
S O F T W A R E D E V E L O P E R ’ S Q U A R T E R L Y

Editor’s Note.. 1

Recent Releases .. 1

Why and How Apache Qpid Converted to CMake 3

ParaView and Python .. 6

Introducing the VisTrails Provenance Explorer Plugin for

ParaView... 8

CDash Subprojects.. 10

Kitware News ... 14

The Kitware Software Developer’s Quarterly Newsletter con-
tains articles related to the development of Kitware projects
in addition to a myriad of software updates, news and other
content relevant to the open source community. In this
issue, David Cole explains organize large software projects
into subprojects which can be viewed on a CDash dashboard
using CDash 1.4. Berk Geveci provides a basic overview for
using ParaView’s Python interface, a rich scripting support
system which allows users and developers can gain access to
the ParaView engine. Claudio Silva, Juliana Freire and John
Schreiner from VisTrails, Inc. collaborated on an article about
the VisTrails plugin for ParaView and how the plugin can be
used for exploratory visualization; this plugin was incorpo-
rated into the recent ParaView 3.6 release. And Blogger and
QPid contributor, Steve Huston, wrote an article discussing
why and how Apache QPid converted to CMake.

The Kitware Source is just one of a suite of products and
services that Kitware offers to assist developers in getting
the most out of its open-source products. Each project’s
website contains links to free resources including mailing
lists, documentation, FAQs and Wikis. In addition, Kitware
supports its open-source projects with technical books, user’s
guides, consulting services, support contracts and training
courses. For more information on Kitware’s suite of products
and services, please visit our website at www.kitware.com.

Issue 10 • July 2009

ParaView 3.6
Kitware, Sandia National Laboratories and Los Alamos
National Lab are proud to announce the release of ParaView
3.6. The binaries and sources are available for download
from the ParaView website. This release includes several new
features along with plenty of bug fixes addressing a multi-
tude of usability and stability issues including those affecting
parallel volume rendering.

Based on user feedback, ParaView’s Python API has under-
gone a major overhaul. The new simplified scripting interface
makes it easier to write procedural scripts mimicking the
steps users would follow when using the GUI to perform
tasks such as creating sources, applying filters, etc. Details on
the new scripting API can be found on the Paraview Wiki.

We have been experimenting with adding support for
additional file formats such as CGNS, Silo, Tecplot using VisIt
plugins. Since this is an experimental feature, only the Linux
binaries distributed from our website support these new
file formats.

ParaView now natively supports tabular data-structures thus
improving support for CSV files including importing CSV files
as point-sets or structured grids.

We have completely redesigned the charting/plotting
components with several performance fixes as well as
usability improvements. It is possible to plot arrays from
arbitrary datasets directly using Plot Data filter. Upon
hovering over the plots tooltips are shown which detail the
plotted values.

In an effort to better support animations involving the
camera, we have added support for specifying camera move-
ments along splines or for orbiting around objects in space.

This version has many GUI usability improvements including,
but definitely not limited to:

•	 Color palettes which make it easier to switch between color
schemes that are suitable for printing and for screen.

•	 Improved support for temporal readers and filters.
•	 Axes annotations and scalar bar for 2D render view.
•	 Zooming to selected region in 3D view.
•	 Quick launch for creating sources and filters using

Ctrl+Space or Alt+Space.
Apart from these enhancements, ParaView includes a pre-
alpha release of OverView, an application developed using
the ParaView application framework. OverView is a gener-
alization of the ParaView scientific visualization application
designed to support the ingestion, processing and display
of informatics data. The ParaView client-server architec-

2

ture provides a mature framework for performing scalable
analysis on distributed memory platforms, and OverView
uses these capabilities to analyze informatics problems that
are too large for individual workstations. This application
still contains many experimental features and is not yet
documented, but feel free to try it out and report bugs and
feature requests.

ParaView 3.6 also includes a pre-alpha release of
StreamingParaView, another application developed using
the ParaView application framework. StreamingParaView
processes structured datasets in a piecewise fashion, on
one or many processors. Because the entire dataset is never
loaded into memory at once, StreamingParaView makes
it possible to visualize large datasets on machines that
have insufficient RAM to do so otherwise. Piece culling,
reordering and caching preserve ParaView’s normally high
interactivity while streaming. This application still contains
many experimental features and is not yet documented,
but we encourage users to try it out and report bugs and
feature requests. Note that both OverView as well as
StreamingParaView are only available through source and
not distributed with the binaries on the website.

Bugs, feature requests and any questions or issues
can be posted to the ParaView Mailing List at
paraview@paraview.org. Also check out the new feedback
forum on paraview.org; this forum allows ParaView users to
vote for features and ideas submitted by the user community
which they’d like to see added or modified in ParaView.

VTK 5.4.2
The VTK 5.4.2 patch was released on June 4, 2009; this release
is now available for download from the VTK website. A full
list of changes is available through the VTK user’s mailing
list archives. This patch is backwards compatible and has
worked on all datasets tested. Included in this release are
the following:

•	 GUISupport/Qt/QVTKWidget.cxx: Instead of deleting
timers immediately, mark them for deletion next time the
event loop is entered

•	 Hybrid/vtkAxesActor.cxx: When a user transform is applied
to vtkAxesActor, make sure the axis labels are translated
with the axes

•	 Infovis/vtkCommunity2DLayoutStrategy.cxx: Fix a memory
leak

•	 IO/vtkFLUENTReader.cxx: Bug fixes courtesy of Terry Jordan

The first set of changes was necessary because previously
this reader didn’t supply ParaView with its number of cells.
The second set of changes corrected Fluent files that were

either errant, had an error in their writer, or had possibly
experienced some change to their file formatting causing
them to not supply the index within the end of binary
section entries.

Other fixes included in this release are as follows:
•	 Fixed uninitialized this->NumberOfCells. As this is used in

PrintSelf. Detected by valgrind on otherPrint.
•	 Rendering/vtkCameraActor.cxx & Rendering/vtkLightAc-

tor.cxx: Changed vtkErrorMacro into vtkDebugMacro
to avoid printing errors in the context of object instan-
tiation. It happened because PrintSelf on the actor calls
PrintSelf on superclass, which call GetBounds, which call
UpdateViewProps() on the concrete classes vtkLightActor
and vtkCameraActor.

•	 Rendering/vtkCarbonRenderWindowInteractor.cxx:
Fix location for mouse events, bug #8261.

•	 Utilities/CMakeLists.txt: Use VTK_LIBRARY_PROPERTIES
value for VERDICT_LIBRARY_PROPERTIES. Makes verdict
library VERSION and SOVERSION consistent with other vtk
utility libraries on Linux builds.

•	 Views/vtkGraphLayoutView.cxx: Check for a null pointer.
•	 Widgets/vtkLineRepresentation.h & Widgets/vtkLineRep-

resentation.cxx: Computation of parameteric coordinate, t
and the closest_point, was done in display coordinates. The
value t cannot directly be mapped to word coordinates,
since it needs to be scaled according to the projection
matrix. (The farther you go from the camera position, the
larger the increments in t). To avoid this, keep everything
in word coordinates by using a picker.

ITK 3.14
ITK 3.14 was released on May 28, 2009. The main changes in
this release include the addition of classes contributed to the
Insight Journal for performing:

•	 Additional color map functors. Based on an Insight Journal
article by N. Tustison, H. Zhang, G. Lehmann, P. Yushkevich,
and J. Gee, these classes provide a framework for convert-
ing intensity-valued images to user-defined RGB colormap
images. Along with the framework, the classes also include
several colormaps that can be readily applied for visual-
ization of images, or adapted to generate user desired
colormaps. Details are available from “Meeting Andy
Warhol Somewhere Over the Rainbow: RGB Colormapping
and ITK”, which can be read in the January Source or on
the Insight Journal (http://hdl.handle.net/1926/1452).

•	 Efficient label map operations. Based on an Insight Journal
article by G. Lehmann, the added classes are the initial
components of a 70+ class label map morphology module.
These classes provide for the efficient representation of
label maps and for conversion between current ITK label
images and the efficient storage format. Details are avail-
able from “Label Object Representation and Manipulation
with ITK”, which can be read in the January Source or on
the Insight Journal (http://hdl.handle.net/1926/584).

•	 Direct FFT-based sinogram to image tomographic recon-
structions. Based on an Insight Journal article by D. Zosso,
C. Bach, and J. Thiran, these classes provide the imple-
mentation of a direct Fourier method for tomographic
reconstruction, applicable to parallel-beam x-ray images.
Details are available from “Direct Fourier Tomographic
Reconstruction Image-To-Image Filter” (http://hdl.handle.
net/1926/585).

