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ABSTRACT

We aim to diagnose scoliosis using a self contained ultrasound
device that does not require significant training to operate.
The device knows its angle relative to vertical using an em-
bedded inertial measurement unit, and it estimates its angle
relative to a vertebrae using a neural network analysis of its
ultrasound images. The composition of those angles defines
the angle of a vertebrae from vertical. The maximum dif-
ference between vertebrae angles collected from a scan of a
spine yields the Cobb angle measure that is used to quantify
scoliosis severity.

Index Terms— Point-of-Care Ultrasound, Computer
Aided Diagnosis

1. INTRODUCTION

Scoliosis is a complex three-dimensional deformity charac-
terized primarily by lateral curvature and rotational deviation
of the spine. Different types of scoliosis exist, including con-
genital, neuromuscular, and syndromic; and the most com-
mon is idiopathic, which affects otherwise healthy children.
The prevalence of idiopathic scoliosis ranges from 0.5% to
3% [1] with 2-4% of children ages 6 to 14 having pathologic
spinal curves greater than 20%. The most significant risk fac-
tor for curve progression is growth, with children entering
their adolescent growth spurts at particular risk. While chil-
dren and adults can live relatively symptom free with small
scoliotic curves, as these curves increase in size, the risk of
health problems increases concurrently. Surgery is typically
recommended for curves over 50◦. With curves over 75-80◦,
significant disability due to restrictive pulmonary and cardiac
disease can occur [2]. ” Our system is targeting scoliosis
screening the general population and quantitatively monitor-
ing scoliosis progression in known cases. As such, our system
is intended to be used in the field: at schools, in the offices of
general practitioners, and in the offices of pediatric orthopedic
surgeons.

1.1. Screening

Many states in the USA mandate school screening for scolio-
sis. In general, a scoliometer is used to assess the rotational
deformity of a child’s back. Children with scoliometer mea-
surements greater than 5◦ are referred for further evaluation.
X-ray imaging is then typically used. Unfortunately, a scol-
iometer is quite insensitive and non-specific. It has been re-
ported that the positive predictive value of a scoliometer read-
ing of 5◦ to detect real scoliosis is only 4% [3]. This results
in a large number of unnecessary referrals to physicians and
unneeded X-rays of developing children.

1.2. Monitoring

The most common method for monitoring scoliosis is to mea-
sure the spinal curvature using Cobb’s method [4] from pos-
teroanterior (PA) X-Ray images. A minimum of 10◦ of Cobb
angle is needed to differentiate scoliosis. However, radio-
graphs are costly and expose children to potentially harmful
ionizing radiation. It is estimates that children with scoliosis
progression undergo three to seven x-ray images per year, and
such radiation exposure increases the risk of leukemia, lung
cancer, and breast cancer. [5]

There has been extensive research into replacing scol-
iometers and X-Ray imaging with computer-assisted ultra-
sound imaging systems to reduce costs, increase reliability,
and eliminate the need for harmful radiation [6, 7, 8]. How-
ever, most of the ultrasound research systems (1) require the
use of external tracking equipment, (2) rely on the operator
or an advanced algorithm to precisely locate key landmarks
in the ultrasound data, and/or (3) do not provide real-time
guidance to the operator, so the operators must still be trained
to capture usable scans. Great progress has been made to
tackle each of these challenges, and promising results are
being generated ([7, 8] have reported approximately 2◦ dif-
ference compared to radiographs), but we have chosen to
explore a self-contained ultrasound-based solution that elim-
inates the need for external tracking, landmark identification,



or extensive operator training.
Our system is based on ultrasound imaging, but an ultra-

sound image is never presented to the operator. The operator
must be trained regarding how to apply sufficient acoustic gel
and how to move the device so as to follow the spine of a
child, but the embedded image analysis algorithms and the
embedded graphic display provide simple feedback to the op-
erator to ensure that sufficient acoustic gel has been used and
that the probe remains over the spine as it is moved. After a
sweep has been completed, the device displays the estimated
Cobb angle.

The methods section describes the image analysis and
deep learning methods employed by our device. The exper-
iment section presents results using a spine phantom then
indicate that our device can produce results that are more
accurate than a scoliometer and nearly as accurate as X-ray
imaging. This paper concludes with a discussion of future
steps for device research, development, and validation.

2. METHODS

Instead of requiring challenging intermediate steps (such as
externally tracking an ultrasound probe using optical tech-
nologies, reconstructing an ultrasound volume from tracked
2D ultrasound images, determining the coordinates of key
landmarks, or registering a volume to an atlas), our system
directly estimates the angle between the spine and the ultra-
sound probe using a neural network. In combination with an
internal inertial measurement unit (IMU) to report the angle
between the ultrasound probe and vertical, our self-contained,
hand-held unit bypasses the traditional intermediate steps and
focuses on the measures to be made. The Cobb Angle is de-
fined by the extrema of the estimated angles.

2.1. Data

The input training data comes from ultrasound image se-
quences taken of a model spine immersed in water. The ideal
output for that input training data is the orientation of the
ultrasound probe along each sequence, as measured using
an optical tracker. All training data is accomplished with
the model spine straightened, which is sufficient since the
neural network only needs to estimate the angle between the
ultrasound probe and the underlying vertebrae. The probe
is swept up and down the spine while simultaneously being
rotated along the coronal axis, to obtain 170,000 training im-
ages. The ultrasound data is passed to the neural network as
B-mode images that have been scaled down to 100x100, and
augmented by flipping across the vertical midline.

