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ABSTRACT

Characterizing glandular architecture in histology images of
adenocarcinomas is a fundamental problem in digital pathol-
ogy, with important implications for computer-assisted di-
agnosis and grading. In this paper, we present a new set of
features for encoding the glandular epithelium architecture
based on two recently developed vectorized persistent homol-
ogy representations called persistence images and persistence
landscapes and demonstrate their application to colorectal
cancer diagnosis. On the MICCAI 2015 Gland Segmentation
Challenge Contest dataset with 165 images (85 training, 80
test images), we obtained a benign vs malignant classifica-
tion accuracy of 85% and 83% using persistence image and
persistence landscape based features, respectively.

Index Terms— Histopathology, Cancer Grading, Persis-
tent homology, Persistence images, Persistence landscapes,
Machine learning, Computer aided diagnosis

1. INTRODUCTION
Histopathology is the study of the presence, extent, and pro-
gression of a disease through microscopic examination of thin
sections of biopsied tissue that are chemically processed and
fixed onto glass slides and dyed with one or more stains to
highlight different cellular/tissue components (e.g. cell nu-
clei or membranes) and antigens/proteins (e.g. Ki-67 indicat-
ing cell proliferation) of interest. It is regarded as the gold
standard in clinical diagnosis and grading of several diseases
including most types of cancer.

In clinical practice, histologic evaluation still largely
depends on manual assessment of glass slides by a pathol-
ogist with a microscope, although improvements in whole-
slide imaging devices and subsequent regulatory approval
of whole-slide-imaging and computational algorithms are
rapidly paving the way for increased clinical use of digi-
tal imaging and computational interpretation. Algorithmic
evaluation of tissue specimens may eventually improve the
efficiency, objectivity, reproducibility, and accuracy of the
diagnostic process.

Pathologists integrate information across scales from sub-
cellular to macro when evaluating histology. For adenocar-
cinomas, lesions that originate in the epithelium of glandular

structures including lung, prostate, pancreatic, and colorectal
cancers, the architecture of glandular structures conveys sig-
nificant information about the presence and degree of malig-
nancy. Normal appearing structures with organized epithe-
lium become disorganized with the unchecked growth and
aberrant signaling in cancer (Figure 1). There have been sev-
eral efforts to develop quantitative features for characterizing
glandular structures for computer-aided grading [1, 2, 3, 4].

In this paper, we present a new set of features for en-
coding the glandular epithelium architecture based on two
recently developed vectorized persistent homology represen-
tations called persistence images [5] and persistence land-
scapes [6] and demonstrate their application to colorectal can-
cer diagnosis. To the best of our knowledge, this is the first
application of these representations for cancer diagnosis.

2. BACKGROUND
In this section, we present a brief background on persistence
homology. Given a dataset in the form of a point cloud (e.g.
set of nuclei centroids in histology images), persistent homol-
ogy can be seen as a theoretical tool to detect and characterize
prominent topological features (e.g. connected components,
loops, voids) at multiple scales [7]. These topological de-
scriptors can then be used as features for building machine
learning models to solve predictive problems.

Simplicial homology: The foundational concepts of persis-
tent homology are simplices, simplicial complexes, filtration,
and homology groups. A p-simplex σp is defined as the con-
vex hull of p+1 affinely independent points/vertices. For ex-
ample, a single vertex is a 0-simplex, an edge is a 1-simplex,
a triangle is a 2-simplex, a tetrahedron is a 3-simplex, and
so on. A face of a p-simplex is defined as a subset of its
p + 1 points/vertices. For example, the tetrahedron which is
a 3-simplex has 4 triangular faces, 6 edge faces, and 4 ver-
tex faces each of which are simplices themselves. A sim-
plicial complex K is a finite collection of simplices subject
to two conditions: (i) if a simplex σ is in K then any face
of σ is also in K, and (ii) if two simplices σ and σ′ are
in K then σ ∩ σ′ must either be empty or a face of both σ
and σ′ i.e. they must either be glued together along whole
faces or be separate. Given a simplicial complex K, a sim-
plicial complex L formed by a subset of its simplices is re-



Fig. 1: Sample benign (first-two) and malignant (last-two) images overlaid (yellow) with manually annotated gland boundaries.