3

Why and How Apache Qpid
Converted to CMake

Apache Qpid is an open source enterprise messaging system
based on AMQP. I’ve been working on a Microsoft-funded
project to convert the Apache Qpid C++ build system from
the infamous GNU autotools (automake, autoconf, libtool)
to CMake. In this article I’ll discuss why Apache Qpid’s C++
project decided to switch to CMake and how we completed
the conversion. Hopefully there are some tips and techniques
other projects can use in their conversions, and possibly
tips or tricks you can share with us to help us improve
our process.

Background
For those who aren’t familiar with how autotools work,
there are two basic things a developer needs to write:

1.	configure.ac: An M4-based script that gathers configuration
options and examines the build system for availability and
location of various capabilities, tools, files and libraries.

2.	Makefile.am: A description of the build inputs and outputs.
Essentially a higher-level Makefile.

These two basic areas (configuration and build items) are
combined in CMake’s CMakeLists.txt file, but in autotools
they are separate, though very related, items.

To build in the autotools scheme one must follow these
3 steps:

1.	Bootstrap the configure script using autoconf. This is
done by the development team (or release engineer) and
involves processing the configure.ac script into a shell
script, generally named configure.

2.	Configure the build for the target environment. This is
done by the person building the source code, whether
in development or at a user site. Configuration is carried
out by executing the configure script. The script often
offers command-line options for including/excluding
optional parts of the product, setting the installation root,
setting needed compile options, etc. The configure script
also examines the build environment for the presence or
absence of features and capabilities that the product can
use. This step produces a config.h file that the build process
uses as well as a set of Makefiles generated by automake’s
processing of the Makefile.am files.

3.	Build, generally using the make utility.

Why Qpid Switched to CMake
The autotools work well, even if writing the configure scripts
is a black art. People who regularly download open source
programs are accustomed to the process of downloading
a .tar.gz file, unpacking the source and then running
configure and make. So why would Qpid want to switch?
Two reasons, primarily:

1.	Windows. The autotools don’t work natively on Windows
since there’s no UNIX-like shell, and no POSIX-style make
utility. Getting these capabilities involves installing MinGW.
Many Windows developers, sysadmins, etc. simply won’t
do that.

2.	Maintaining multiple build inputs (such as Makefile.am
and Visual Studio projects) is an unnecessary time sink. At
least one of them is always out of step. Keeping Visual
Studio projects and autotools-based Makefile.am files

•	 Fractal image dimension calculations. Based on an Insight
Journal article by N. Tustison and J. Gee, these classes
provide an algorithm for converting a scalar image to
a fractal dimension image. Details are available from
“Stochastic Fractal Dimension Image” (http://hdl.handle.
net/1926/1525).

•	 Helper class for initializing BSpline Transforms. Based on
an Insight Journal Article by L. Ibáñez, M. Turek, S. Aylward,
and M. Audette, this class allows a BSpline transform to be
easily initialized to reasonable values prior to a registra-
tion operation. Details are available in “Helper class for
initializing the grid parameters of a BSpline deformable
transform by using an image as reference” (http://hdl.
handle.net/1926/1338).

•	 Additional level set algorithms including support for multi-
component level sets. Based on an Insight Journal article
by K. Mosaliganti, B. Smith, A. Gelas, A. Gouaillard and
S. Megason, these classes model an image as a constant
intensity background with constant intensity foreground
components. Segmentation results from a previous time
point can be leveraged in processing a new time point,
and real time tracking for fluorescence microscope appli-
cations can be attained. Details are available from “Cell
Tracking using Coupled Active Surfaces for Nuclei and
Membranes” (http://hdl.handle.net/10380/3055).

3D confocal images of a developing zebrafish embryo. (a-c) Raw
images and (d-f) Tracking results at 1,5 and 10 time-points.

These classes can be found in the Code/Review Directory
and can be enabled by setting the CMake variable ITK_USE_
REVIEW to ON during the configuration process.

This release contains a re-factored Statistics module, found
in Code/Review/Statistics, that makes the Statistics module
more consistent with the rest of ITK. The use of the new
module is still experimental and is disabled by default. To
enable and test the new Statistics, turn ITK_USE_REVIEW_
STATISTICS to ON during the configuration process.

Thanks to contributions from a number of developers,
particularly Tom Vercauteren, this release offers a fix to plat-
form rounding inconsistencies. To enable and test the new
rounding functionality, turn ITK_USE_PORTABLE_ROUND to
ON during the configuration process.

For more details about this release, please visit the ITK Wiki
and search for “Release 3.14”.

4

and enabled as many features as possible building as much
as it could if the user didn’t specify what to build (or not
to build).

To start, one person on the team (Cliff Jansen of Interop
Systems) ran the existing automake through the KDE con-
version steps to get a base set of CMakeLists.txt files and did
some initial prototyping for the code generation step. The
original autoconf build ran the code generator at make time
if the source XML specifications were available at configure
time (in a release kit, the generated sources are already
there, and the specs are not in the kit). The Makefile.am file
then included the generated lists of sources to generate the
Makefile from which the product was built. One big ques-
tion we came across was where to place the code generating
step in the CMake scheme. We considered two options:

•	 Execute the code generation in the generated Makefile
(or Visual Studio project). This had the advantage of being
able to leverage the build system’s dependency evaluation
and regenerate the code as needed. However, once gener-
ated, the Makefile (or Visual Studio project) would need
to be recreated by CMake (recall that the code generation
produces a list of source files that must be in the Makefile).
We couldn’t get this sequence to be as seamless as we
had hoped.

•	 Execute the code generation in the CMake configura-
tion step. This puts the dependency evaluation in the
CMakeLists.txt file. Here the code regeneration had to be
done by hand since we wouldn’t have the build system’s
dependency evaluation available. However, once the
code was generated, the list of generated source files was
readily available for inclusion in the Makefile (and Visual
Studio project) and the build could proceed smoothly.

We elected the second approach for ease of use. The
CMake code for generating the AMQP specification-based
code looks like this (note this code is covered by the
Apache license):

rubygen subdir is excluded from stable
distributions. If the main AMQP spec is present,
then check if ruby and python are present, and if
any sources have changed, forcing a re-gen of
source code.
set(AMQP_SPEC_DIR ${qpidc_SOURCE_DIR}/../specs)
set(AMQP_SPEC
 ${AMQP_SPEC_DIR}/amqp.0-10-qpid-errata.xml)
if (EXISTS ${AMQP_SPEC})
 include(FindRuby)
 include(FindPythonInterp)
 if (NOT RUBY_EXECUTABLE)
 message(FATAL_ERROR “Can’t locate ruby, ”
 “needed to generate source files.”)
 endif (NOT RUBY_EXECUTABLE)
 if (NOT PYTHON_EXECUTABLE)
 message(FATAL_ERROR “Can’t locate python, ”
 “needed to generate source files.”)
 endif (NOT PYTHON_EXECUTABLE)

 set(specs ${AMQP_SPEC}
 ${qpidc_SOURCE_DIR}/xml/cluster.xml)
 set(regen_amqp OFF)
 set(rgen_dir ${qpidc_SOURCE_DIR}/rubygen)
 file(GLOB_RECURSE rgen_progs ${rgen_dir}/*.rb)
If any of the specs, or any of the sources used to
generate code, change then regenerate the sources.
 foreach (spec_file ${specs} ${rgen_progs})
 if (${spec_file} IS_NEWER_THAN
 ${CMAKE_CURRENT_SOURCE_DIR}/rubygen.cmake)
 set(regen_amqp ON)
 endif (${spec_file} IS_NEWER_THAN
 ${CMAKE_CURRENT_SOURCE_DIR}/rubygen.cmake)

updated is very error-prone. Even the subset of developers
that have ready access to both can get it wrong.

3.	(Ok, this one is a bonus) Once you’ve spent enough nights
trying to debug autoconf scripting, you’ll do anything to
get away from autotools.

We looked at a number of alternatives and settled on
CMake. CMake is picking up in popular usage (KDE recently
switched, and there’s an effort to make Boost build with
CMake as well). CMake works from its own specification of
the product’s source inputs and outputs, similar to autoconf,
but has the following advantages:

•	 It also performs the “configure” step in the autotools
process.

•	 It can generate make inputs (Visual Studio projects,
Makefiles, etc.) for numerous build systems.

•	 It can be used to execute the test suite in addition to
the build.

•	 It can optionally facilitate packaging as well as build-
ing, which is important for keeping the packaging
information consistent and correct throughout the
development process.

