view. Any changes
done in the Display Style group (including the labels) only
affect the active 3D view.

EXTRaCT SELECTION
Selection makes it possible to highlight and observe regions
of interest. Oftentimes once a region of interest has been
identified, one would like to apply additional operations on
it, such as filters to the selected section of the data. This can
be achieved using the Extract Selection filter. To set the selec-
tion to extract, create a selection using any of the methods
already described. Then apply the extract selection filter to
the source producing the selected data. To copy the active
selection to the filter, use the Copy Active Selection button.
One can change the active selection at any time and update
the filter to use it by using this button. Figure [5] shows
the extract selection filter applied after a frustum selection
operation. Now, one can treat this as any other data source
and apply filters to it, save state, save data, etc.

Figure 5: Extract selection using a frustum selection

PLOT SELECTION OVER TIME
For time varying datasets, you may want to analyze how
the data variables change over time for a particular cell or a
point. This can be done using the Plot Selection Over Time
filter. This filter is similar to the Extract Selection filter, except
that it extracts the selection for all time-steps provided by
the data source (typically a reader) and accumulates the
values for all the cell (or point) attributes over time. Since
the selection can be comprised of multiple cells or points,
the display tab provides the Select Block widget which can
be used to select the cell or point to plot, as shown in Figure
[6]. Currently only one cell (or point) can be plotted at once
in the same xy-plot view. One can create multiple plot views
to show multiple plots simultaneously.

CONCLUSION
Although we touched on every aspect of the selection func-
tionality in ParaView, we only scratched the surface of what
can be achieved with this extremely powerful feature. The
selection mechanism provides many ways of focusing on the
important parts of your dataset and, with the help of the
spreadsheet view, a direct way to view the raw data. With
some experimentation, you will probably discover new ways
of using it that we have not anticipated. That is the way
of ParaView.

11

aCKNOWLEDGEMENTS
This work has been partially funded by Sandia National
Laboratories through contract number DE-AC04-94AL85000
and the Los Alamos National Laboratory through contract
number DE-AC52-06NA25396.

Utkarsh Ayachit is an R&D Engineer in
Kitware’s Clifton Park, NY office. Mr.
Ayachit is the project lead for GPU-based
extensions to VTK, and is also a developer
on the ParaView project.

Berk Geveci is a project lead in Kitware’s
Clifton Park, NY office. Dr. Geveci is the
project manager for the open source
ParaView application. He contributes to
the technical development of VTK and
ParaView.

CMake 2.6 is the first major release of CMake since the 2.4
release in May of 2006. This release incorporates many new
features including a Qt-based interface, a CMake Policy
mechanism, functions, Fortran support, OSX framework
creation, automatic project reloading in Visual Studio, and
support for Bullseye coverage. Details on these new features
are provided below.

USER INTERFaCE
The new Qt-based CMake user interface is shown below.

Figure 1: New Qt-based CMake GUI

Since Qt is a cross-platform GUI toolkit, the new CMake inter-
face can run on Linux, Windows, and the Mac. The CMake
2.6 GUI has some very powerful features such as incremental
search ability. It also has a scrolling text window that stores
output from the CMake run.

POLICy MEChaNISM
The first new feature that users will most likely run into is
the cmake_policy command. This was added to provide a
way to make changes to CMake in a backwards compatible
way. As CMake evolves it is sometimes necessary to change
existing behavior in order to fix bugs or improve implemen-
tations of existing features. The CMake Policy mechanism
is designed to help keep existing projects building as new
versions of CMake introduce changes in behavior. Each

CMaKE 2.6

new policy (behavioral change) is given an identifier of
the form “CMP<NNNN>” where “<NNNN>” is an integer
index. Documentation associated with each policy describes
the OLD and NEW behavior and the reason the policy was
introduced. Projects may set each policy to select the desired
behavior. When CMake needs to know which behavior to use
it checks for a setting specified by the project. If no setting is
available the OLD behavior is assumed and a warning is pro-
duced requesting that the policy be set. The CMake policy
level is tied to the cmake_minimum_required command,
this command sets the policy to NEW for each policy that
was created in this version of CMake. So, for CMake 2.6.0,
if cmake_minimum_required is set to 2.6.0, then all policies
will be set to NEW behavior.