ferred to as the sub-complex of K denoted symbolically as
L ⊂ K. A nested sequence of simplicial sub-complexes
K0 = φ ⊂ K1 ⊂ K2 ⊂ ... ⊂ Kn = K that ascends from an
empty set all the way up to K is called a filtration of K de-
noted as F(K). A d-dimensional homology group Hd(K) of
a simplicial complex K is the set of all d-dimensional void in
it. For example, the 0-dimensional homology group H0(K)
is the set of all connected components, the 1-dimensional
homology group H1(K) is the set of all 2D loops, the 2-
dimensional homology group H2(K) is the set of all 3D cav-
ities and so on. The rank or the number of voids in a d-
dimensional homology group Hd(K) is referred to as the d-
dimensional Betti number βd(K).
Vectoris-Rips filtration: Given a dataset in the form of a
point cloud of n points, how can we derive a simplicial com-
plex that encodes the underlying topological structure? One
approach for generating it is to examine all subsets of p + 1
points, and add the p-simplex made up of those points to the
simplical complex if the distance between all pairs of points
in the simplex is less than a present distance ε. Such a com-
plex is called a Vectoris-Rips complex of diameter εwhich we
will henceforth denote as V R(ε). Note that, if a simplex is in
V R(ε), then all of its faces are also in V R(ε). The schematic
below shows the Vectoris-rips complex for different diameter
values for a dataset of four points corresponding to the corners
of a rectangle with a width of 2 and a height of 1.

A natural question that arises now is how to choose the best
diameter ε for a given dataset. Persistent homology exam-
ines all diameters within a range of interest to see how the
system of voids change and provides a topological character-
ization at multiple scales. An increasing sequence of diame-
ters/scales ε1 < ε2 < ... < εn results in a nested sequence
of Vectoris-Rips simplicial complexes V R(ε1) ⊂ V R(ε2) ⊂
... ⊂ V R(εn) referred to as Vectoris-Rips filtration.
Persistence diagram (PD) representation: Given a filtration
F through a series of n scales, the idea of persistent homology
is to track the scales at which each void appears and disap-
pears. This information can be summarized in the form of a
multi-set BDd(F) = {(bi, di) | bi, di ∈ {1, 2, ..., n} ∧ bi <
di} of 2D points representing the birth-death scales of each d-
dimensional void i in the filtration. Considering these pairs as

points in R2 we obtain the persistence diagram representation
and considering them as birth-death intervals [bi, di] we ob-
tain the barcode representation. This summarization of topo-
logical information as a multi-set of points is not amicable for
statistics and machine learning, wherein a finite-dimensional
vector representation is more convenient. Persistence land-
scapes [5] and persistence images [6], described below, are
two recently developed vectorized persistent homology rep-
resentations to address this problem.
Persistence landscape (PL) representation: Given a birth-
death pair (b, d), let f(b,d) : R→ [0,∞] be a piece-wise linear
triangle shaped function defined as follows:

f(b,d) (x) =


0 if x /∈ (b, d)
x− b if x ∈

(
b, b+d

2

]
d− x if x ∈

(
b+d
2 , d

) (1)

Given a multi-set ofm birth-death points {(bi, di)}mi=1 from a
PD, persistence landscape is defined as a 2D function λ : N×
R→ [0,∞] where λ(k, x) is equal to the k-th largest value of
{f(bi,di) (x)}mi=1 if k ≤ m and zero otherwise. This function
can be discretized over a grid to obtain a finite-dimensional
vector representation for machine learning.
Persistence image (PI) representation: Given a multi-set
of m birth-death points BD = {(bi, di)}mi=1 from a PD, a
linear transform T (b, d) = (b, d − b) is applied to obtain
a multi-set of birth-persistence points BP = {(bi, pi)}mi=1.
Based on this, a 2D real-valued function ρbp : R × R → R
called a persistence surface is defined as weighted sum of
isotropic bi-variate gaussian/normal probability density func-
tions N

(
x, y;σ2

)
with variance σ2 centered at each of the

birth-persistence pairs as follows:

ρbp(x, y) =

m∑
i=1

w(bi, pi) ∗ N
(
x− bi, y − pi;σ2

)
(2)

where w(b, p) is a weighting function critical to the stabil-
ity of the persistence surface. A natural choice is to pick a
weighting function that assigns higher weights to points with
higher persistence values. However, in certain applications,
points of medium persistence may be more important. Hence,
the weighting function is defined more generally as a piece-
wise linear function as follows:

w(b, p; c) =

 0 if p ≤ 0
p/c if p ≤ c
1 otherwise

(3)



Fig. 2: Illustration of persistent homology representations for sample benign (top-row) and malignant (bottom-row) images:
(column-1) Input image overlaid with nuclei centroids, (column-2) persistence diagram of the Vectoris-rips filtration of the
nuclei centroid point cloud, (column-3) Persistence image computed with c = 175 and discretized onto a 30x30 grid resulting
in 900 features, and (column-4) Peristence landscape representation discretized onto a 40x30 grid resulting in 1200 features.

where c is the maximum persistence value of all important
topological features. Lastly, the persistence image is gener-
ated by defining a discrete grid in the domain of the 2D per-
sistence surface function ρbp(x, y) and computing its integral
in each grid box. In case the birth values of all the points is
zero, as is the case with 0-dimensional homology group H0

of connected components, then both persistence surface and
persistence image can be represented compactly in 1D.

