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Chapter 1

Welcome 1

Welcome to the Visualization Toolkit (VTK) User’s
Guide. VTK is an open-source, object-oriented software system for computer graphics, visualization,
and image processing. Although it is large and complex, VTK is designed to be easy to use once you
learn about its basic object-oriented design and implementation methodology. The purpose of this
User’s Guide is to help you learn this methodology, plus familiarize you with a variety of important
VTK classes.

If you are a past reader of this guide, you’ll note that we are now distinguishing updates of this
book based on an edition number rather than a version number for VTK. This is the 11th edition of
the VTK User’s Guide. The User’s Guide has been in publication for more than eleven years and this
edition was published over sixteen years after the start of VTK. Although a version of VTK shortly
before the 5.6 release was used when writing this edition, we are fairly confident in saying that nearly
all the material covered here will be valid through many future releases. Backwards compatability is
taken seriously in VTK, and although new features may be added that are not documented here, it is
very rare for an existing feature to change.

VTK is a large system. As a result, it is not possible to completely document all VTK objects
and their methods in this guide. Instead, this guide will introduce you to important system concepts
and lead you up the learning curve as fast and efficiently as possible. Once you master the basics, we
suggest that you take advantage of the many resources available including the Doxygen documenta-
tion pages (“Documentation” on page 6) and the community of VTK users (see “Additional
Resources” on page 6).

The Visualization Toolkit is an open-source software system. What this means is that dozens
and perhaps hundreds of generous developers and users like you have contributed to the code base. If
you find VTK a useful tool, we encourage you to contribute bug fixes, algorithms, ideas, and/or
applications back to the community. (See “How To Contribute Code” on page 299 for more informa-
tion.) You can also contract with commercial firms such as Kitware to develop and add new features
and tools.
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1.1 User Guide Organization

This software guide is divided into three parts, each of which is further divided into several stand-
alone chapters. Part I is a general introduction to VTK, including—in the next chapter—a description
of how to install the Visualization Toolkit on your computer. This includes installing pre-compiled
libraries and executables or compiling the software from the source code. Part I also introduces basic
system concepts including an overview of the system architecture as well as a description of building
applications in the C++, Tcl, Java, and Python programming languages. In some ways Part II is the
heart of User’s Guide, since dozens of examples are used to illustrate important system features. Part
III is for the advanced VTK user. If you are a developer, Part III explains how to create your own
classes, extend the system, and interface to various windowing and GUI systems. Chapter 19 contains
simplified object diagrams that provide an overview of the relationship of VTK objects, a summary
list of filters, and a description of VTK file formats for reading and writing your own data. Finally, the
index is a handy tool for random access into the User’s Guide.

1.2 How to Learn VTK

There are two broad categories of VTK users. First are class developers, who create classes in C++.
Second, application developers use the C++ class library to build turn-key applications. Class devel-
opers must be proficient in C++, and if you are extending or modifying VTK, you must also be famil-
iar with VTK’s internal structures and design (material covered in Part III). Application developers
may or may not use C++, since the compiled C++ class library has been “wrapped” with the inter-
preted languages Tcl, Python, Visual Basic, and Java. However, as an application developer you must
know something about the external interface to the VTK objects, and the relationships between them.

The key to learning how to use VTK is to become familiar with its palette of objects and the
ways of combining them. If you are a new Visualization Toolkit user, begin by installing the software.
If you are a class developer, you’ll want to download the source code and then compile it. Application
developers may only need the precompiled binaries and executables. We recommend that you learn
the system by studying the examples (if you are an application developer) and then studying the
source code (if you are a class developer). Start by reading Chapter 3, which provides an overview of
some of the key concepts in the system, and then review the examples in Part II. You may also wish to
run the dozens of examples distributed with the source code found in the directory VTK/Examples.
(Please see the file VTK/Examples/README.txt for a description of the examples contained in the
various subdirectories.) There are also several hundred tests found in the source distribution such as
those found in VTK/Graphics/Testing/Tcl and VTK/Graphics/Testing/Cxx, most of which
are undocumented testing scripts. However, they may be useful to see how classes are used together
in VTK.

