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Abstract

We describe a system for content-based retrieval from

large surveillance video archives, using behavior, action

and appearance of objects. Objects are detected, tracked,

and classified into broad categories. Their behavior and ap-

pearance are characterized by action detectors and descrip-

tors, which are indexed in an archive. Queries can be posed

as video exemplars, and the results can be refined through

relevance feedback. The contributions of our system include

the fusion of behavior and action detectors with appearance

for matching; the improvement of query results through in-

teractive query refinement (IQR), which learns a discrim-

inative classifier online based on user feedback; and rea-

sonable performance on low resolution, poor quality video.

The system operates on video from ground cameras and

aerial platforms, both RGB and IR. Performance is eval-

uated on publicly-available surveillance datasets, showing

that subtle actions can be detected under difficult condi-

tions, with reasonable improvement from IQR.

1. Introduction

The increasing volume of surveillance video collected

by ground cameras and aerial platforms vastly exceeds the

processing capacity of human analysts. Research into auto-

mated exploitation of such data has mostly focused on ob-

ject detection and tracking, person re-identification, image

retrieval and matching, anomaly detection and face recog-
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Figure 1. Sample frames from the VIRAT Video Dataset. Top row:

aerial video; bottom: ground cameras.

nition. Far-field surveillance, where image resolution is a

primary challenge, receives less attention, but typically ac-

counts for most of the activities and objects of interest in

aerial surveillance and ground camera scenes with signifi-

cant depth of field.

To address this challenge, as part of the DARPA VIRAT

program[6], we have developed an end-to-end video analyt-

ics system that ingests video from a stationary or moving

platform; stabilizes and enhances the video; detects, tracks,

and classifies all movers; characterizes their motion and

behaviors globally and locally with action-independent de-

scriptors, which are indexed into a compact archive; enables

user querying of the archive via image/video exemplars or

pre-defined action types; and enables interactive query re-

finement to improve results and learn new event or action

types. A GUI enables analysis and result browsing.

Much of the extensive research in content-based re-

trieval for general images and video [11] and CBR sys-

tems (e.g. en.wikipedia.org/wiki/List of CBIR engines)

does not translate effectively to surveillance video, whose



Figure 2. A query video of a “cartwheel” returns two other in-

stances in the top four results (excluding query video), from a two

hour archive containing more than 1600 computed tracks. Query

results are displayed on a map and a ranked list (lower left, right).

visual content has lower diversity due to continuous scene

coverage at lower resolutions [16]. Compared to recent

commercial and prototype video analytics systems [8], our

approach offers significant contributions: Activity-based

retrieval, enabling queries based on not just appearance but

also kinematics, actions, and events; relevance feedback

via Interactive Query Refinement (IQR), dynamically im-

proving the query model’s precision via user feedback; and

performance under far-field and poor video quality con-

ditions, including far-field resolution where persons are as

small as 10 pixels in height.

Our algorithms are designed to handle poor image qual-

ity conditions such as low contrast, high levels of sensor

noise, compression artifacts, and graphics burned into the

video frames (issues particularly common in aerial video.)

In ground-camera video, operating at lower resolutions sig-

nificantly increases the effective field-of-view. The system

processes both RGB and infra-red video; queries in one

modality may yield results in either, see [1] §5.

Figure 1 shows samples of full-motion video (FMV)

from the VIRAT Video Dataset [16]. Consider the frame

in the upper left; at this resolution adults are about 30 pix-

els high, and the imagery is blurred from sensor motion.

Multiple events are occurring simultaneously, as is typical

in busy scenes. With our system, an analyst may specify an

interval of an object track showing a particular action, and

find instances of the same action across the video archive,

without any prior training or knowledge of the action type.

In the top right of Figure 2, the user selected the per-

son performing a cartwheel as the query exemplar. The

archive contains two hours of aerial video with over 1600

tracks, mostly on moving people. The results adjacent to

the query show that two other instances of gymnastics were

found in the top four results, out of a total of less than 10

similar actions in the archive, performed by three individu-

als. For common actions such as “person running”, “vehicle

stopping”, etc., detectors trained offline are included, which

may be run as queries without video exemplars.

The system has been evaluated on aerial and ground

camera video datasets, particularly the VIRAT Video

Dataset [16]. In our experiments, we measure baseline re-

trieval accuracy on challenging actions such as carrying,

and improvement through IQR iterations across different

descriptor types. We also compare the accuracy of popular

action descriptors included in the system such as space-time

histogram of gradients [13]. Although accuracy is lower

than non-surveillance action recognition datasets such as

UCF 50 [17], it is comparable to reported results on the

most similar dataset and evaluation, the Surveillance Event

Detection task of the TRECVID evaluation [15].