The first policy that users are likely to see is CMP0000. CMake
now requires that projects specify the version of CMake to
which they have been written. This policy has been put in
place so users trying to build the project may be told when
they need to update their CMake. Specifying a version also
helps the project build with CMake versions newer than that
specified. Use the cmake_minimum_required command at
the top of your main CMakeLists.txt file:

 cmake_minimum_required(VERSION <major>.<minor>)

The “<major>.<minor>” is the version of CMake you want
to support (such as “2.6”). The command will ensure that at
least the given version of CMake is running and help newer
versions be compatible with the project. See documentation
of cmake_minimum_required for details.

Note that the command invocation must appear in the
CMakeLists.txt file itself; a call in an included file is not suffi-
cient. However, the cmake_policy command may be called to
set policy CMP0000 to OLD or NEW behavior explicitly. The
OLD behavior is to silently ignore the missing invocation. The
NEW behavior is to issue an error instead of a warning. An
included file may set CMP0000 explicitly to affect how this
policy is enforced for the main CMakeLists.txt file.

The next policy that users are likely to see is CMP0003. This
policy is directly related to the new feature of CMake using
full paths to link libraries and no longer separating the link
into a path (-L/some/path), and a link library (-lsomelib). This
change allows users to get the exact library that they asked
CMake to link which is a good thing. However, the change
has a side effect that may break linking for some projects. It
turns out that some projects (including VTK) were depend-
ing on the linker being told the paths for all the libraries.
Here is a short example of the problem:

Link library A and B to target foo
target_link_libraries(foo /path/to/libA.a B)
library B is in the same directory as A

So, in CMake versions prior to 2.6, the link line would be –L/
path/to –lA –lB. However, In CMake 2.6.0, the link line would
be /path/to/libA.a –lB, and the linker would fail to find B,
because of the missing –L/path/to. CMake has easy way to
detect when this error is going to occur at CMake time.
So, to avoid giving users unexpected errors at build time,
if CMake finds libraries that are linked without a full path
at the same time as other libraries with full paths, it issues
a CMP0003 warning. Along with the warning CMake will
add the –L paths for all full path libraries being linked into
the target.

12

The correct fix if you find this warning in your project is to set
the policy to NEW. This will change the behavior of CMake
and the extra –L paths will not be added. If the project has
link trouble at build time, then the extra link paths should be
added or full paths should be used for the non full path link
items. A common misconception is that CMake now requires
full paths to all libraries. In cases such as system libraries
like libm or pthreads, it is often better to let the compiler
find the library, and in fact adding the full path may cause
new errors.

If you still want your project to work with prior versions of
CMake, a good way to set the policy level is to first check
to make sure that the cmake_policy command exists.
For example,

if(COMMAND cmake_policy)
 cmake_policy(SET CMP0003 NEW)
endif(COMMAND cmake_policy)

For more information on policies see http://www.cmake.
org/Wiki/CMake_Policies and http://www.cmake.org/HTML/
cmake-2.6.html#section_Policies.

FUNCTIONS
In addition to macros, CMake now supports the creation
of functions in CMake code. The functions differ from the
macros in that they are more like a function in C. A simple
function would look like this:

function(myfunction argument)
 message(“argument = ${argument}”)
endfunction(myfunction)

You can pass arguments into it. The arguments passed in
become variables within the function. Likewise some stan-
dard variables such as ARGC, ARGV, ARGN, and ARGV0,
ARGV1, etc are defined. Within a function you are in a new
variable scope, much like how when you drop into a sub-
directory you are in a new variable scope. All the variables
that were defined when the function was called are still
defined, but any changes to variables or new variables only
exist within the function. When the function returns those
variables will go away. Put more simply when you invoke a
function a new variable scope is pushed and when it returns
that variable scope is popped.