1.3 Software Organization

The following sections describe the directory contents, summarize the software functionality in each
directory, and locate the documentation and data.
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Obtaining The Software

There are two different ways to access the VTK source code
.

1. from releases available on the VTK Web site http://www.vtk.org; and

2. from direct access to the CVS source code repository (instructions found at www.vtk.org).

This user’s guide assumes that you are working with an official VTK release. This book was written
against VTK as of September 2009. When we wrote this book we were considering both VTK 5.4 and
features we were expecting in the 5.6 release. Please note that topics covered in this text will be valid
for future releases of VTK as well. Also note that in the past, major releases of VTK were denoted by
a major number change (i.e. VTK 4.4 to VTK 5.0) which also indicated that there was some break in
backwards compatibility somewhere in the toolkit. However, with more frequent releases we will be
faced with releasing a VTK 5.10 (confusing since alpha-numerically that comes before 5.2, but
chronologically it comes after 5.8) or releasing VTK 6.0 with no change in backward compatibility.
Since it is likely that we will choose to release a VTK 6.0 rather than a VTK 5.10, you may be reading
this book while working with VTK 6.0 or later. Although the latest features may not be covered here,
the material in this guide will be applicable to future releases. For information on new features spe-
cific to future releases, see the VTK mailing lists (http://www.vtk.org/VTK/help/mailing.html) or the
Kitware Source (http://www.kitware.com/products/thesource.html), Kitware’s free, quarterly devel-
oper’s newsletter. 

We highly recommend that you use VTK 5.4 or a later official release. Official releases are sta-
ble, consistent, and better tested than the current CVS repository. However, if you must use a more
recent version, please be aware of the VTK quality testing dashboard. The Visualization Toolkit is
heavily tested using the Kitware Software Process (http://www.kitware.com/solutions/softwarepro-
cess.html). Before updating the CVS repository, make sure that the dashboard is “green” indicating
stable code. If not green it is possible that your software update is unstable. (Learn more about the
VTK quality dashboard in the section “Kitware’s Quality Software Process” on page 312.)

Directory Structure

To begin your VTK odyssey, you will first need to know something about VTK’s directory structure.
Even if you are installing pre-compiled binaries, it is helpful to know enough to navigate through the
code base to find examples, code, and documentation. The VTK directory structure is organized as
follows.

• InfoVis — classes for information visualization.

• Views — specialized classes for viewing data including: filters, visualization, interaction and
selection.

• VTK/CMake — configuration files for cross-platform building.

• VTK/Common — core classes.

• VTK/Examples — well-documented examples, grouped by topic.

• VTK/Filtering — classes related to data processing in the visualization pipeline.

• VTK/GenericFiltering — an adaptor framework to interface VTK to external simulation
packages.

• VTK/GeoVis — views, sources, and other objects useful in terrain visualization.
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• VTK/Graphics — filters that process 3D data.

• VTK/GUISupport — classes for using VTK with the MFC and Qt user interface packages.

• VTK/Hybrid — complex classes that depend on classes in multiple other directories.

• VTK/Imaging — image processing filters.

• VTK/IO — classes for reading and writing data. 

• VTK/Parallel — parallel processing support such as MPI.

• VTK/Rendering — classes used to render.

• VTK/Utilities — supporting software like expat, png, jpeg, tiff, and zlib. The Doxygen
directory contains scripts and configuration programs for generating the Doxygen documenta-
tion.

• VTK/VolumeRendering — classes used for volume rendering.
• VTK/Widgets — 3D widget classes.

• VTK/Wrapping — support for Tcl, Python, and Java wrapping.

Documentation

Besides this text and The Visualization Toolkit text (see the next section for more information), there
are other documentation resources that you should be aware of.