In the CMake world, the autotools “bootstrap” (step 1,
above) is not needed. This is because rather than produce a
neutral shell script for the configure step, CMake itself must
be installed on each build system. This seems a bit onerous at
first, but I think is better for two main reasons:

1.	The configuration step in CMake lets the user view a nice
graphical layout of all the options the developers offer
to configure and build optional areas of the product.
As the configuration happens, the display is updated to
show what was learned about the environment and its
capabilities. Only when all settings look correct does the
user generate the build files and proceed to build the
software. It takes the guesswork out of knowing if you’ve
specified the correct configure options, or even knowing
what options you have to pick from.

2.	It will probably both motivate and facilitate more projects
to offer pre-built binary install packages, such as RPMs and
Windows installers, to help users get going quicker. One
of CMake’s components, CPack, helps to ease this process
as well.

How Qpid Switched to CMake
We started the conversion in February 2009. As of this
writing, the builds have been running well for a while; the
test executions are not quite done. So, it took about 3 months
to get the builds running on both Linux and Windows. We’re
working on the testing aspects now. We have not really
addressed the installation steps yet. There were only two
aspects of the Qpid build conversion that weren’t completely
straightforward:

1.	The build processes XML versions of the AMQP specifica-
tion and the Qpid Management Framework specification
to generate a lot of the code. The names of the generated
files are not known a priori. The generator scripts produce
a list of the generated files in addition to the files them-
selves. This list of files obviously needs to be plugged into
the appropriate places when generating the makefiles.

2. There are a number of optional features (such as SSL
support and clustering) which can be built into Qpid. In
addition to explicitly enabling or disabling the features,
the autoconf scheme checked for the requisite capabilities

5

 endforeach (spec_file ${specs})
 if (regen_amqp)
 message(STATUS
 “Regenerating AMQP protocol sources”)
 execute_process(
 COMMAND
 ${RUBY_EXECUTABLE} -I ${rgen_dir}
 ${rgen_dir}/generate gen ${specs} all
 ${CMAKE_CURRENT_SOURCE_DIR}/rubygen.cmake
 WORKING_DIRECTORY
 ${CMAKE_CURRENT_SOURCE_DIR})
 else (regen_amqp)
 message(STATUS “No need to generate AMQP ”
 “protocol sources”)
 endif (regen_amqp)
else (EXISTS ${AMQP_SPEC})
 message(STATUS “No AMQP spec... won’t ”
 “generate sources”)
endif (EXISTS ${AMQP_SPEC})

Pull in the names of the generated files,
i.e. ${rgen_framing_srcs}
include (rubygen.cmake)

With the code generation issue resolved, I was able to get
the rest of the project building on both Linux and Windows
without much trouble. The CMake mailing list was very
helpful when questions came up.

The remaining not-real-clear-for-a-newbie area was how to
best handle building optional features. Where the original
autoconf script tried to build as much as possible without the
user specifying, I put in simpler CMake language to allow the
user to select options, try the configure, and adjust settings
if a feature (such as SSL libraries) was not available. This took
away a convenient feature for building as much as possible
without user intervention, though with CMake’s ability to
very easily adjust the settings and re-run the configuration
step, I didn’t think this was much of a loss.

Shortly after I got the first set of CMakeLists.txt files checked
into the Qpid subversion repository, other team members
started iterating on the initial CMake-based build. Andrew
Stitcher from Red Hat quickly zeroed in on the removed
capability to build as much as possible without user interven-
tion. He developed a creative approach to setting the CMake
defaults in the cache-based on some initial system checks.
For example, this is the code that sets up the SSL-enabling
default based on whether or not the required capability is
available on the build system (note this code is covered by
the Apache license):

Optional SSL/TLS support.
Requires Netscape Portable Runtime.
include(FindPkgConfig)

According to some cmake docs this is not a
reliable way to detect pkg-configed libraries,
but it’s no worse than what we did under autotools
pkg_check_modules(NSS nss)

set (ssl_default ${ssl_force})
if (CMAKE_SYSTEM_NAME STREQUAL Windows)
else (CMAKE_SYSTEM_NAME STREQUAL Windows)
 if (NSS_FOUND)
 set (ssl_default ON)
 endif (NSS_FOUND)
endif (CMAKE_SYSTEM_NAME STREQUAL Windows)

option(BUILD_SSL “Build with support for SSL”
 ${ssl_default})
if (BUILD_SSL)

 if (NOT NSS_FOUND)
 message(FATAL_ERROR “nss/nspr not found, ”

 “required for ssl support”)
 endif (NOT NSS_FOUND)

 foreach(f ${NSS_CFLAGS})
 set (NSS_COMPILE_FLAGS
 “${NSS_COMPILE_FLAGS} ${f}”)
 endforeach(f)

 foreach(f ${NSS_LDFLAGS})
 set (NSS_LINK_FLAGS “${NSS_LINK_FLAGS} ${f}”)
 endforeach(f)

 # ... continue to set up the sources
 # and targets to build.
endif (BUILD_SSL)

With that, the Apache Qpid build is going strong with
CMake.

During the process I developed a pattern for naming CMake
variables that play a part in user configuration and, later, in
the code. There are two basic prefixes for cache variables:

•	 BUILD_* variables control optional features that the user
can build. For example, the SSL section shown above
uses BUILD_SSL. Using a common prefix, especially one
that collates near the front of the alphabet, puts options
that users change most often right at the top of the list,
and together.

•	 QPID_HAS_* variables note variances about the build
system that affect code but not users. For example,
whether or not a particular header file or system call is
available. These are passed through to compile time using
the CMake configure_file statement.

As you can see from Figure 1, the settings that users would
most often want to change are at the top of the list. This is
a whole different experience from remembering help text
(or guessing!) and typing in long command lines with the
desired options.

Figure 1: Apache Qpid Configuration on Windows

Future efforts in the CMake area of the project will complete
the transition of the test suite to CMake/CTest, which will
have the side effect of making it much easier to script the
regression test on Windows. The last area to be addressed
will be how downstream packagers make use of the new
CMake/CPack system for building RPMs, Windows installers,
etc. The recently released Apache Qpid version 0.5 is the last
one based on autotools and hand-maintained Visual Studio
projects. The next version will be completely CMake-based.
I believe this will help to improve the consistency of release

6

In this example, we will use ParaView in stand-alone mode.
Connecting to a ParaView server running on a cluster is
covered later.

Creating a Pipeline
The simple module contains many functions to instantiate
readers, filters and other related objects. You can get a list
of objects this module can create from www.paraview.org/
OnlineHelpCurrent/.

Let’s start by creating a reader object to read a VTK file.

>>> vtkreader = LegacyVTKReader()

You can get some documentation about the cone object
using help().

>>> help(vtkreader)

Help on LegacyVTKReader in module paraview.serverman-
ager object:

class LegacyVTKReader(SourceProxy)

The Legacy VTK reader loads files stored in VTK’s
legacy file format (before VTK 4.2). The expected
file extension is .vtk. The type of the dataset may
be structured grid, uniform rectilinear grid (im-
age/volume), non-uniform rectilinear grid, unstruc-
tured grid, or polygonal. This reader also supports
file series. The data descriptors are defined in
FileNames. FileNames is the list of files to be read
by the reader. If more than 1 file is specified, the
reader will switch to file series mode in which it
will pretend that it can support time and provide
1 file per time step. TimestepValues indicate the
available timestep values.

This gives you a full list of methods and properties (data
descriptors). When using ParaView’s Python interface, we
interact with objects by reading and setting their properties.
Let’s start by setting the name of the file to be read.

>>> vtkreader.FileNames =
 [“.../VTKData/Data/office.binary.vtk”]

Note that we used a file from the VTKData repository. VTKData
is a separate download from the download page on VTK.org.
This file contains a uniform grid that has the numerical solu-
tion of the air flow in an office. Also note that the property
is called FileNames rather than FileName and expects a
Python list. This is because the VTK reader in ParaView can
read a series of files that represent a time series.

Alternatively, we could have specified the file name when
creating the object.

>>> vtkreader = = LegacyVTKReader(FileNames =
 [“.../VTKData/Data/office.binary.vtk”])

The constructor functions in paraview.simple all accept an
arbitrary number of key,value pairs that represent property
names and values.

We can read the property value back.

>>> vtkreader.FileNames
 [‘/Users/berk/Work/VTKData/Data/office.binary.
vtk’]

Now that we set the file name, we can access the meta-
information about the data it contains. For example, we can
get a list of point (node) centered data arrays by accessing
the PointData property:

ParaView and Python

results across supported platforms from build and test
through to packaging.