SCOPE, RETURN, aND BREaK
The set command has a new argument PARENT_SCOPE,
which allows you to set a variable in the parent’s scope
as opposed to the current scope. This can be used to pass
variable values from a function to the calling function or
CMakeLists.txt file.

The return and break commands have been added. They
behave the same as a C return or break command would. A
break within a foreach or while loop will break out of the
loop. A return from within a function or list file will return
from that function or CMakeLists.txt file.

FORTRaN SUPPORT
The Fortran support that has been added into CMake handles
complex Fortran dependency generation. The CMake depen-
dency scanner will determine the correct build order and
automatically keep the dependencies up to date. In addition
to makefile support for Fortran. CMake can now generate

Intel Fortran Visual Studio projects. To enable Fortran in a
project, either add Fortran to the language list in the project
command, or use the enable_language command. One thing
to note is that with Visual Studio project, you cannot have
mixed C or C++ targets with Fortran. The library or execut-
able must be all Fortran, this is a restriction of the IDE, and
not CMake.

OSX FRaMEWORK CREaTION
To create an OSX framework with CMake, you create a
SHARED type library target. Then set the target property
FRAMEWORK to true. To create a simple framework, the fol-
lowing commands would be used:

add_library(Foo SHARED a.c b.c)
set_target_properties(foo PROPERTIES FRAMEWORK TRUE)

The library must be SHARED for a framework to be created,
and it must have the FRAMEWORK property set to TRUE.
The frameworks can have other target properties set as
well. PUBLIC_HEADER, RESOURCES PRIVATE_HEADER,
FRAMEWORK_VERSION, INSTALL_NAME_DIR. These proper-
ties are all documented in the CMake documentation section
“Properties on Targets”.

aUTOMaTIC PROJECT RELOaD IN VISUaL
STUDIO
CMake now installs some macros into the Visual Studio
environment for Visual Studio 7 or newer. These macros
allow CMake to be correctly re-run if an input to CMake has
changed when a build is run. CMake has always re-run, but
Visual Studio would prompt the user to reload each .vcproj
file that was changed by CMake, and for large projects that
could be a very slow process. Now CMake will prompt the
user once, and Visual Studio will prompt once, and the project
will correctly reload. If you run a build on a CMake project
and CMake is re-run, you will see the following dialogs:

Figure 2: Visual Studio Reload Dialog One

Figure 3: Visual Studio Reload Dialog Two

13

Figure 4: Visual Studio Continuous the Build After Reload

BULLSEyE COVERaGE
CTest includes support for a commercial tool called
BullseyeCoverage (www.bullseye.com). This is a cross-
platform tool that is easy to use, and integrates well with
the new CDash. The following script illustrates how Bullseye
can be used to supply coverage information for a project
dashboard. In the first part of the script, we include the
BullseyeCoverage binary directory in the path, and make
sure that we can find the cov01 tool.

set(ENV{PATH}
 “C:\\BullseyeCoverage\\bin;$ENV{PATH}”)

find_program(COV01 cov01)
if(NOT COV01)
 message(FATAL_ERROR “Could not find cov01”)
endif(NOT COV01)

Now we define a function that will use the cov01 program
to set the coverage mode on or off. In addition, we define
two convenience functions for adjusting the coverage mode.
We’ll use these convenience functions later in this script.

function(set_coverage_mode mode)
 set(RES 1)
 execute_process(COMMAND ${COV01} ${mode}
 RESULT_VARIABLE RES)
 if(RES)
 message(FATAL_ERROR “could not run cov01 -0”)
 endif(RES)
endfunction(set_coverage_mode)

function(turn_coverage_off)
 set_coverage_mode(“-0”)
endfunction(turn_coverage_off)

function(turn_coverage_on)
 set_coverage_mode(“-1”)
endfunction(turn_coverage_on)