• Doxygen Documentation. The Doxygen documentation is an essential resource when working
with VTK. These extensive Web pages describe in detail every class and method in the system.
The documentation also contains inheritance and collaboration diagrams, a listing of event
invocations, and data members. The documentation is heavily hyper-linked to other classes and
to the source code. The Doxygen documentation is available online at http://www.vtk.org.
Make sure that you have the right documentation for your version of the source code.

• Header Files. Each VTK class is implemented with a .h and .cxx file. All methods found in
the .h header files are documented and provide a quick way to find documentation for a partic-
ular method. (Indeed, Doxygen uses the header documentation to produces its output.)

Data

The data used in VTK examples and tests can be obtained from the download area at vtk.org, and via
CVS access. Instructions for CVS access to the data repository are also available at vtk.org.

1.4 Additional Resources
This User's Guide is just one resource available to you to learn the Visualization Toolkit. Here is

a sampling of some on-line resources, services, software applications and publications that can help
you make effective use of this powerful toolkit.

• The companion textbook The Visualization Toolkit An Object-Oriented Approach to 3D Graph-
ics covers in detail many of the algorithms and data structures utilized in VTK. The textbook is
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published by Kitware, Inc. and is available to purchase either through the Kitware web site or
through amazon.com.

• The Source is a quarterly newsletter published by Kitware that covers all of Kitware's open
source projects. New functionality added to VTK will typically be covered by an article in the
Source, and past issues are a valuable resource for articles and tutorials on a variety of VTK
related topics. You can view the source online at kitware.com, and you can subscribe to receive
a copy via postal mail.

• The VTK web site at vtk.org contains pointers to many other resources such as online manual
pages, the Wiki and FAQ, the dashboard and bug tracker, and a searchable archive of the
vtkusers mailing list (see below). In particular, the Doxygen manual pages are an invaluable
resource for both novice users and experienced developers.

• The vtkusers mailing list allows users and developers to ask questions and receive answers;
post updates, bug fixes, and improvements; and offer suggestions for improving the system.
Please visit the VTK web site for more information on how to join the mailing list.

• Professional training is available from Kitware. Developer's Training Courses covering several
of Kitware's open source projects including VTK, ITK, CMake and ParaView are offered typi-
cally twice per year in the upstate New York area. In addition, Kitware can bring the course to
your site for customized training for your development team. Please see the Kitware web site or
send email to courses@kitware.com for further information.

• Commercial support and consulting contracts are available from Kitware. These contracts range
from small support efforts where VTK experts assist you in developing your application, to
large-scale consulting efforts where Kitware develops an application to your specifications.
Please see the Kitware web site or send email to sales@kitware.com for further information.

• ParaView is an open source end-user application focused on scientific visualization that is built
on top of VTK. You can find the ParaView web site at paraview.org. Using ParaView is an
excellent way to learn VTK since you will have access to the most popular functionality from a
graphical user interface. It is also a good reference point for what is possible with VTK since
you can load your own data and see what sort of visualization techniques are available and what
sort of performance you should expect.

• CMake is an open source build environment for cross platform development. Although basic
VTK users will need very little CMake knowledge in order to successfully build VTK on their
standard Windows, Linux, or Mac OSX platform, advanced users may find CMake useful in
their own development efforts or may require some in-depth CMake knowledge in order to port
VTK to a non-standard platform. Visit the CMake web site at cmake.org for more information.

• CDash is an open source testing platform utilized by VTK. You can find a link to the VTK test-
ing dashboard (powered by CDash) on the VTK web site. The dashboard shows the results of
nightly and continuous testing on a variety of platforms. Developers who are building on non-
standard platforms may with the contribute their own tests results to the dashboard. More infor-
mation on the Kitware software process can be found in Section 10.8.