REFERENCES
•	 http://qpid.apache.org
•	 Advanced Message Queueing Protocol (www.amqp.org)
•	 http://qpid.apache.org/license.html

 Steve Huston is a leading UNIX/Linux and
Windows programming expert specializing
in C++ network programming. Steve is
President of Riverace Corporation and is a
regular contributor to the ACE and Apache
Qpid open source projects. He is co-author

of C++ Network Programming (2 volumes) and The ACE
Programmer’s Guide. You can read Steve’s blog at
http://stevehuston.wordpress.com, follow him on Twitter at
http://twitter.com/stevehuston, or send email to
shuston@riverace.com.

In this document, we will cover the basics of using ParaView’s
Python interface. Please note that this text is based on
ParaView 3.6 and higher and is not directly applicable to
earlier versions. This document only touches on the basic
concepts of ParaView’s Python interface. For more details
and examples, see the ParaView Wiki and search for “Python
Scripting” or “Python Recipes”.

ParaView offers rich scripting support through Python. This
support is available as part of the ParaView client (paraview),
an MPI-enabled batch application (pvbatch), the ParaView
python client (pvpython) or any other Python-enabled appli-
cation. Using Python, users and developers can gain access
to the ParaView engine called Server Manager.

Getting Started
To start interacting with ParaView through Python, you have
to load the paraview.simple module. This module can be
loaded from any Python interpreter as long as the necessary
files are in PYTHONPATH. These files are the shared librar-
ies located in the paraview binary directory and as python
modules in the paraview directory: paraview/simple.py,
paraview/vtk.py, etc. You can also use either pvpython (for
stand-alone or client/server execution), pvbatch (for non-
interactive, distributed batch processing) or the Python shell
invoked from Tools->Python Shell using the ParaView
client to execute Python scripts. You do not have to set
PYTHONPATH when using these.

In this document, I will be using the Python integrated
development environment, IDLE. My PYTHONPATH is set to
the following:

/Users/berk/work/paraview3-build/bin:/Users/berk/
work/paraview3-build/Utilities/VTKPythonWrapping

This is on my Mac and uses the build tree. In IDLE, let’s start
by loading the servermanager module.

>>> from paraview.simple import *

7

>>> vtkreader.PointData[:]
vtkFileSeriesReader : [...........]
[Array: scalars, Array: vectors]

Note that before the function returned a value, “vtkFile-
SeriesReader : [...........]” appeared on the output. This is
because ParaView forced the reader to execute and read
data from the file so that it can give us the metadata. The
paraview.simple module forces readers and filters to execute
when necessary to always produce up-to-date metadata.
This file contains two arrays: scalars and vectors. We can get
the range of the scalar array as follows.

>>> vtkreader.PointData[“scalars”].GetRange()
(-3.8695590496063232, 0.71856027841567993)

Now that we know the range of the scalar’s array, let’s extract
some isosurfaces.

>>> c = Contour(vtkreader)
>>> c.ListProperties()
[‘ComputeGradients’, ‘ComputeNormals’,
 ‘ComputeScalars’, ‘Isosurfaces’, ‘Input’,
 ‘ContourBy’]
>>> c.ComputeScalars = True
>>> c.Isosurfaces = [-2, 0]

Here, we used the ListProperties() method to find the
Isosurfaces method. We also set ComputeScalars on so that
the output contains the contour value as a scalar.

Rendering
Next, we will display the outline of the data as well as the
isosurfaces. First, let’s display the output of vtkreader as
an outline.

>>> Show(vtkreader)
<paraview.servermanager.GeometryRepresentation
 object at 0xaf6de50>
>>> SetDisplayProperties(vtkreader,
 Representation=’Outline’)

Note that we used SetDisplayProperties() to set the
representation type of vtkreader. We could have done the
following instead.

>>> dp = GetDisplayProperties(vtkreader)
>>> dp.Representation = ‘Outline’

Let’s also turn on the visibility of the isosurfaces and render.

>>> Show(c)
vtkContourFilter : [...........]
<paraview.servermanager.GeometryRepresentation
 object at 0x293110>
>>> dp.ColorArrayName = ‘scalars’
>>> dp.LookupTable = MakeBlueToRedLT
(-3.8695590496063232, 0.71856027841567993)
>>> GetActiveCamera().Elevation(105)
>>> Render()
vtkPainterPolyDataMapper : [...........]
<paraview.servermanager.RenderView
 object at 0x20e60030>

Note, we set the color of the isosurface to be mapped from
the scalar’s array. We also created a lookup table that is used
for this mapping (MakeBlueToRedLT). This lookup table
interpolates color from blue to red in the given range. We also
moved the camera by 105 degrees using the Elevation()
method. Finally, Render() renders the scene.

We can capture this window as an image as follows.

>>> WriteImage(“/Users/berk/test.png”)

The resulting image is shown below.

Finally, we can save the state of ParaView to load later.

>>> servermanager.SaveState(“.../state.pvsm”)

Using the Python Shell in ParaView
Let’s continue our tutorial inside the ParaView user inter-
face. Quit Python and start ParaView. First load the state file
we just saved using File->Load State. Next, bring up the
Python shell using Tools->Python Shell. You will notice
that we no longer have access to variables we defined in our
previous session (vtkreader, c and dp). So, how do we access
the objects that were in the state? Paraview.simple has two
convenience methods that makes this easy.

>>> GetSources()
{(‘Contour1’, ‘1520’): <paraview.servermanager.
 Contour object at 0x24830110>,
(‘LegacyVTKReader1’,
 ‘994’): <paraview.servermanager.LegacyVTKReader
 object at 0x248302b0>}
>>> c = FindSource(“Contour1”)

GetSources() returns a Python dictionary that has
references to all pipeline objects as well as their names.
FindSource() finds an object given its name. You can find
the name of the object in the pipeline browser.

Next, let’s delete the contour filter.

>>> Delete(c)

You will notice that the contour object is also removed
from the pipeline browser. This is because both the user
interface and the Python interpreter modify the same under-
lying engine and all changes made in one are immediately
reflected by the other.

Client/Server Scripting
Let’s now switch back to the Python shell and explore how to
connect to a ParaView server. Feel free to skip this section if
you are not running ParaView in client/server mode.

First, start a ParaView server (pvserver) either on the local
machine or on a remote server. I ran pvserver on my desktop
for this example.

You can use the Connect() function to connect to a server.

>>> from paraview.simple import *
>>> Connect(“localhost”, 11111)
Connection (localhost:11111)

8

sis and, in particular, data exploration through visualization.
By capturing detailed provenance of the visualization and
analysis pipelines—both of how they evolved over time and
the data products they derive, VisTrails maintains documen-
tation key to preserving data, determining the data’s quality
and authorship, and reproducing as well as validating
results. The system also leverages provenance information to
support collaboration, knowledge sharing and re-use, and it
also provides intuitive interfaces that simplify common tasks
in data exploration. These include: a visual interface for com-
paring pipelines and their results; a scalable mechanism for
the exploration of large parameter spaces; and an analogy
operation, which allows users to re-use pipeline refinements
as a template for creating new pipelines.

The VisTrails Provenance Explorer plugin for ParaView brings
provenance tracking and many of the benefits of prove-
nance to ParaView users. The source code for the plugin can
be downloaded from www.vistrails.org; it has been tested
under Windows, Mac OS X, and Linux. The plugin is included
with the ParaView 3.6 binaries.

Using the VisTrails Provenance Explorer
Plugin for Exploratory Visualization
The VisTrails Provenance Plugin for Paraview automatically
and transparently tracks the steps a user followed to create a
visualization. In contrast to the traditional undo/redo stack,
which is cleared whenever new actions are performed, the
plugin captures the complete exploration trail as a user
explores different parameters and visualization techniques.

Figure 1. ParaView and the VisTrails Provenance Plugin.
The Provenance Plugin (right) captures all the actions a user

performs to create visualizations. These actions are stored as a
tree that serves as a guide for future exploration, allowing users
to return to a previous version in an intuitive way, to undo bad

changes, to compare different visualizations, and to be reminded
of the actions that led to a particular result.

Consider a user exploring the disk_out_ref.ex2 example
dataset, derived by a simulation of the air around a heated
rotating disk. The user may load the data and start by
experimenting with a volume rendering of the temperature
within the domain. After some time spent tweaking the
visualization, he decides to examine what the temperature
looks like, and labels the current version of the visualization
in the Provenance Explorer as “Temperature” (see Figure 1).
To look at just the air flow, he undoes all the volume actions,
until the pipeline has only the data reader.