2. Architecture

The system is organized into functional modules (Figure

3, and scales to large data volumes by parallelization using

standard IPC mechanisms. A 720x480@30fps video stream

can be processed in real-time on a 16-core workstation.

Video enters the stabilization process, which computes

frame-to-frame homographies. If available, sensor position

metadata is used for geo-location and scene scale estima-

tion. Tracking uses the ingested video, homographies, and

metadata to detect moving objects, and to initialize and up-

date tracks. Tracks are then classified as either “Person”,

“Vehicle”, or “Other” (hereafter, PVO) by a classification

module. Using tracks and the PVO scores, descriptors are

computed and indexed in an archive. Descriptors include

characterizations of kinematic (track-level) motion, behav-

ior as articulated motion, events, and object appearance.

Figure 3. The system architecture.

To search the archive, an analyst (via the GUI) forms

a query from either pre-trained action types (e.g. “person

running”) or using a single video exemplar. If given, the

exmplar is processed; the system then searches the archive

for similar content. A single exemplar often leads to noisy

initial results, but using IQR the user can provide relevance

feedback, guiding the system to find more relevant results.

The major system components are described in the fol-

lowing sections.



3. Multi-Object Tracking

Detection and tracking of moving objects reduces the

volume of video drastically, segmenting the video into

spatio-temporal trajectories used in all subsequent process-

ing. Challenges in low-quality video include: a wide range

of scales; very small objects, often < 20 pixels high; EO

and IR video; abrupt camera motion with significant zoom

changes; on-screen metadata burn-in; missing or unreliable

sensor metadata; and corrupt images due to data transmis-

sion errors. We address these and related challenges in the

proposed system. The techniques in [7] are used to automat-

ically detect and mask pixels with on-screen burn-in. The

video is stabilized using frame-to-frame homographies esti-

mated via KLT feature points [26] and RANSAM [12, 10].

When available, sensor metadata is used to estimate the

ground-sample-distance (GSD) and image-to-ground trans-

formation to rectify distortions. Empirical evaluation shows

that fusing stabilization with metadata significantly reduces

geo-localization error when the metadata is inaccurate.

Tracks are initiated on moving object detections from ei-

ther Gaussian Mixture Models (GMM) [25] or three-frame

differencing [29]; typically the latter is used for aerial video

due to memory and processing requirements of GMMs.

Following [4], multi-frame analysis of motion detections

in a stabilized reference plane is used for track generation.

Tracks are updated via adaptive integration of appearance

models and motion detections; when the motion detections

are unreliable or unavailable, the appearance or foreground

tracker are used as in [2]. The system detects and tracks

person and vehicles simultaneously; a track reconciliation

process merges and suppresses duplicates. PVO classifica-

tion (Section 4) further reduces false alarms.

4. Descriptors

Object appearance and activity are captured by descrip-

tors, the critical part of the proposed system. During devel-

opment, we investigated a wide variety of descriptor algo-

rithms [18, 13, 30, 5, 3, 14, 19, 27, 31, 22], focusing first on

algorithms suitable for low-resolution, low-quality video,

and further down-selecting based on descriptor quality, run-

time, and software reliability; see [1], §4 for more details.

The system uses two types of descriptors, classifier and

raw. Classifiers are computed by an action or event detec-

tor, and encode the probability that a track interval is an

instance of the event. Raw descriptors capture low-level in-

formation such as gradients or kinematics variance within

a spatiotemporal volume on a track, and are typically used

for exemplar matching and IQR (Section 6).

Descriptors can be grouped into three broad categories

based on their focus of attention: trajectory, articulation,

or interaction. The first group contains kinematic fea-

tures extracted from the stabilized trajectories of tracked

objects [31], and classifiers built upon them to detect kine-

matic events such as vehicle start, stop, turn, u-turn, etc.

Articulated descriptors encode part-based motion and shape

deformations over time, in order to represent actions such

as opening a door, closing trunk, digging, etc. A number of

these descriptors rely on extensions [3, 18, 13] of histogram

of gradients (HoG) [5] and histogram of optical flow (HoF)

features. The UTECE HOG descriptor [3] models a series

of human poses as a time series of HOG and HoF along

with Supervised Principal Component Analysis for action

classification. [18] creates a 3D representation of the HoG

feature. Other descriptors involve action template match-

ing [19], flow categorization [27], visual bag-of-words, and

Partial Least Squares (PLS) [22]. Interaction descriptors

represent multiple object events. Dynamic Bayesian Net-

works similar to [30] are used to model relational activi-

ties such as person entering vehicle/facility, while [14] uses

temporal logic for modeling human-vehicle interaction with

dynamic programming for optimal search.