Chapter 2

Installation 2

This chapter describes the steps required to install VTK
on your computer system. The overall difficulty of this process depends on several factors. On Micro-
soft Windows, you can install the pre-built vtk.exe and run Tcl scripts using it. For Python or Java
usage, to link VTK libraries into your own applications, or to use VTK on any platform other than
Microsoft Windows, you must build VTK from source code. (There are too many platform variations
– keeping binary distributions up-to-date is too much work, so we focus on making VTK easy to
build everywhere.) If you are compiling the VTK source code and building your own libraries, expect
to spend one-half hour on faster, multi-processor systems, and several hours on slower, memory lim-
ited systems. Also, the time to build depends on how many interpreted languages you wrap around
the VTK C++ core, and your system configuration.

You may wish to refer to “System Architecture” on page 19 for an overview of the VTK archi-
tecture—this may make the compile process easier to follow. Also, if you run into trouble, you can
contact the vtkusers mailing list (see “Additional Resources” on page 6).

2.1 Overview
VTK compiles and runs on many different computer platforms. By platform, we are referring to vari-
ous combinations of operating systems, hardware configurations, and compilers. Because of the large
number of combinations possible, binary distributions of VTK are generally not feasible. Therefore,
to install VTK, you will have to compile and link the source code to produce libraries and executa-
bles. The exception to this process is if you are creating VTK applications using the Tcl interpreted
language. In this case, pre-compiled binaries may be available for the Windows platform. Otherwise,
you will have to compile the Tcl and Python VTK executables from the source code.

The chapter begins with an overview of CMake, the Cross-platform Make tool. CMake is used
on all operating systems to configure the build environment. Next, the chapter is divided into two sec-
tions based on the type of operating system that you are installing on: either Windows or UNIX (for
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Macintosh OSX or Linux, follow the UNIX instructions). You only need to read the appropriate sec-
tion for your installation. The Visualization Toolkit does not run on older versions of Windows such as
Windows 3.1. It also does not run on any Macintosh OS prior to OSX 10.2 (Jaguar). 

2.2 CMake
CMake is an open-source, cross-platform tool for configuring and managing the build process. Sim-
ple, platform independent files (CMakeLists.txt) are used to describe the build process and capture
dependencies. When CMake is run, it produces native build files for the particular compiler/operating
system that you are working on. For example, on Windows with Microsoft Visual Studio, solution
files and project files are created. On Unix, makefiles are created. This way you can easily compile
VTK on any computer using a single source tree and work with the development tools (editors,
debuggers, profilers, compilers, etc.) that are natural to the platform that you are working on. (Learn
more about CMake from cmake.org. Kitware also publishes a book Mastering CMake for detailed
information.) Download the latest CMake from http://www.cmake.org.

Running CMake requires three basic pieces of information: which compiler to use, where the
source code directory (i.e. source tree) is, and which directory (i.e., build tree) to place the object
code, libraries, and binaries that the compilation process produces. CMake will read the top-level
CMakeLists.txt file found in the source tree and produce a cache (CMakeCache.txt) in the build
tree. Note that CMake handles complex source code directory structures just fine—there will be one
CMakeLists.txt file in each subdirectory of the source code tree. 

Once these basic pieces of information are provided, the user invokes the configure step. This
causes CMake to read the top-level CMakeLists.txt file, determine the system configuration,
locate system resources, and descend into subdirectories in the source tree. As CMake runs, it discov-
ers CMake variables and flags (CMake cache entries) that control the build process. These are pre-
sented to the user after the configure process ends. If the user desires to change the cache values,
CMake provides a simple GUI to do so. After they are changed, another configure invocation is per-
formed. This iterative configuration process continues until no additional changes are required. Once
this point is reached, the user invokes the generate step. The generate step produces the solutions
files, project files or makefiles used to control the build process for the specified compiler.

In the two sections that follow (Windows and Unix), specific instructions for running CMake
for each platform are provided. Note that the general instructions described above are applicable to all
systems. The CMake user interface may vary based on your platform. Although cmake-gui, the nwe
Qt-based interface available in CMake 2.6 and later, is very similar from platform to platform. Also,
if at all possible, install precompiled binaries for CMake rather than building CMake from source
code.