He then starts a new visualization by creating a streamline
filter. After creating this new visualization and labeling it
“Air Flow” (see Figure 2(b)), the user decides that a volume

Introducing the VisTrails
Provenance Explorer Plugin
for ParaView

In order to analyze and validate various hypotheses, it is
necessary to create insightful visualizations of both the
simulated processes and observed phenomena, using pow-
erful data analysis and visualization tools like ParaView. But
to explore data through visualization, scientists need to go
through several steps. They need to select data products and
specify series of operations that need to be applied to these
data to create appropriate visual representations before
they can finally view and analyze the results. Often, insight
comes from comparing the results of multiple visualizations.
Unfortunately, today this process is far from interactive
and contains many error-prone and time-consuming tasks.
As a result, the generation and maintenance of visualiza-
tion data products has become a major bottleneck in the
scientific process, hindering not only the ability to mine
scientific data, but the actual use of scientific data in every
day applications. In particular, scientists and engineers need
to expend substantial effort managing data (e.g., scripts that
encode computational tasks, raw data, data products, and
notes) and record provenance (history) information so that
basic questions can be answered, such as: Who created a data
product and when? When was it modified and by whom?
What was the process used to create the data product? Were
two data products derived from the same raw data?

As a step toward addressing this problem, we have developed
VisTrails (www.vistrails.org), an open-source, provenance-
enabled scientific workflow system that can be combined
with a wide range of tools, libraries, and visualization
systems. VisTrails provides a comprehensive solution to the
problem of managing data and processes used in data analy-

Here, the first argument is the hostname and the second
argument is the port number. The easiest way to get started
is to load the state we previously saved.

>>> servermanager.LoadState(“/Users/berk/state.
pvsm”)
>>> SetActiveView(GetRenderView())

Note that I had to set the active view manually as ParaView
does not currently save the active objects in the state. We
will fix this in the next release. Loading a state saved by
a stand-alone ParaView application using a client/server
ParaView works without problems as ParaView creates the
appropriate objects under the cover. Everything discussed in
this article should work without any modifications.

Acknowledgements
This work has been partially funded by Sandia National
Laboratories through contract number DE-AC04-94AL85000.

Berk Geveci is Kitware’s Director of Scientific
Computing where he leads the scientific visu-
alization and informatics teams. He is one of
the leading developers of the ParaView visu-
alization application and the Visualization
Toolkit (VTK). His research interests include

large scale parallel computing, computational dynamics,
finite elements and visualization algorithms.

9

rendering of the pressure would help complete his view of
the simulation. He would like to begin by simply reverting to
the temperature visualization, and changing the scalar used
for coloring to the pressure variable. Although this would
not be possible using the standard undo/redo interface,
because the VisTrails plugin never discards old states, the
temperature visualization can easily be restored by clicking
the corresponding version (node) in the Provenance Explorer
window. The user can then continue modifying the volume
rendering to explore the pressure data (see Figure 2(c)).

Figure 2. (a), (b) and (c) represent different visualizations gener-
ated by a user exploring the disk_out_ref.ex2 example dataset.

Besides tracking all visualizations a user explored, how they
evolved over time, and enabling them to be reproduced, the

VisTrails Provenance Plugin captures additional metadata about
the visualizations, including: a descriptive tag and notes (d), the

date and time when the visualization was created,
and the user who created it.

Once the different visualizations have been created by the
user and recorded by the VisTrails plugin, switching between
and replaying (re-generating) them to provide comparisons
is fairly straightforward. This is different from the multiview
visualizations supported by ParaView. The multiview mode in
ParaView allows multiple instantiations of a common pipe-
line with different parameters. Switching between different
versions in the Provenance Explorer creates the different
pipelines for each version, which can reduce the clutter in
the Pipeline Browser when they are significantly different.
However, a disadvantage of this mode of comparison is that
they cannot be viewed simultaneously side-by-side.

The VisTrails plugin has additional benefits when compared
to the undo/redo framework. A tree-based view of the
history of actions allows a user to return to a previous version
in an intuitive way, undo bad changes, compare different
visualizations, and be reminded of the actions that led to
a particular result. Also, there is no limit on the number of
operations that can be undone, no matter how far back in
the history of the visualization they are. Last, but not least,
the history is persistent across sessions. The VisTrails plugin
can save all of the information needed to restore any state
of the visualization in .vt files, which can be reloaded across
ParaView sessions and shared among collaborators. This also
allows multiple visualizations to be shared with a single file.

In addition to the capturing and replaying capabilities, the
VisTrails plugin has several other features that make the full
visualization provenance more manageable. Over the course
of creating a visualization, many versions may be recorded
by the VisTrails plugin. If the user often tries something
and then reverts back to an old version, the version tree in

the Provenance Explorer will also have a large number of
branches, many of which will be “dead ends.” To remove
clutter from the window, the user can select branches to be
hidden. This does not actually delete them---it just removes
them from the view. The full version tree can be restored at
any time. This makes browsing the version tree easier, since
only the most significant versions are visible.

Each version recorded by the plugin has several annotations
associated with it: the user that created it, the time and date
that it was created, and the name of the action (see Figure
2). By default, each version is labeled in the Provenance
Explorer window with the action name, as reported by
ParaView. The user may additionally tag a version with a
name to override this label, which makes key versions of the
visualization easy to find among the others. There is also a
field for notes where the user can leave comments, either
for themselves, or for collaborators that they wish to share
their visualizations with.

The display of the nodes of the version tree in the Provenance
Explorer window also makes use of these annotations to
give some immediate cues to their provenance. The versions
created by the current user are colored blue to distinguish
them from versions created by other users. Also, new ver-
sions use bolder coloring than old versions, making more
recent changes stand out as well.

Acknowledgements
The VisTrails Provenance Explorer plugin for ParaView is the
work of many talented and devoted individuals. The work
is derived from the VisTrails scientific workflow middleware
system. Huy Vo wrote a first version of the ParaView plugin,
which was later refined and extended by Geoff Draper and
John Schreiner, with substantial contributions from Tilo
Ochotta and Steve Callahan. Funding has been provided by
grants from the Department of Energy, the National Science
Foundation, the State of Utah, and the University of Utah.

Claudio Silva is an Associate Professor
of computer science and faculty member of
the SCI Institute at the University of Utah,
co-leader of the VisTrails project, and
co-founder of VisTrails Inc. His research
interests are in visualization and data analy-
sis, geometry processing, and scientific data
management.

Juliana Freire is an Associate Professor of
computer science and faculty member of the
SCI Institute at the University of Utah, co-
leader of the VisTrails project, and co-founder
of VisTrails Inc. Her research interests are in
databases, web technologies, and scientific
data management.

John Schreiner is a senior software engineer
at VisTrails Inc. He is the technical lead on
the VisTrails Provenance Explorer plugin for
ParaView. He received a Ph.D. in computer
science from the University of Utah for his
thesis on geometric processing in 2008.

10

The Teuchos subproject page in the Trilinos project is an
example of an independent subproject page. Since it has
no subprojects that it depends on, there is no “SubProject
Dependencies” section.

Organizing and Defining Subprojects
To add subproject organization into your project, you must
do two things: (1) define the subprojects for CDash, so that it
knows how to display them properly, and (2) use build scripts
with CTest to submit subproject builds of your project. Some
(re-)organizational work in your project’s CMakeLists.txt
files may also be necessary to allow building your project
by subprojects.

There are two ways to define subprojects and their depen-
dencies: interactively in the CDash GUI when logged in as
a project administrator, or by submitting a Project.xml file
describing the subprojects and dependencies.

Adding Subprojects Interactively
If you’re a project administrator, you will have a “Manage
subprojects” button for each of your projects on the My
CDash page, as highlighted in the figure below. For the
purpose of experimenting with the subprojects feature of
CDash, create a “Tutorial” project on your CDash server and
make yourself a project administrator.

Clicking the Manage subprojects button takes you to the
manage subproject page where you may add new subproj-
ects or establish dependencies between existing subprojects.
There are two tabs on this page. One for viewing the current
subprojects and their dependencies and one for creating
new subprojects.

CDash Subprojects

A large project typically consists of several interdependent
pieces such as libraries, executables, test suites, documen-
tation, web pages and installers. Organizing your project
into well-defined subprojects and presenting the results
of nightly builds on a CDash dashboard can help you see
where the problem spots are at whatever level of granular-
ity you define. The new subproject feature of CDash (version
1.4 and later) saves you time, making it easy to identify and
correct problems.

For the purposes of this article we assume you are using
CDash 1.4 or later and CTest 2.7.20090520 or later (CVS HEAD
of CMake from May 20, 2009, or later).

A project with subprojects has a different view for its top
level CDash page than a project without any subprojects. It
contains a summary row for the project as a whole and then
one summary row for each subproject.