Appearance descriptors are also used to represent ob-

ject shape, color and distinctive parts. These are treated

similarly to action descriptors for indexing and match-

ing. Stationary scene elements can also be represented and

matched, although this capability has not been evaluated.

The PVO (person / vehicle / other) estimates are com-

puted using appearance and behavior models trained offline.

Features used include HOG [5], trajectory, object size, and

scale priors, all fused via a tree of single-class SVM classi-

fiers, each trained on a single feature type. This approach

performs well with low resolution and large variation in the

target appearance. PVO is vital in suppressing false alarms

and associating the relevant event type.

5. Indexing and Retrieval

In the system, indexing and retrieval speeds searching

through large volumes of video data. Tree based structures

can be efficient for low-dimensional data, but scale poorly

in in terms of storage and access time for high-dimensional

feature spaces like those used in visual descriptors. Uniform

space partitioning [28], while highly scalable with large di-

mensions and number of data points, does not capture the

high-dimensional space well, resulting in undetermined up-

per boundary on the selected set candidates. Locality Sensi-

tive Hashing (LSH) [9] assigns similar data (for a given dis-

tance metric) to the same bucket while relying on the prob-

abilistic boundaries on approximate search. Our indexing

engine is specifically tuned for high-dimensional descrip-

tors, using a data driven indexing approach. Prototypes of

data clusters in the high dimensional space become search

indices; these are matched at query time to the query vec-

tor, and nearest neighbors to the best matching indices are

retrieved. These nearest neighbors are then sorted by sim-

ilarity to the query vector to generate the ranked retrieval



list. [1] §6 has more discussion.

6. IQR

The system provides a “query-by-example” capability

via the GUI (see Section 7), allowing the user to indicate

what they are looking for without having to learn a complex

query specification language or to understand the abstract

representations embodied by the system descriptors (Sec-

tion 4). However, naive use of a video exemplar as the basis

for a query is likely to return only a few relevent results

among many irrelevant ones. Furthermore, the result set

from querying a large archive likely cannot be practically

reviewed in its entirety. IQR focuses the search on charac-

teristics of interest that may not have been emphasized in

the initial query, re-ranking the results to prioritize relevant

results so they may be found more quickly.

Our IQR system uses Relevance Feedback (RF), in

which a user attempts to improve the quality of the result

set based on both positive feedback, for results that match

or nearly match the desired result characteristics, and neg-

ative feedback, for results that do not match [21]. RF has

been shown to be quite useful in text applications [20], and

is also seeing application in content-based information re-

trieval systems [23, 24].

Starting with the initial result set based on the exemplar,

the user selects and provides feedback on a subset, submits

it to the system for re-ranking, and then iterates as many

times as desired constructing a customized descriptor-based

model of the activity of interest. The IQR algorithm typi-

cally converges within several iterations, such that further

iterations are of minimal value. The actual re-ranking is

very fast, typically on the order of a few seconds for 1500

results; the full user-in-the-loop process may require sev-

eral minutes. Fully developed IQR models may be saved as

a new system query, allowing analysts to leverage previous

refinement efforts. Saved queries may be copied, branched,

and further refined as necessary.

7. GUI and Workflow

The GUI is the interface for executing queries and

browsing results. The basic workflow is to (a) initiate a

query, (b) review the results, and then (c) optionally refine

the query to focus the results for further review, repeating

(b) and (c) as necessary. Query options include simple clas-

sifiers (Section 4 selected from a predetermined list, such as

“Walking” or “Running”, and video exemplars, which the

user constructs from descriptors extracted from an exam-

plar video clip (Figure 4). Exemplars may be any returned

result clip, or a novel clip supplied by the user. A typi-

cal workflow starts with a classifier query such as “Person

Moving”, then switches to an exemplar query based on an

interesting classifier result. Queries can be constrained both

in time and space. The GUI also enables IQR (Section 6)

by allowing the user to indicate whether results are relevant

or not.

Figure 4. Analyst initiates an “exemplar” query by selecting the

activity of interest in the video (green box, left); analyst may select

all or a subset of the corresponding descriptors to form the query.

8. Experiments

The system was evaluated using the VIRAT Video

Dataset [16], containing both aerial and ground camera data

(Figure 1). The aerial archive contains roughly two hours of

data collected over three days, on which the system com-

puted 1651 tracks. The ground camera archive contains

three hours of surveillance video collected at three differ-

ent sites, and contains 5600 tracks. We present results on

event retrieval, combinations of raw descriptors, and IQR

trials. An extensive end-user evaluation was also conducted

by an independent third party (MITRE Corp.) as part of the

DARPA VIRAT program; more details are at [1] §7.