This section of the script defines various parameters includ-
ing the site, build, and project names, the location of the
source, and the command used to update the repository.
This is a standard portion of the script that is not specific to
the Bullseye coverage.

set(CTEST_SITE “dash1vista32.kitware”)
set(CTEST_BUILD_NAME “Win32Vista-vs80-cov”)
set(CTEST_NOTES_FILES
 “${CTEST_SCRIPT_DIRECTORY}/${CTEST_SCRIPT_NAME}”)
set(CTEST_DASHBOARD_ROOT “C:/Dashboards/My Tests”)
set(CTEST_SOURCE_DIRECTORY
 “${CTEST_DASHBOARD_ROOT}/MyProject”)
set(CTEST_BINARY_DIRECTORY “
 ${CTEST_DASHBOARD_ROOT}/MyProjectVS8Nightly”)

set(CTEST_UPDATE_COMMAND
 “C:/Program Files/Subversion/bin/svn”)

set(CTEST_CMAKE_GENERATOR “Visual Studio 8 2005”)
set(CTEST_PROJECT_NAME “MyProject”)

We need to set an environment variable to indicate the
location for the generated coverage file. We’ll also start
by removing our previous build tree to ensure a clean
build process.

set (ENV{COVFILE} “${CTEST_BINARY_DIRECTORY}/CMB.
cov”)
ctest_empty_binary_directory(
 “${CTEST_BINARY_DIRECTORY}”)

Create a cache file and fill with any useful
variables
file(WRITE
 “${CTEST_BINARY_DIRECTORY}/CMakeCache.txt”
 “BUILD_SHARED_LIBS:BOOL=ON”)

Now the dashboard process begins. We’ll turn coverage off
for the beginning update and configure steps. Then we turn
coverage back on for the build and test steps. Finally, we
turn coverage back off, collect the coverage information,
and submit the dashboard.

turn_coverage_off()
ctest_start(Nightly)
ctest_update(SOURCE “${CTEST_SOURCE_DIRECTORY}”)
ctest_configure(BUILD “${CTEST_BINARY_DIRECTORY}”)

re-read ctest custom files after configure step
ctest_read_custom_files(“${CTEST_BINARY_DIRECTORY}”)

turn_coverage_on()
ctest_build(BUILD “${CTEST_BINARY_DIRECTORY}”)
ctest_test(BUILD “${CTEST_BINARY_DIRECTORY}”)

turn_coverage_off()
ctest_coverage(BUILD “${CTEST_BINARY_DIRECTORY}”)
ctest_submit()

aCKNOWLEDGEMENTS
This work has been partially funded by the National Library of
Medicine ITK project, and by the NA-MIC National Center of
Biomedical Computing, NIH Roadmap for Medical Research,
Grant# U54 EB005149.

Bill Hoffman is currently Vice President
and CTO for Kitware, Inc. He is a founder
of Kitware, a lead architect of the CMake
cross-platform build system and is involved
in the development of the Kitware Quality
Software Process and CDash, the software
testing server.

PaRaVIEW 3.4
We are working hard on the release of ParaView 3.4. There
is still a large list of issues to address before we can branch.
Our goal is to address enough of these issues by July so that
we can start the release process. We will continue to release
development snapshots, visit paraview.org/New/download.
html for the latest one.