2.3 Installing VTK on Windows XP, Vista or later
Under Windows there are two types of VTK installations. The first is a binary/executable installation
that lets you do development in Tcl by running the pre-compiled executable. The second type is a full
source code installation requiring you to compile the VTK source code (to generate C++ libraries)
and VTK wrapper code (to generate Java, Tcl, and Python executables). Of the two types of installa-
tions, the binary installation is much easier. The source code installation has the advantage that you
can monitor, debug, and modify VTK code—which is probably what you want if you are a class
developer. Note, however, that even if you choose the binary installation, you can still extend VTK in
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a variety of ways—creating your own class (see “Writing A VTK Class: An Overview” on page 305),
using run-time programmable filters (see “Programmable Filters” on page 419), and replacing VTK
classes at run-time with your own versions of the class (see “Object Factories” on page 307).

Binary Installation

To install vtk.exe, the VTK Tcl/Tk executable, run the installer program vtk-X.X.X-win32.exe, avail-
able from the download page of vtk.org which will bring up an installation GUI (see Figure 2–1). The
“X.X.X” in the installer program’s filename represents the version number of VTK used to build it.
You may also download corresponding *.zip files of the VTK source tree and the VTKData directory.
As we release new versions of VTK, we make them available via links on the vtk.org download page.
Watch for release announcements on the vtkusers mailing list.

The VTK source tree contains many *.tcl scripts you may use to learn about how various VTK
classes work. Download the vtk-X.X.X.zip and vtkdata-X.X.X.zip files and extract them to your hard
drive. In the VTK folder, you will find an “Examples” folder. Under the Examples folder, there are
folders such as GUI, MangledMesa, and Parallel; each of those folders will have a sub folder
called Tcl that contains various Tcl examples. In addition to the Examples folder, there are library
folders like Graphics, Imaging, and Filtering. Each of these folders contains a Testing/Tcl
sub folder containing the regression tests for VTK. Try running any example by double clicking on
the Tcl file. When you double-click on a Tcl file (.tcl extension) for the first time, a dialog box may
appear asking you what to use to open the file. This means that you need to create an association
between Tcl files and the vtk executable to run them. If this happens, click the "Select the
program from a list" button on the dialog, and click "OK". A new dialog labeled "Open
With" will appear. Click the "Browse" button on this dialog to display a file browser. In the
browser, go to the directory where you installed VTK. Normally this is either C:\Program
Files\VTK 5.4 or C:\Program Files\Documents and Settings\<username>\My Docu-
ments\VTK 5.4. In there you should see a bin folder which in turn contains a program called vtk.
Double-click on vtk (or vtk.exe). Check that the "Always use the selected program to
open this kind of file" checkbutton is marked on the "Open With" dialog, and then select
the OK button. Your example should then run. In the future, double-clicking on any Tcl scripts will
automatically begin execution of vtk.

Figure 2–1  The VTK installer program for
Windows.
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Alternatively, if Tcl files are already associated with the wish executable (from installing Tcl/
Tk binaries), you will see an error message similar to the following when you double-click on a Tcl
file: can’t find package vtk while executing "package require vtk". If you receive
this error message, right-click on the Tcl file, and select "Open With..." from the pop-up menu
displayed. The "Open With" dialog will appear. Follow the rest of the instructions from the previous
paragraph to associate Tcl files with the vtk executable.

That completes the binary installation process for Windows. In Chapter 3 we’ll go into more
detail on how to write your own C++, Tcl, Java and Python applications.

Source Code Installation

To develop C++ applications and extend VTK, you will need to do a source code installation. This is
more challenging and may tie up your machine for a few hours as it compiles VTK. First you need to
make sure your machine is capable of building a VTK source code release. You must be running Win-
dows XP, Vista or later. You will need a C++ compiler installed on your machine. The instructions in
this guide are oriented towards Microsoft Visual Studio 2005 or later, which works well with VTK.
We also support the Borland C++ compiler, gcc under Cygwin or MinGW, NMake, Microsoft Visual
C++ free editions, and Microsoft Visual C++ 2005. If you have not installed a C++ compiler, then you
must do this first. 