Figure 5. Top ten results from the initial query (top) and after

two rounds of IQR (bottom) for the carrying example. Observed

matches are in green, misses in red.

The first result is a “Person Carrying” query, based on an

exemplar track chosen from the archive. [1] §3 discusses ex-

emplar choice sensitivity. This clip, selected by the user in



the GUI is associated with 19 descriptors: 2 appearance, 14

articulation (5 different types), and 3 PVO. Color and trajec-

tory descriptors are not selected, assuming they are less use-

ful for detecting carrying; those remaining form the search

query basis. Note that no semantic hint is supplied that we

are looking for “carrying”; we are merely looking for clips

in the archive whose descriptors match our search query.

The first 10 results of this initial query are shown in the top

row of Figure 5; first is the query, which matched itself; 4

of the remaining 10 are hits. The aerial dataset ground truth

has 1505 events; 119 (7.9%) were labelled “Person Carry-

ing”. The ROC and P/R curves labelled initial in Figure 6

quantify this initial retrieval performance, which is encour-

aging given the challenging problem of finding such events

data at this low resolution. [1] §1 includes videos.

Figure 6. ROC and P/R curve for the carrying example; IQR has

doubled the precision for the first set of matches (left side of

curves.) See also [1] §2.

Next, the user performs IQR on these initial results, giv-

ing feedback for the top 20 returns as to whether or not the

clip seemed to match “person carrying”. The system also

nominated seven clips whose rank ranged from 19 to 765 as

“feedback requests”. The system incorporates the feedback

into the model and re-ranks the results. After two rounds of

this process, 8 of the top 10 are hits; IQR has doubled the

top-10 precision of the initial query as shown Figure 6. This

emphasizes that IQR favors improving response for higher-

ranked results, discussed further in [1] §2.

We experimented with a variety of descriptor combina-

tions; the contribution of individual descriptor types can be

analyzed by re-running the experiment with specialized sets

of descriptors. Figure 7 shows the ROC curves from replac-

ing the full suite of 14 articulation descriptors with (in ex-

perimental order) 2 instances of the UCF BoW descriptor,

3 of UTECE HOG, 5 of icosahedron HOG, 3 of ICSI HOG,

Figure 7. ROC curves for the initial query (left) and after two

rounds of IQR (right), for individual and combinations of artic-

ulated descriptors.

name backpack shovel vehicle

sample

frame

dataset groundcam aerial aerial

est. prior 6% (1.2/20) 7%(1.4/20) 1% (0.2/20)

initial 3/20 3/20 3/20

feedback +5, -20 +4, -4 +2, -25

round 1 9/20 7/20 5/20

feedback +5, -15 +2, -0 +2, -14

round 2 17/20 7/20 6/20

gain vs first 5.6x 2.3x 2.0x

gain vs prior 14x 5x 30x

Table 1. Ad hoc IQR trials: observed results and feedback sched-

ules. Initial query precision is typically at least doubled by IQR.

Figure 8. Initial (top) and final (bottom) top 10 results for the IQR

“backpack” experiment. Initial results had 3 hits (in green, includ-

ing query) in the top 20, or 1.8x random; final results included 17

hits in the top 20, or 14x random. Negative feedback is in red.

and finally, a suite made up of UTECE, UCF, and ICSI de-

scriptors. The figure shows that descriptors vary both in

absolute performance and in how they respond to IQR.

We now show results for three ad hoc queries without

a priori ground truth, as might dynamically arise during

analysis session. The first (“Wearing a backpack” ) was

computed against the ground camera archive; the other two

(“Carrying a shovel”, “Interacting with a vehicle.”) from the

aerial data archive. Using an IQR protocol similar to that for

the carrying example above, two rounds of feedback were

given after the initial query; results are summarized in Ta-

ble 1. The precision of the initial query is typically 2x bet-

ter than chance, it is further doubled by IQR. The estimated

priors were computed from the top 100 “person moving”

results and projected to top 20 for consistency. IQR results



are shown in Figure 8 (backpack query, appearance and ar-

ticulation); results for the shovel and vehicle experiments

are available in [1] §8. For the vehicle query, Table 1 shows

that the initial query performed 15x better than random, and

large amounts of feedback (4 positive, 39 negative) allowed

two rounds of IQR to again double the initial precision.

9. Conclusion

Our state-of-the-art system for surveillance video analyt-

ics is based upon the fusion of behavior and action descrip-

tors with appearance. Our focus is on low-resolution, low-

quality video conditions where typical methods for tracking

and action recognition can fail. We have developed methods

that account for these conditions, and can operate on video

from an airborne moving sensor as well as ground cameras.

Performance is demonstrated on the VIRAT Video Dataset,

showing improvement from IQR.
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