ITK 3.8
The release of ITK 3.8 is scheduled for the end of July. This
release benefits from an unprecedented participation of
the world-wide ITK community. About twelve users have

14

NaMIC yEaR 5
Kitware is a member of the National Alliance of Medical Image
Computing (NA-MIC) and NIH National Center of Biomedical
Computing (NCBC). The fifth year of this $20 million project
begins August 2008. The focus of the coming year’s work will
be expanding the Slicer3 application, including additional
support for image segmentation and registration, and the
addition of 3D VTK widgets.

aCTIVIz.NET
Kitware is pleased to
announce the release
of ActiViz .NET, Personal
and Commercial Editions. The ActiViz .NET product offers
a pre-built .NET integration for the Visualization Toolkit
(VTK) system (vtk.org). ActiViz .NET enables C# and VB .NET
developers to access the power of VTK from their familiar
.NET environment. Supported functionality includes 3D
graphics, volume rendering, information visualization,
3D interaction widgets, application callbacks, and geo-
metric visualization and processing. ActiViz .NET is simple
to use--after installation simply reference the Kitware.
VTK.dll assembly from a Visual Studio project. Then drag
and drop a VTK RenderWindowControl directly onto a
Windows Forms application while editing the GUI in the
Visual Studio designer.

ActiViz .NET is based on the latest release of VTK version
5.2. The Personal Edition is available free of charge with a
watermarked display. The Commercial Edition is distributed
without the watermark and is licensed on an annual basis for
$2,900/year per developer. With a paid commercial license,
a developer may download any updates that are released
during that year. See http://www.kitware.com/products/
activiz.html for more information on both ActiViz/COM and
ActiViz .NET.

The 6 degrees of Kevin Bacon is illustrated as an example
of the ActiViz RenderWindowControl in action inside

Kitware’s Wikipedia Grapher C# application.

This rendering example shows decimation of the character from
a large number of polygons to a small number of polygons while

still maintaining the character’s basic shape. The character image is
courtesy of the open source movie Big Buck Bunny

(www.bigbuckbunny.org), ©copyright Blender Foundation.

ITK aDOPT-a-BUG PROGRaM
A new program has been created for improving the quality
of the Insight Segmentation and Registration Toolkit. This
program aims to directly engage users in the overseeing
and resolution of reported bugs in the Toolkit. The program
invites ITK users to “adopt a bug” thereby becoming respon-
sible for making sure that the bug receives the treatment
it deserves. Bug adopters are immediately promoted to
developers and are entrusted with write access to the ITK
CVS repository and associated resources. Thanks to all of you
who have already signed up for this program! You are living
proof of the power of open source.

To learn more about the Adopt-a-Bug Program and adopt
your bug today head to itk.org/Wiki and search for “ITK
Adopt a Bug Program.”

NIh R01 FaRSIGhT
Kitware has teamed with Dr. Badri Roysam of RPI on the
Farsight Project-- a next generation image analysis toolkit to
enable quantitative studies of complex multi-cellular struc-
tures such as stem-cell niches, brain tissue, and tumors, from
multichannel three-dimensional fluorescence microscopy
images. The team has been awarded a multi-year R01 grant
from the National Institutes of Health.

enthusiastically joined the ITK development team through
the “Adopt a Bug” program. This influx of bright new brains
have already brought fruition in the form of a wide spec-
trum of bug entries being addressed.

Some of the notable bugs include:

• Fixing crashes in particular conditions of the
ExecptionObjects contributed by Niels Dekker

• Performance improvements in the SmartPointer transac-
tions contributed by Tom Vercauteren

Among the highlights of this release we can mention:

• Support for the new gcc 4.3 and Visual Studio 9 2008
compilers, thanks to Steve Robbins and Casey Goodlett for
contributing Nightly dashboard submission on gcc 4.3.

• Support for reading Philips PAR/REC and Bruker image
file formats kindly contributed to the Insight Journal by
Don Bigler

• Support for CUB image file format, contributed to the
Insight Journal by Paul Yuskevich and collaborators from
the University of Pennsylvania.

• New mesh processing filters for the QuadEdgeMesh,
contributed by Alex Gouaillard and Arnaud Gelas, from
Harvard University.

