
Low-Shot Learning
�Challenges: Creating a detector/classifier with very few samples

�Approach: Unsupervised Pre-Training + VIAME IQR

Developed on DARPA’s Learning with Less Labeling program

VIAME
� Video and Imagery Analytics for Multiple Environments: a do-it-yourself 

AI toolkit for multiple types of imagery or video, with a marine emphasis
� Can be run by people with no programming or machine learning 

background in both web and desktop interfaces, while also containing 
command line interfaces (CLIs) and application program interfaces 
(APIs) for more advanced users

� Has been most commonly used for automating object detection and 
classification, but contains multiple features including:
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Software
� Installers available at viametoolkit.org (on right) and 

github.com/viame/viame
� Free for use with highly permissive licensing
� Public web interface: viame.kitware.com (bottom left)
� Contains different workflows and models for varying 

amounts of training data (bottom right)
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Recent and Future Additions
� Anomaly detection and few-shot learning are 

now available
� Recent publications:

- “FishTrack23: An Ensemble Underwater Dataset 
for Multi-Object Tracking.” IEEE/CVF Winter 
Conference on Applications of Computer Vision, 
2024.

- “Towards Depth Fusion into Object Detectors for 
Improved Benthic Species Classification.” ICPR 
Workshops, 2022.

� Recent features:
- New default fish, scallop, and sea lion detectors
- Monocular, metadata-based size measurement
- Automatic box to polygon converters
- Additional scoring tools for computing detection 

precision-recall curves and tracking metrics such 
as MOTA and IDF1

- Ensemble models for improving detection
- 3D target localization using stereo cameras

� Upcoming features:
- Fish head/tail keypoint localization
- Additional box to polygon converters
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Anomaly Detection
� Challenge: Anomalies are everywhere in natural environments. How do 

we find interesting, salient anomalies?
� Approaches typically assume enough data has been observed to build a 

complete generative model, but this is not usually the case
� Our solution leverages existing object detectors

■ Known classes have labeled annotations within training set
■ Unknown/novel/anomalous classes are only within the evaluation data
■ Salient novelties are similar to known classes and different from background 

� Our novelty detectors were developed on the DARPA Science of AI and 
Learning for Open-world Novelty (SAIL-ON) program

■ Our method is theoretically grounded in Extreme Value Theory [5] (EVT), 
which provides a statistically-valid dissimilarity score for distinguishing 
between known classes, novelties and background

■ Other methods simply threshold the class probabilities, or perform logistic 
regression which requires training on known background data
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Equalization Loss 
EQLv2 [3] Balancing
positive and negative 
gradients to prevent 
discouraging gradients preventing 
any low-shot class predictions

Unsupervised label creation 
with MaskCut for training

Powerful Backbone for 
improved generalization

With a distribution fitted 
only to the tail, a 
meaningful decision 
threshold can be set

EVT uses either Weibull, Gumbel, 
or Frechet (Generalized Pareto) 
depending on the type of tail
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Adding Ferry Class

Reasonable 
accuracy (29%) 
achieved from 5 
examples

Kayaker 
mislabeled 
as Ferry

inference to 
demonstrate new 

class (N = 6 images) 

annotate new class 
("ferry"); train and  

update model
(N = 5 images)

labeled data (no "ferry") 
for finetuning with labels

(N = 12 images)

unlabeled data for 
training CutLER
(N = 12 images)

Initial Training

● Object detector is trained on 
8 classes. Novelty detector 
identifies items similar to 
labeled items but not from a 
known class. Buoys are not 
in the training set.

● Object detector misclassifies 
buoy as a vessel. Buoy has a 
high novelty score.

● Novelty detector is robust 
against nuisance novelties 
such as fog, new views, new 
lighting.

● On xView dataset for satellite 
imagery, our method 
outperforms softmax 
thresholding by 15%.
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* also contained no ferries

Showing only novelty 
detection allows the 

researcher to focus on 
the important anomalies

Novel 
Object

On an aerial imagery dataset, our method 
significantly outperforms the DARPA LwLL 
baseline at low label counts

Singapore Maritime Dataset