The Trilinos Project is an effort to develop algorithms and
enabling technologies within an object-oriented software
framework for the solution of large-scale, complex multi-
physics engineering and scientific problems. A unique design
feature of Trilinos is its focus on packages which are repre-
sented as subprojects on the Trilinos CDash dashboard (shown
in the figure above). Explore the Trilinos dashboard to see
how CDash displays projects and subprojects at trilinos-dev.
sandia.gov/cdash.

The EpetraExt subproject page in the Trilinos project is an
example of a subproject page with summary rows at the top
(in the “SubProject Dependencies” section), as shown in the
following figure.

11

When you first visit this page for a given project, it will
be empty.

To add two subprojects, called Exes and Libs, and to make
Exes depend on Libs:

•	 Click the “Add a subproject” tab
•	 Type “Exes” in the “Add a subproject” edit field
•	 Click the “Add subproject” button
•	 Click the “Add a subproject” tab
•	 Type “Libs” in the “Add a subproject” edit field
•	 Click the “Add Subproject” button
•	 In the “Exes” row of the “Current Subprojects” tab, choose

“Libs” from the “Add dependency” drop down list and
click the “Add dependency” button.

Now the “Current Subprojects” tab looks something
like this:

To remove a dependency or a subproject, click on the “X”
next to the one you want to delete.

After adding subprojects to the Tutorial project, the main
dashboard page for Tutorial looks like this:

Adding Subprojects Automatically
The other way to define CDash subprojects and their
dependencies is to submit a “Project.xml” file along with
the usual submission files that CTest sends when it submits
a build to CDash. To define the same two subprojects as in
the interactive example above (Exes and Libs) with the same
dependency (Exes depend on Libs) the Project.xml file would
have contents as follows:

<Project name=”Tutorial”>
 <SubProject name=”Libs”>
 </SubProject>
 <SubProject name=”Exes”>
 <Dependency name=”Libs”/>
 </SubProject>
</Project>

Once you write or generate the Project.xml file, you can
submit it to CDash from a CTest -S script using the new FILES
argument to the ctest_submit command, or directly from
the CTest command line in a build tree configured for dash-
board submission.

From inside a CTest -S script:

ctest_submit(FILES “${CTEST_BINARY_DIRECTORY}/
Project.xml”)

From the command line:

cd ../Project-build	 (or wherever CTEST_BINARY_
DIRECTORY is for your build)
ctest --extra-submit Project.xml

CDash will automatically add subprojects and dependen-
cies according to how you define them in the Project.xml
file. It will also remove any subprojects or dependencies not
defined in the Project.xml file. Or, if you submit the exact
same file multiple times, the second and subsequent sub-
missions will have no observable effect: the first submission
adds/modifies the data; the second and later submissions
send the same data, so no change is necessary. CDash tracks
changes to the subproject definitions over time to allow for
project evolution. If you view dashboards from a past date,
CDash will present the project/subproject views according to
the subproject definitions in effect as of that date.

Whenever a client submits a Trilinos dashboard via Trilinos/
cmake/ctest/TrilinosCTestDriverCore.cmake, it automatically
submits a (possibly updated) subproject definition file with
these lines of the script:

CTEST_SUBMIT(FILES
 “${TRILINOS_CMAKE_DIR}/python/data/
CDashSubprojectDependencies.xml”
 RETURN_VALUE SUBMIT_RETURN_VAL
)

Other parts of the build process make sure that the
CDashSubprojectDependencies.xml file is always up-to-date
according to how the Trilinos packages are defined.

ctest_submit PARTS and FILES
CTest submits results to CDash with the ctest_submit
command in CTest -S scripts. The ctest_submit command
sends xml files describing the results of the stages of the
dashboard (update, configure, build, test, …) and any note
files attached by the script author.

In CTest 2.7.20090520 and later, the ctest_submit command
supports new PARTS and FILES arguments.

12

Splitting Your Build into Multiple
Subproject Builds
In a CTest -S dashboard driver script, a ctest_build call
delegates to the native build tool to build the target named
“${CTEST_BUILD_TARGET}”. If you have not defined the
CTEST_BUILD_TARGET variable in your driver script, then
the build tool will build everything, using the “all” or
“ALL_BUILD” target.

One ctest_build() invocation that builds everything
followed by one ctest_test() invocation that tests every-
thing is sufficient for a project that has no subprojects. In
order to submit results on a per-subproject basis to CDash,
you will have to make ctest_build and ctest_test calls
for each subproject. To split your one large, monolithic build
into many smaller subproject builds, you can use a FOREACH
loop in your CTest driver script. To help you iterate over
your subprojects, CDash provides a variable named CTEST_
PROJECT_SUBPROJECTS in CTestConfig.cmake.

Given the above Tutorial example, CDash produces a
variable like this:

set(CTEST_PROJECT_SUBPROJECTS
Libs
Exes
)

CDash orders the elements in this list such that the inde-
pendent subprojects (that do not depend on any other
subprojects) occur first. Then subprojects that depend only
on the independent subprojects, and then subprojects that
depend on those, and so on. That logic is continued until all
subprojects are listed exactly once in an order that makes
sense for building them incrementally.

If you organize your CMakeLists.txt files such that you have
a target to build for each subproject, and you can derive
the name of that target based on the subproject name, then
revising your script to separate it into multiple smaller con-
figure/build/test chunks should be relatively painless.

To facilitate building just the targets associated with a sub-
project, use the variable named CTEST_BUILD_TARGET to
tell ctest_build what to build. To facilitate running just
the tests associated with a subproject, assign the LABELS
test property to your tests and use the new INCLUDE_LABEL
argument to ctest_test.

To organize your monolithic build into a sequence of smaller
subproject builds, make the following changes:

CMakeLists.txt modifications
•	 Name targets same as subprojects, base target names on

subproject names, or provide a look up mechanism to map
from subproject name to target name

•	 Possibly add custom targets to aggregate existing targets
into subprojects, using add_dependencies to say which
existing targets the custom target depends on

•	 Add LABELS target property to targets with a value of
subproject name

•	 Add LABELS test property to tests with a value of
subproject name

 CTest driver script modifications
•	 Iterate over the subprojects in dependency order (from

independent to most dependent)

With PARTS, you can send any subset of the xml files with
each ctest_submit call. Previously, all PARTS would be sent
with any call to ctest_submit. Typically, the script would
wait until all dashboard stages were complete and then call
ctest_submit once to send the results of all stages at the
end of the run. Now, a script may call ctest_submit with
PARTS to do partial submissions of subsets of the results. For
example, you can submit configure results after ctest_con-
figure, build results after ctest_build and test results after
ctest_test. This allows for quicker posting of information
as builds progress.

With FILES, you can send arbitrary xml files to CDash. In
addition to the standard build result xml files that ctest
sends, CDash also handles the new Project.xml file that
describes subprojects and dependencies. (…described in the
section “Adding Subprojects Automatically”…)

The valid PARTS values are listed in the “ctest --help-
command ctest_submit” documentation:

ctest_submit
 Submit results to a dashboard server.

 ctest_submit([PARTS ...] [FILES ...] [RETURN_
VALUE res])

 By default all available parts are submitted if
no PARTS or FILES are specified. The PARTS option
lists a subset of parts to be submitted.
 Valid part names are:

 Start = nothing
 Update = ctest_update results, in Update.xml
 Configure = ctest_configure results, in
Configure.xml
 Build = ctest_build results, in Build.xml
 Test = ctest_test results, in Test.xml
 Coverage = ctest_coverage results, in
Coverage.xml
 MemCheck = ctest_memcheck results, in
DynamicAnalysis.xml
 Notes = Files listed by CTEST_NOTES_FILES, in
Notes.xml
 ExtraFiles = Files listed by CTEST_EXTRA_
SUBMIT_FILES
 Submit = nothing

The FILES option explicitly lists specific files to be submitted.
Each individual file must exist at the time of the call.

Prior to the addition of the ctest_submit PARTS handling,
a typical dashboard script would contain a single ctest_
submit() call as its last line. Now, submissions may occur
incrementally with each part of the information sent piece-
meal as it becomes available:

ctest_start(Experimental)
ctest_update(SOURCE “${CTEST_SOURCE_DIRECTORY}”)
ctest_configure(BUILD “${CTEST_BINARY_DIRECTORY}”)
ctest_submit(PARTS Update Configure Notes)
ctest_build(BUILD “${CTEST_BINARY_DIRECTORY}”)
ctest_submit(PARTS Build)
ctest_test(BUILD “${CTEST_BINARY_DIRECTORY}”)
ctest_submit(PARTS Test)

Submitting incrementally by PARTS means you can inspect
the results of the configure stage live on the CDash dash-
board while the build is still in progress. Likewise, you can
inspect the results of the build stage live while the tests are
still running.