We are currently working to gather real world data, with
IRB approval. For this paper, we attempted to identify over-
fitting by capturing the test data in a separate ultrasound scan-
ning session from the training data, instead of randomly sam-
pling the testing data.

Fig. 1. A sample frame, as passed to the network

2.2. Network Architecture

Our system’s neural network consists of two parts. A convo-
lutional network, modeled after VGG, processes each frame
and is trained to predict a vertebral angle given a single frame.
Then, this network has its last layer removed, and the exposed
layer is used to represent each frame as a flat vector. Finally,
a second fully connected network processes a sliding window
of 41 such vectorized frames simultaneously to estimate the
angle at the center of the window. Both networks are trained
using Adam optimization.

Table 1. Convolutional Network

Type # Filters Stride Activation Rate
Convolution 32 3x3 ReLU
Max Pooling 2x2
Convolution 64 3x3 ReLU
Max Pooling 2x2
Convolution 64 3x3 ReLU
Max Pooling 2x2
Convolution 128 3x3 ReLU
Convolution 256 3x3 ReLU

Fully Connected 512 ReLU
Dropout 0.5

Fully Connected 512 ReLU
Dropout 0.5

Fully Connected 1 tanh

Table 2. Sliding Window Network

Type # Filters Activation
Fully Connected 1024 ReLU
Fully Connected 1024 ReLU
Fully Connected 1 tanh



Once the network has been trained, the vertebrae-to-probe
angle given by the neural network is subtracted from the
probe-to-vertical angle given by the accelerometer embedded
in the ultrasound probe. The resulting vertebrae-to-vertical
angle sequence is then smoothed with a median filter, and the
difference between the maximum and minimum estimated
vertebrae-to-vertical angles is the computed Cobb angle.

3. EXPERIMENT AND RESULTS

As a preliminary validation, we tested our networks ability
to deduce the angle of the ultrasound probe on images of a
straight spine acquired while rotating the ultrasound probe
as it moved down the spine. This testing data was captured
after (i.e., completely separate from) the training data and
consisted of 10,000 images. Sample results on this data are
shown in Fig. 2. For the smoothed data, the mean error is 2.0
degrees, the standard deviation is 3.7 degrees, and the 95th
percentile error is 5.8 degrees.

4. AUTOMATED OPERATOR GUIDANCE

We anticipate that in order to function with no operator train-
ing, our system will need to guide the operator to keep the
spinal column visible in the ultrasound image. To that end,
we also trained a neural network to predict the lateral posi-
tion of the probe with respect to the spine from the image
data. This network used the same architecture as was used
to predict the vertebral angles from a single image frame. In
inference mode this network runs faster than real time and
is sufficiently accurate to provide feedback to the operator
such as ”Move Right,” ”Move Left,” or ”You are Centered.”
We intend to display this guidance as arrows on the screen of
the final product. Figure 3 shows the correlation between the
network’s estimate of probe offset from center relative to the
probes actual offset as measured via an external tracker. For
the majority of the scans, the neural network estimates would
correctly guide the user to keep the ultrasound probe within
the 2.5cm margin needed to keep the spine fully within the
ultrasound image’s field of view. The system also correctly
identifies when the spine has move out of the required range
for the majority of conditions.

5. DISCUSSION AND FUTURE WORK

The system design provides a self-contained ultrasound de-
vice that can estimate Cobb angle to screen and monitor sco-
liosis. One neural network is able to estimate the angle be-
tween an ultrasound probe and a vertebral body within 2◦,
while another neural network provides feedback to the user to
keep the vertebral bodies centered within the ultrasound field
of view.

For future work, we intend to include information from
the guidance network when deciding which frames to take

Fig. 2. Graph of estimated and actual ultrasound probe angle
as the probe is moved and rotated along a spine, for testing
data. Top graph: raw network predictions. Bottom graph:
median filter applied to the predictions. The neural network
estimates this angle using only the image data. At transitions
between vertebrae and at time step 4300, the angle measures
temporarily degrade, but otherwise, the estimated and actual
angles are typically within +/- 2◦. The full system applies
median filtering to these data to eliminate local irregularities.



Fig. 3. A neural network infers whether the operator needs
to move the probe to the left or right to stay centered on the
spine

into account. Currently, testing frames where it is not possible
to deduce the correct angle due to operator error count against
our program. The finished system must be able to discard
frames that it cannot interpret, instead of making a bad guess.
If too many frames are unusable, the system should demand a
re-sweep and refuse to estimate a Cobb Angle.

We also anticipate that a more structured neural network
architecture could improve accuracy. In particular, it is un-
usual that post processing with a median filter improves re-
sults, given that a sufficiently complex network should be able
to learn to smooth its output.

Finally, we anticipate that better training data could be
obtained by annotating the position and angle of each vertebra
in the phantom individually, instead of straightening a spine
and then defining the global rotation of each vertebra to be 0.
Any bend in the training spine becomes error that the network
can never learn. Individual annotation would also allow us to
include bent spines in the training data.

We aim to operate this software on our planned hand held,
self contained ultrasound device. This device, which runs off
of an Intel compute stick and windows 10, will enable an ex-
tremely simple and fast workflow, where the operator sweeps
the device over the patients back, following the onscreen ar-
rows to keep centered on the spine, and then reads the cobb
angle off of the screen. Because the device runs the same win-
dows version as the computers we are currently running our
research on, we do not anticipate any difficulty in porting to
the new platform.

This work was funded by the National Institute Of Gen-
eral Medical Sciences (NIGMS) and the National Institute

Of Biomedical Imaging And Bioengineering (NIBIB) via NIH
grant R01EB021396.
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