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Figure 1: Illustration of the six new Bézier cells that are now available in vtk, featuring capabilities for
higher-order degree and rational weights. One benefit of rational Bézier cells is that they can exactly represent
conic geometries.

1 Introduction

Spline-based simulation, sometimes called isogeometric analysis (IGA), is a method for running engineering
simulations directly on the same spline basis functions used to define computer-aided design (CAD) models.
Spline-based simulation is growing in popularity both in academia and industry. Since the method was
first published in 2005, there have been over 2000 additional papers published, making this one of the
fastest growing fields of research in finite element analysis. Commercial companies across industries such
as automotive, defence, aerospace, nuclear energy, mining, and 3D printing are exploring these methods. A
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number of simulation companies are also investigating how to integrate spline-based simulation into their
solvers, notably Ansys (with their LS-DYNA code) and Coreform LLC, a startup focused on developing a
native spline-based simulation solver. Potential benefits of spline-based simulation include higher accuracy
with fewer degrees of freedom, and increased simulation robustness, and reduced computation time. All
commercial spline definitions, such as Non-Uniform Rational B-Splines (NURBS), T-splines, U-splines, etc. are
comprised of Bèzier elements. Coreform and LS-DYNA have jointly defined an open source Bezier Extraction
file format that any solver using splines can export for interoperability and to exchange data. Preprocessors
such as Coreform Flex can export structured and unstructured spline models via Bèzier extraction for use in
spline-compatible solvers.

In the most recent released of VTK, Coreform worked together with Kitware to introduce six new Bézier
cells into VTK. This is significant in that now, for the first time, smooth spline simulation results can
be accurately visualized in Paraview instead of sampled as a relatively coarse mesh. This is a significant
improvement in the accurate visualization of the simulation results. Higher-order Lagrange elements had
been previously added to Paraview, and it can be helpful to understand the technical considerations of the
Bèzier cells by comparing them with these Lagrange counterparts.

Non-rational Bézier functions can be expressed in terms of non-rational Lagrange functions and visa
versa. In other words, an object modeled with a non-rational Lagrange basis can be also modeled with a
non-rational Bézier basis. An example is provided in Fig. 2 where Bézier and Lagrange quadratic curves are
overlapping. Note that the parameterization (the position of the control points) is different for these two
curves. For Lagrange, all the points lie on the curve whereas for the Bézier curves, only the points at the
extremities are interpolatory. This is the first main difference between these both parameterizations, and we
will see in Section 4 what the implications of non-interpolatory points are in terms of the implementation in
VTK.

Control points that parametrize a Bézier or a Lagrange object can be associated to rational weights. These
new rational functions are nonlinear and as a consequence, it is not possible to express rational Lagrange
functions in terms of rational Bézier ones. Whereas rational Bézier functions are widely used to exactly
represent conical shapes, rational Lagrange functions are not. NURBS functions, which can be exactly
decomposed into Bézier objects, are the dominant representation used in CAD software. An example of an
arc modeled with a quadratic Bézier curve is shown in Fig. 2 (this is one third of a circle, which is actually
the maximum portion of a circle that can be represented with a single Bézier element).
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Figure 2: Comparison between a Lagrange curve (red), and Bézier curve (blue) and a rational Bézier curve
(black). Only the rational Bézier curve can represent exactly the portion of the circle.

2 Lagrange and Bézier cells implemented in VTK

Table 2 present the different Lagrange and Bézier cells implemented in VTK.

Cell type Cell Id Rational support Anisotropic degree support
VTK LAGRANGE CURVE 68 no no
VTK LAGRANGE TRIANGLE 69 no no
VTK LAGRANGE QUADRILATERAL 70 no yes
VTK LAGRANGE TETRAHEDRON 71 no no
VTK LAGRANGE HEXAHEDRON 72 no yes
VTK LAGRANGE WEDGE 73 no yes
VTK BEZIER CURVE 75 yes no
VTK BEZIER TRIANGLE 76 yes no
VTK BEZIER QUADRILATERAL 77 yes yes
VTK BEZIER TETRAHEDRON 78 yes no
VTK BEZIER HEXAHEDRON 79 yes yes
VTK BEZIER WEDGE 80 yes yes

While Lagrange elements were already implemented into VTK, we added the possibility for some cell
types to have anisotropic degree, meaning that different directions of the cell can possess different degrees.
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We added rational support only for Bézier cells. While rationality can be easily extended to Lagrange cells,
we are not aware of applications or demand for this functionality.