13

•	 Set the “SubProject” and “Label” global properties – CTest
uses these properties to submit the results to the correct
subproject on the CDash server

•	 Build the target(s) for this subproject: compute name of
target to build from subproject name, set CTEST_BUILD_
TARGET, call ctest_build()

•	 Run the tests for this subproject using INCLUDE or
INCLUDE_LABEL arguments to ctest_test()

•	 Use ctest_submit() with PARTS argument to submit
partial results as they are done

To simplify the following example which demonstrates the
changes required to split a build into smaller pieces, assume
the subproject name is exactly the same as the target name
required to build the subproject’s components.

Here is a snippet from CMakeLists.txt, in the hypothetical
Tutorial project. The only additions necessary (since the
target and subproject names are the same) are the calls to
set_property for each target and each test.

“Libs” is the library name (therefore a target
name) *and* the subproject name
add_library(Libs …)
set_property(TARGET Libs PROPERTY LABELS Libs)
add_test(LibsTest1 …)
add_test(LibsTest2 …)
set_property(TEST LibsTest1 LibsTest2 PROPERTY
LABELS Libs)

“Exes” is the executable name (therefore a target
name) *and* the subproject name
add_executable(Exes …)
target_link_libraries(Exes Libs)
set_property(TARGET Exes PROPERTY LABELS Exes)
add_test(ExesTest1 …)
add_test(ExesTest2 …)
set_property(TEST ExesTest1 ExesTest2 PROPERTY
LABELS Exes)

Here’s what the CTest driver script might look like before
and after organizing this project into subprojects.

Before:

ctest_start(Experimental)
ctest_update(SOURCE “${CTEST_SOURCE_DIRECTORY}”)
ctest_configure(BUILD “${CTEST_BINARY_DIRECTORY}”)
ctest_build(BUILD “${CTEST_BINARY_DIRECTORY}”) #
builds *all* targets: Libs and Exes
ctest_test(BUILD “${CTEST_BINARY_DIRECTORY}”) # runs
all tests
ctest_submit() # submits everything all at once at
the end

After (new chunks emphasized):

ctest_start(Experimental)
ctest_update(SOURCE “${CTEST_SOURCE_DIRECTORY}”)
ctest_submit(PARTS Update Notes)

to get CTEST_PROJECT_SUBPROJECTS definition:
include(“${CTEST_SOURCE_DIRECTORY}/CTestConfig.
cmake”)

foreach(subproject ${CTEST_PROJECT_SUBPROJECTS})
 set_property(GLOBAL PROPERTY SubProject ${subproj-
ect})
 set_property (GLOBAL PROPERTY Label ${subproject})

 ctest_configure(BUILD “${CTEST_BINARY_DIRECTORY}”)
 ctest_submit(PARTS Configure)

 set(CTEST_BUILD_TARGET “${subproject}”)

 ctest_build(BUILD “${CTEST_BINARY_DIRECTORY}”)
 # builds target ${CTEST_BUILD_TARGET}
 ctest_submit(PARTS Build)

 ctest_test(BUILD “${CTEST_BINARY_DIRECTORY}”
 INCLUDE_LABEL “${subproject}”
)
 # runs only tests that have a LABELS property
matching “${subproject}”
 ctest_submit(PARTS Test)
endforeach()

In some projects, more than one ctest_build step may
be required to build all the pieces of the subproject. For
example, in Trilinos, each subproject builds the “${subproj-
ect}_libs” target and then builds the “all” target to build
all the configured executables in the test suite. They also
configure things such that only the executables that need to
build for the currently configured packages build when the
“all” target is built.

Normally, if you submit multiple Build.xml files to CDash
with the same exact build stamp, it will delete the existing
entry and add the new entry in its place. In the case where
multiple ctest_build steps are required, each with their
own ctest_submit(PARTS Build) call, use the “APPEND”
keyword argument in all of the ctest_build calls that
belong together. That APPEND flag tells CDash to accumulate
the results from multiple Build.xml submissions and display
the aggregation of all of them in one row on the dashboard.
From CDash’s perspective, multiple ctest_build calls (with
the same build stamp and subproject and APPEND turned
on) result in a single CDash buildid.

Go Forth and Code!
Go ahead and adopt some of these tips and techniques in
your favorite CMake-based project.

• LABELS is a new CMake/CTest property that applies to
source files, targets and tests. Labels are sent to CDash
inside the result xml files.

• Use ctest_submit(PARTS …) to do incremental submis-
sions. Results are available for viewing on the dashboards
sooner.

• Use INCLUDE_LABEL with ctest_test to run only the tests
with labels that match the regular expression.

• Use CTEST_BUILD_TARGET to build your subprojects one at
a time, submitting subproject dashboards along the way.

If you follow the guidelines in this article and split your
favorite CMake-based project into subprojects, let us know
about it on the CMake and CDash mailing lists. If you run
into problems along the way, post questions to the mailing
lists which are the principal means of communication among
developers and users.

David Cole is an R&D Engineer in Kitware’s
Clifton Park, NY office. David has contrib-
uted code to the VTK, CMake, ITK, ParaView,
KWWidgets and gccxml open-source proj-
ects. He has also contributed to Kitware’s
proprietary products, including ActiViz
and VolView.

14

MIDAS 2.2
MIDAS, Kitware’s digital archiving and distributed processing
system, has seen its second major release in a year. MIDAS
collects, manages and process digital media.

Among the new features added are:

•	 Better policies management
•	 Improved navigation
•	 Faster database access and rendering
•	 New DICOM metadata extraction and search
•	 Improved security for private collections
•	 Faster search
•	 LDAP support
•	 Improved image gallery
•	 Initial support for custom workflow
•	 New web services API
•	 Redesigned grid computing management
Kitware’s public instance of MIDAS is available at
http://insight-journal.org/midas, and is host to hundreds of
freely available scientific and medical datasets.

For more information about MIDAS and to download a free
trial version, visit www.kitware.com/midas.

2nd Annual Best Biomedical Visualization
involving ITK or VTK at MICCAI 2009
Kitware is hosting its 2nd Annual Best Biomedical
Visualization Contest in conjunction with MICCAI 2009, the
12th International Conference on Medical Image Computing
and Computer Assisted Intervention, which will be held in
London from September 20-24.

The contest, which is open to the public, is being hosted at:
public.kitware.com/ImageVote. Users may submit visualiza-
tions and cast votes after registering, for free, at the contest
website. Visualizations may be charts, graphs, photographs,
or renderings from the biomedical field.

All images must have been produced by programs that use
ITK and/or VTK. To that effect we’ve generated a list of
applications on the contest website and kitware.com which
use ITK and VTK and are therefore eligible.

We have enlisted a panel of expert judges to help determine
the winners. Entries will be judged based on scientific signifi-
cance, aesthetics, and use of ITK or VTK. The winners will be
announced during the conference’s awards session.

•	 First-place prize is $750 and a Kitware shirt or hat.
•	 Second-place prize is $250 and a Kitware shirt or hat.
Submissions must be received by 5:00 PM EDT on September
1st, 2009. Please note that images generated by Kitware
employees are not eligible for this contest.

2008 winner, Luc Soler from IRCAD

Late Summer/Fall Conferences and Events
If you’re interested in meeting with a Kitware representative
at one of these events, email us at kitware@kitware.com.

IEEE Cluster 2009
August 31-September 4, 2009, in New Orleans, LA. Kitware,
along with Sandia National Labs, will be presenting a half
day tutorial on Parallel Distributed-Memory Visualization
with ParaView”. The tutorial will take place on Monday,
August 31. http://www.cluster2009.org

Euromech Solid Mechanics Conference 2009
September 7-11, 2009, in Lisbon Portugal. Michel Audette of
Kitware is cochairing the symposium “Image Processing and
Visualization in Solid Mechanics Processes” along with João
Manuel R. S. Tavares of the University of Porto, Portugal.
http://www.dem.ist.utl.pt/esmc2009

MICCAI 2009
September 20-24, 2009, at the Imperial College, London,
UK. Kitware is co-organizing a workshop on “Systems
and Architectures for Computer Assisted Interventions”.
In addition, Kitware is providing the MIDAS Journal to all
workshop organizers to assist with publication manage-
ment and we are hosting the 2nd Annual Best Biomedical
Visualization Contest in conjunction with the conference.
http://www.miccai2009.org

15

ICCV 2009
September 27-October 4, 2009, in Kyoto, Japan. Arslan
Basharat of Kitware and Dr. Mubarak Shah from the
University of Central Florida will be presenting a paper on
“Time Series Prediction by Chaotic Modeling of Nonlinear
Dynamical Systems”. http://www.iccv2009.org

IEEE Vis 2009
October 11-16, 2009, in Atlantic City, NJ. Kitware is a Gold
Level Sponsor for this conference. We have also submitted
multiple tutorial proposals and are awaiting acceptance.
Kitware will also be holding a Birds of a Feather Session at
the conference. http://vis.computer.org/VisWeek2009

Supercomputing 2009
November 14-20, 2009, in Portland, OR. Kitware, along
with Sandia National Labs, will be presenting a half-day
tutorial on “Large Scale Visualization with ParaView”.
The tutorial will take place on Sunday, November 15.
http://sc09.supercomputing.org

IGSTK European User’s Meeting
The IGSTK development team hosted a European User’s
meeting at the Computer Assisted Radiology and Surgery
conference in Berlin, Germany on June 23, 2009. The invi-
tation-only meeting drew 35 participants from 11 countries.
The meeting started with a short introduction and update
on new developments in the 4.2 release.