15

MaVERICK BETa RELEaSE TO aF
As part of an Air Force SBIR, Kitware has delivered a beta
version of a new library and companion applications for
3D medical image segmentation and label map editing. A
common, key feature of the applications is their workflow-
based interfaces that allow users to intuitively apply complex
methods for creating, editing, and analyzing objects in a
scene. The intended audience for the toolkit is biologists,
anatomists, and research physicians. This work is leading to
a new product line at Kitware. Look forward to this project
being featured in future issues of the Source.

KITWaRE GUIDES STUDENT PROJECT aT UNC
CS 523 is a course on software engineering offered by The
University of North Carolina. The course is designed to teach
undergraduate engineering students the skills necessary for
building a software product as a team. Projects are assigned
real clients who also double as mentors for student devel-
opment teams. Kitware’s Patrick Reynolds was selected as
a client for a development team comprised of UNC’s Meg
Sorber, Zach Mullen and Sam Brice after delivering a 5
minute sales presentation to their class.

Reynolds met weekly with the team of student programmers
as they experienced the challenges and rewards associated
with moving a software project from early concepts to speci-
fication, implementation, testing and delivery. Through his
involvement with the project Reynolds acted as an educa-
tor, consultant and customer guiding the student team in
their selection of software and meeting their development
objectives. Using popular photo sharing, blog, and consumer
review websites for inspiration the team chose to create
an innovative web-based tool for sharing and annotating
medical images called FotoMD.

Developed in PHP and perfectly suited for a LAMP setup,
FotoMD enables users to archive, browse, view, comment on
and rate 2D and 3D medical images. It also brings many of
the capabilities of desktop 3D image viewing to the web so
users can view 3D images without having to pay for expen-
sive software or download multi-gigabyte files. Practically,
the FotoMD application could help researchers who can post
images of their results, linking those results to published
articles so others can look at them. Doctors could then look
at relevant images and, perhaps, help formulate a diagnosis.

“This project has definitely provided us with skills that we
can use in the real world. I personally learned HTML, CSS,
some flash, PHP/web browser communication, JAVA applets,
and applet/server communication. Sam learned C++, VTK and
ITK. I think Zach already knew most the PHP backend and
database part, but practice never hurts,” said team member
Meg Sorber.

“The experience as a whole was great,” said Reynolds
“They brought some fresh ideas that I’ve used in my work
at Kitware. I would definitely do this again and plan to.”
Reynolds himself took CS 523 last year directly before his
own graduation wherein he developed a project Sami Says
that allows blind children to compose stories by recording
their own voice, insert sound effects.

To view the FotoMD project page head to: http://www.
assembla.com/wiki/show/FotoMD. For more information on
Reynolds’ own Sami Says project visit: http://code.google.
com/p/samisays.

aIR FORCE PhaSE I STTR
Kitware has been awarded a Phase I STTR from the Air Force.
Teaming with Mississippi State University (David Thompson)
and Ohio State University (Raghu Machiraju), Kitware will
deploy leading-edge feature detection algorithms based on
spectral analysis, wavelets, vortex identification, and topo-
logical theory in order to extract important flow features
from large, computation fluid dynamics simulations. This
technology will be deployed to the ParaView application.

16

Kitware’s Software Developer’s Quarterly is published by
Kitware, Inc., Clifton Park, New York.

Contributors: Lisa Avila, Stephen Aylward, Utkarsh Ayachit,
François Bertel, David Cole, Berk Geveci, Bill Hoffman, Luis
Ibàñez, Bill Lorensen, Steve Pieper, Patrick Reynolds, Will
Schroeder, Simon Warfield, and Ross Whitaker.

Design: Melissa Kingman, www.elevationda.com

Editor: Niki Russell

Copyright 2008 by Kitware, Inc. or original authors.

No part of this newsletter may be reproduced, in any form,
without express written permission from the copyright
holder. Kitware, ParaView, and VolView are all registered
trademarks of Kitware, Inc.

To contribute to Kitware’s open source dialogue in future
editions, or for more information on contributing to specific
projects, please contact the editor at kitware@kitware.com.