3 How to define the rationality and anisotropic degree

Both rationality and the anisotropic degree are optional attributes. If nothing is specified, the cell is assumed
to be of uniform degree and non-rational, maintaining the compatibility with the already existing Lagrange
cells.

For Bézier rational cells, a weight is defined at each control point, and so the data can be accessed via a
VTKPointData with the attribute RATIONALWEIGHTS. To specify the anisotropic degree, a vector of size
three for each cell must be used to define the degree in each direction (in the two-dimensional case, the third
component is required but not used). The anisotropic degree can be accessed via VTKCellData with the
attribute HIGHERORDERDEGREES. Several examples are provided in the VTK file TestBezier.cxx.

4 Implications of non-interpolatory control points

This is the first time that non-interpolatory quantities have been implemented into VTK. Non-interpolatory
means that while the geometry or the field is defined by the control points, these control points do not lie on
the geometry (see the Bézier curves in Fig. 2). Nonlinear cell representations in VTK can be refined using a
tessellation filter or a non-linear subdivision level. To reduce the number of points to be computed, VTK
reuses the intermediate control points of a cell. For Bézier cells, this results in the visualization of spurious
peaks as shown in Fig. 3. This issue has been fixed in the implementation by overwriting the intermediate
points for Bézier cells only.

There is currently an outstanding issue that occurs when the automatic Rescale to Data Range is used
on a field displayed via a nonlinear subdivision level. The extremes are computed from the points data,
but again, these points can be non-interpolatory, leaning to overestimated values. To overcome this small
issue, the scale can be set using a custom range, or instead of using the nonlinear subdivision level for the
representation, a tessellation filter can be used.

(a) (b)

Figure 3: Quadratic Bézier cell before (a) and after (b) we introduce fixes to support non-interpolatory
control points.

5 Lagrange and Bézier node numbering

The node numbering for Lagrange and Bézier cell is the same. Because we noticed some mismatches between
the original documentation (https://blog.kitware.com/wp-content/uploads/2018/09/Source_Issue_
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43.pdf) and the implementation for hexahedra and tetraedra, for clarity we review the the node numbering
that is used in the code.
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Figure 4: Lagrange or Bézier curve node numbering.
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Figure 5: Lagrange or Bézier triangle node numbering.
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Figure 6: Lagrange or Bézier tetrahedron node numbering.
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Figure 7: Lagrange or Bézier quadrilateral node numbering.
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Figure 8: Lagrange or Bézier hexahedron node numbering.
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Figure 9: Lagrange or Bézier wedge node numbering.
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6 Some examples of Bézier cells representing exact conic shapes

Figure 10: Quadratic VTK BEZIER TRIANGLE cell that represents exactly a full disk (this is actually the
minimal parameterization of an exact full disk). Nonlinear subdivision level 0, 1 and 5.

Figure 11: Quadratic VTK BEZIER QUADRILATERAL cell that represents exactly a full disk. Nonlinear
subdivision level 0, 1 and 5.

Figure 12: Multi-degrees linear-quadratic VTK BEZIER QUADRILATERAL cell that represents exactly a
quarter of a disk. Nonlinear subdivision level 0, 1 and 5.

Figure 13: Quadratic VTK BEZIER TETRAHEDRON cell that represents a kind of cone. Nonlinear
subdivision level 0, 1 and 5.
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Figure 14: Quartic VTK BEZIER TETRAHEDRON cell that represents exactly a solid sphere octant.
Nonlinear subdivision level 0, 1 and 5.

Figure 15: Quartic VTK BEZIER HEXAHEDRON cell that represents exactly a sphere. Nonlinear subdivision
level 0, 1 and 5.

Figure 16: Multi-degrees quadratic-bi-linear VTK BEZIER HEXAHEDRON cell that represents exactly
quarter ring with a square cross-section. Nonlinear subdivision level 0, 1 and 5.

Figure 17: Multi-degrees bi-quartic-linear VTK BEZIER WEDGE cell that represents exactly a thick sphere
octant. Nonlinear subdivision level 0, 1 and 5.
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7 An example of application

Figure 18: A ball bearing shearing simulation performed by Coreform. Accounting for the symmetries, only
one sixteenth of the ball bearing is represented. The inner and geometries are represented exactly using
tri-quadratic Bézier hexahedra, and the half sphere is also modeled exactly using tri-quadtric Bézier hexahedra
(a single element could have been used without losing the geometry exactness, but several elements were
required here for the simulation accuracy)
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