This was followed by presentations on IGSTK-based applica-
tions from the user community. The following members of
the user community presented:

•	 Silesian University of Technology, Biomedical
Division, Poland

•	 Medizinische Universität Innsbruck, Austria
•	 ICCAS, University of Leipzig, Germany
•	 Princess Margaret Hospital, Toronto, Canada
•	 University Hospital of Geneva, Switzerland (OsiriX)
•	 SINTEF, Department of Medical Technology, Trondheim,

Norway

At the end of the meeting, an application demonstration
was presented by tracking device vendors NDI and Claron
Technology. The demonstration exhibited an IGSTK-based
needle biopsy application using their tracking device.

For abstracts and presentation slides for this event, please visit
the IGSTK Wiki and search for “European Users Meeting”.

For more details on this and other User’s Group Meetings
please visit: http://igstk.org/IGSTK/help/meetings.html.

Kitware Wins DOE Phase I SBIR
Kitware has been awarded a Phase I SBIR from the Department
of Energy entitled “Multi-Resolution Streaming for Remote
Scalable Visualization.” This project expands upon Kitware’s
expertise in Distance Visualization, which is becoming a
critical area of research now that scientists and the massive
amounts of data processed on supercomputers are often in
two or more geographically separate locations. The goal of
this Phase I award is to demonstrate a system that allows
computational results to remain on the supercomputing
system, while using a client-server architecture to process,
analyze, and visualize the data. In order to achieve this goal,
we will employ multi-resolution visualization methods that
only load and display blocks of data, at the appropriate reso-
lution, that are necessary for a particular visualization task.

Publication Database 1.2
In conjunction with the overhauling of the MIDAS 2.2 frame-
work, the Publication Database version 1.2 was also released
this month. The Publication Database collects, manages
and disseminates publications. Thanks to automatic import
tools established in this release, importing papers from and
searching for publications submitted by your institution has
never been easier.

The Publication Database is based on open standards and
ensures that submitted publications are referenced by major
search engines, thus greatly improving the dissemination of
current research and the publishing activities completed by
your institution. The system also allows dynamically export-
ing, via web services, the content of the database to external
websites, for instance listing the most recent publications for
a user.

The Publication Database is currently used by the Surgical
Planning Laboratory at Harvard: http://www.spl.harvard.
edu/publications and a new instance referencing publi-
cations completed by Kitware employees is available at
http://www.kitware.com/publications.

To install an instance of the Publication Database at your
site, please visit http://www.kitware.com/midas.

16

Kitware’s Software Developer’s Quarterly is published by
Kitware, Inc., Clifton Park, New York.

Contributors: Lisa Avila, Utkarsh Ayachit, Stephen Aylward,
Jeff Baumes, David Cole, Katie Cronen, David DeMarle,
Andinet Enquobahrie, Juliana Freire, Zack Galbreath, Chris
Gardiner, Berk Geveci, Bill Hoffman, Steve Huston, Luis
Ibàñez, Julien Jomier, Niki Russell, John Schreiner, Will
Schroeder, Claudio Silva and Wes Turner.

Design: Melissa Kingman, www.elevationda.com

Editor: Niki Russell

Copyright 2009 by Kitware, Inc. or original authors.

No part of this newsletter may be reproduced, in any form,
without express written permission from the copyright
holder. Kitware, ParaView, and VolView are all registered
trademarks of Kitware, Inc.

To contribute to Kitware’s open source dialogue in future
editions, or for more information on contributing to specific
projects, please contact the editor at kitware@kitware.com.

In addition to providing readers with updates on Kitware
product development and news pertinent to the open
source community, the Kitware Source delivers basic infor-
mation on recent releases, upcoming changes and detailed
technical articles related to Kitware’s open-source projects.
These include:
•	 The Visualization Toolkit (www.vtk.org)
•	 The Insight Segmentation and Registration Toolkit

(www.itk.org)
•	 ParaView (www.paraview.org)
•	 The Image Guided Surgery Toolkit (www.igstk.org)
•	 CMake (www.cmake.org)
•	 CDash (www.cdash.org)
•	 KWWidgets (www.kwwidgets.org)
•	 BatchMake (www.batchmake.org)
•	 VTKEdge (www.vtkedge.org)

Kitware would like to encourage our active developer
community to contribute to the Source. Contributions may
include a technical article describing an enhancement you’ve
made to a Kitware open-source project or successes/lessons
learned via developing a product built upon one or more
of Kitware’s open-source projects. Authors of any accepted
article will receive a free, five volume set of Kitware books.

New Hires
Ann D’Alessio
Ann joined Kitware in April 2009 as a Contract Specialist
where she works with Kitware’s Contracts Administrator
processing proposals and contracts. Prior to joining Kitware
Ann worked as a Paralegal for litigation and estate planning
law firms. She received an AAS in Paralegal Studies from
Schenectady County Community College.

Christopher Greco
Christopher joined Kitware in April 2009 where he is cur-
rently involved as an R&D Engineer for the Computer Vision
team. Prior to joining Kitware, Christopher worked in the
Robotic Vision Lab at BYU while completing his BS and MS
in Electrical Engineering, and then as a contractor with the
Visualization and Computer Vision lab at the GE Global
Research Center.

New Interns
Sophie Chen
Sophie joined Kitware in May 2009 as an intern for the
Insight Toolkit (ITK). Sophie attends Rensselaer Polytechnic
Institute where she’s working toward completing her BS in
Information Technology with a concentration in Pre-Law
and a minor in Management and Technology.

Chris Gardiner
Chris joined Kitware in June 2009 as a graphic design intern.
Chris attends the College of Saint Rose where he’s working
toward completing his BFA in Graphic Design.

John Jalbert
John joined Kitware as a Computer Vision intern in May
2009. John attends Rensselaer Polytechnic Institute, where
he’s working toward completing his dual degree in Electrical
and Computer Systems Engineering.

Adrien Bailly
Adrien joined Kitware in July of 2009 as an intern at the
Chapel Hill, NC office where he is working on the MIDAS
framework. Adrien will be interning with Kitware for a year
as part of his academic program the ESCPE-Lyon in France
where he studied Computer Science and Signal Processing.

Mikael Le Gall
Mikael joined Kitware in July of 2009 as an intern at the
Chapel Hill, NC office where he’s working on the MIDAS
framework. Mikael will be interning with Kitware for a year
as part of his academic program the ESCPE-Lyon in France
where he studied Computer Science and Signal Processing.

Nikhil Shetty
Nikhil joined Kitware in May 2009 where he’s working as
an intern on the ParaView toolkit. Nikhil is a PhD candi-
date from the University of Louisiana at Lafayette, where
he completed his MS in Computer Science. He has a BTech
degree in Computer Science and IT from Jawaharlal Nehru
Technological University in India.

Internship opportunities
Kitware Internships provide current college students with
the opportunity to gain hands-on experience working with
leaders in their fields on cutting edge problems. Our busi-
ness model is based on open source software—an exciting,
rewarding work environment.

At Kitware you will assist in the development of foundational
research and leading-edge technology across our five busi-
ness areas: supercomputing visualization, computer vision,
medical imaging, data publishing and quality software
process. We offer our interns a challenging work environ-
ment and the opportunity to acquire advanced software
training. Apply by sending your resume to internships@
kitware.com.

employment opportunities
Kitware is seeking qualified applicants to work with leaders in
the fields of computer vision, medical imaging, visualization,
3D data publishing and technical software development.

We offer comprehensive benefits including: flex hours; six
weeks paid time off; a computer hardware budget; 401(k);
health and life insurance; short- and long-term disability, visa
processing; a generous compensation plan; profit sharing;
and free drinks and snacks. Interested applicants should
forward a cover letter and resume to jobs@kitware.com.

