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 QOur ALIGN® system uses Large Language Models (LLMs) to generate human-trusted medical decisions
that align to KDMAs and provide natural language explanations for reasoning.

* One application is automating or informing triage tagging (Immediate, Expectant, Delayed, or Minimal).

* This work evaluates the ALIGN system’s alignment with triage protocol KMDAs using a gold standard
synthetic dataset of over 10,000 casualties, each labeled according to the START, SALT, and BCD Sieve
triage tagging protocols.

* This work is part of DARPA’s In The Moment program. Scenario
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Figure 7: Aligned LLM Prediction Confusion Matrices (top: zero-shot, bottom: few-shot)

DISCUSSION

* With few-shot prompting, aligned LLMs produced casualty tags based on simple descriptions of injuries.
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