3. METHOD
In this section, we present our approach for using persistence
image and persistence landscape representations to character-
ize the glandular epithelium architecture and train a machine
learning model for cancer diagnosis.
Detecting nuclei centroids: Given a histology image, we
first pre-process it using the color normalization method of
Reinhard et al. [8]. Next, we use the unsupervised color
deconvolution method of Macenko et al. [9] to extract the
nuclear stain and minimum cross entropy thresholding [10]
to segment the nuclear foreground. Lastly, we use a fast
Difference-of-Gaussian implementation of the scale-adaptive
Laplacian-of-Gaussian filter of Al-Kofahi et al. [11] to detect
nuclei centroids. This pipeline was implemented using an
open-source toolkit called HistomicsTK 1.
Extracting topological features using persistent homol-
ogy: Considering the set of nuclear centroids as a point cloud,
we compute the persistence diagram of its Vectoris-Rips fil-
tration for the homological dimension-1 corresponding to 2D
loops using a fast multiscale approach 2. We then compute the
persistence landscape and persistence image representations,

1https://github.com/DigitalSlideArchive/HistomicsTK
2https://bitbucket.org/suppechasper/homology

described in Section 2 and use them as features characterizing
the 2D voids/loops formed by glandular epithelial cell nuclei.
Training machine learning model for classification: Given
a training set of images with benign/malignant labels, we
train a random forest classifier based on the topological fea-
tures. We use principal component analysis (PCA) to reduce
the dimensionality of each of the feature groups such that
99% of the variance is preserved. We optimize the hyper-
parameters of the classification model via cross-validation
using a sequential model-based optimization technique called
tree-structured parzen estimator. We used the open-source
python toolkits scikit-learn and hyperopt for machine learn-
ing and hyper-parameter optimization, respectively.

4. RESULTS
We used the MICCAI 2015 Gland Segmentation Challenge
Contest dataset [12] to evaluate the proposed method. This
dataset contains 165 images derived from 16 hematoxylin-
eosin stained histological sections of normal, and stage T3
and stage T4 colorectal adenocarcinomas digitized using a
Zeiss MIRAX MIDI SlideScanner with a pixel resolution of
0.620µm equivalent to a 20x objective magnification. An
expert pathologist delineated the boundary of all the glands
in each image and graded it as either benign or malignant
based on the overall glandular architecture. The dataset was
divided by the challenge organizers into two independent
parts: a training set of 85 images (37 benign, 48 malignant)
and a test set of 80 images (37 benign, 43 malignant).

We used the approach described in Section 3 to train a
random forest model to distinguish between benign and ma-
lignant images on the training set of 85 images and validated
it on the test set of 80 images. Figure 2 shows the persis-



Fig. 3: Visualization of persistence image (left) and landscape
(right) features of training samples projected to 2D using a
dimensionality reduction technique called multidimensional
scaling (MDS) and color coded by class.

tence image and persistence landscape feature representations
derived from the nuclei centroid point cloud for sample be-
nign and malignant image from the training set. Figure 3
shows a visualization of 2D MDS-projections of the persis-
tence image and persistence landscape feature representations
of all the training samples color coded by grade. Notice that
the benign and malignant classes form separate clusters for
both the feature sets. Table 1 reports the benign vs malig-
nant classification performance on the test set for different
feature sets: (i) persistence image (PI) features only, (ii) per-
sistence landscape (PL) features only, (iii) both persistence
image and landscape (PI + PL) features, and (iv) state-of-the-
art cell graph features proposed by Doyle et al. [2].

Features Acc AUC Precision Recall
PI 0.85 0.85 0.78 0.95
PL 0.83 0.84 0.77 0.92
PI + PL 0.85 0.85 0.78 0.95
Cell graph properties 0.81 0.81 0.75 0.89
Table 1: Benign vs Malignant classification performance

5. CONCLUSION
Vectorized representations of persistence homology can en-
code common topological patterns observed in histology im-
ages. For tissues with glandular structures, topological fea-
tures can encode important information about the epithelium
that undergoes changes with malignant transformation. Using
persistence image and persistence landscape based features to
characterize glandular architecture in colorectal tissues, we
were able to classify between benign and malignant images
with a high degree of accuracy. Our preliminary experiments
indicate that the performance of these features is better than
state-of-the-art features based on cell graphs. Future work
will focus on improving the scalability of these features and
improved dimensionality reduction to deal with their high-
dimensionality. Furthermore, considering the vectorized na-
ture of persistence image and landscape representations, we
will evaluate their effectiveness in a deep learning setting.
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