In addition to providing readers with updates on Kitware
product development and news pertinent to the open
source community, the Kitware Source delivers basic infor-
mation on recent releases, upcoming changes and detailed
technical articles related to Kitware’s open-source projects.
These include:
•	 The	Visualization	Toolkit	(www.vtk.org)
•	 The	Insight	Segmentation	and	Registration	Toolkit	

(www.itk.org)
•	 ParaView	(www.paraview.org)
•	 The	Image	Guided	Surgery	Toolkit	(www.igstk.org)
•	 CMake	(www.cmake.org)
•	 CDash	(www.cdash.org)
•	 KWWidgets	(www.kwwidgets.org)
•	 BatchMake	(www.batchmake.org)

Kitware would like to encourage our active developer
community to contribute to the Source. Contributions may
include a technical article describing an enhancement you’ve
made to a Kitware open-source project or successes/lessons
learned via developing a product built upon one or more
of Kitware’s open-source projects. Authors of any accepted
article will receive a free, five volume set of Kitware books.

DOE PhaSE I SBIR
Kitware has been awarded a Phase I SBIR from the
Department of Energy. Teaming with the Stanford Linear
Accelerator Center (a DOE Office of Science National Lab),
the proposed work aims to develop large-data, collaborative
visualization tools. The near-term goal is to deploy this tech-
nology in ParaView, with a longer term commercialization
strategy to offer a ParaView Professional application, as well
as extending the ParaView Enterprise Edition web-based
visualization system.

A snapshot of wakefield generated by an electron bunch traversing
the ILC cryomodule which consists of 8 superconducting rf cavities.

VTKEDGE
Kitware is pleased to announce the creation of a new open
source toolkit: VTKEdge. This new toolkit will allow Kitware
to make the results of some of our Small Business Innovation
Research (SBIR) and Small Businesses Technology Transfer
(STTR) endeavors available to the open source community.

SBIR / STTR programs require that the small business commer-
cialize the results of the project and the commercialization
success of past projects is used to determine eligibility
for future awards. In the past, Kitware has had to choose
between contributing our results to our existing open source
projects which negatively impacts our commercialization

history or keeping the results proprietary and available
only through a commercial license. Creating VTKEdge using
GPLv3 terms for licensing allows us to make the technology
available to the open source community while still retaining
the ability to license the technology to customers who wish
to avoid the reciprocal terms of the GPL.

VTKEdge is a C++ class library that can be built alongside
VTK to provide additional functionality. The first version
of VTKEdge will be released in July 2008 and will include
GPU-based volumetric ray casting, specialized painters for
illuminated lines and surface LIC rendering, GPU-accelerated
filters for computing 2D LIC on vtkImageData or vtk-
StructuredGrid, CPU and GPU versions of Feldkamp back
projection, several GPU-accelerated image processing
algorithms, and various helper classes, readers and writers.
VTKEdge will become a regular feature of the Source, with
details on the GPU-based ray caster provided in this edition.
Please contact us at kitware@kitware.com for more details
on this new toolkit.

EMPLOyMENT OPPORTUNITIES
Kitware is seeking talented software professionals with
experience in medical image analysis, image processing, 3D
graphics, graphical user interface, visualization, computer
vision, and/or software engineering. Candidates must show
initiative, flexibility, and the focus necessary to deliver
quality software (both open-source and proprietary code).
Applicants must demonstrate software development skills
and have experience in C++.

Qualified candidates will work with leaders in the field on
cutting-edge problems. Kitware offers significant growth
opportunities; an annual bonus; six weeks total paid time
off; health, dental, long-term disability, and life insurance
benefits; and a 401(k) plan with company contributions.

Kitware is an equal opportunity employer.

Send your resume to jobs@kitware.com with “Kitware
Employment” as the subject line. Please include a plain text
cover letter in the body of the email.