The next issue to consider is what additional tools you plan to use. If you plan to do develop-
ment in Java then you must download and install the Java JDK which is available from Sun Microsys-
tems at http://www.java.sun.com. If you plan on using Tcl/Tk and you are not using Microsoft
Visual C++, then you will need to download and build the source code version of Tcl/Tk from
http://www.tcl.tk or download and install a Tcl/Tk binary from http://www.actives-
tate.com/Products/ActiveTcl. (Note: Tcl/Tk version 8.4 works with VTK version 5.4.0.)

Installing CMake. To compile VTK, you will first need to install CMake. An installer for CMake is
available from http://www.cmake.org.

Running CMake. After you have setup your C++ compiler, installed CMake, and installed any addi-
tional packages such as Tcl, Java, and Python, you are ready to run CMake. To run CMake, there
should be a CMake entry in the Start menu under Programs->CMake->CMakeSetup. The
CMakeSetup.exe interface (Figure 2–2) is a simple program that allows you to customize the build
to your particular machine and desired options for VTK. First you must tell CMakeSetup where the
source tree for VTK is located and where you want to put the VTK binaries (these are generated as a
result of compiling the source code). You can specify those directories with the Browse buttons or by

Figure 2–2  CMake is used to generate proj-
ects, makefiles, or workspaces for different
compilers and operating systems. CMake is
cross-platform.
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typing in the paths manually. Once the source and binary directories have been selected, you should
click on the Configure button. The first time you click the Configure button, CMake will display
a dialog from which you can select the build system you will use for compiling VTK. Then the
CMakeSetup GUI will be filled with a list of variables and values found in the CMake cache. When
first run, all the variables will be colored red. The red indicates that the cache entry was generated or
changed during the previous configure step. 

At this point, you can customize your VTK build. For example, if you want to enable the Tcl
wrapping feature of VTK, scroll down in the cache values editor to the entry VTK_WRAP_TCL, and
click on the value to toggle it from OFF to ON. After that, click the Configure button again. This will
cause most of the values to change to gray, and any new values to appear in red. If you installed Tcl/
Tk from a binary install, none of the new values should have NOTFOUND as values; if they do, you will
have to specify those paths manually with the CMake interface. To set any value in the CMake inter-
face, you click to the right of the variable where the value is displayed. Depending on the type of vari-
able, there may be a file chooser, edit box or pull down that will allow you to edit the value. 

Some important cache values for VTK are:

• BUILD_SHARED_LIBS — If this Boolean value is set to yes, then DLLs or shared libraries will
be built. If it is no, then static libraries will be built. The default is static libraries. The static
libraries are somewhat easier to work with, since they do not need to be in your path when exe-
cutables are run. The executables will be self-contained. This is preferred for distribution of
VTK based applications.

• VTK_WRAP_TCL — This determines if Tcl wrapping will be built.

• VTK_WRAP_PYTHON — This determines if Python wrapping will be built.

• VTK_WRAP_JAVA — This determines if Java wrapping will be built.

To get on-line help for any variable in CMake, simply click right over the value and select “Help for
Cache Entry”. Most of the defaults should be correct.

Continue to click on Configure until there are no longer any red values and you are happy
with all of the values. At this point, you can click the OK button. This will cause CMake to write out
the build files for the build type selected. For Microsoft, a project file will be located in the binary
path you selected. Simply load this project file (VTK.dsw into Visual Studio 6.0, VTK.sln for .NET),
and select the configuration you want to build in the Build->Set Active Configuration menu of
Visual Studio. You will have the choice of Debug, Release, MinSizeRel (minimum size release), and
RelWithDebInfo (release with debug information). You can select the ALL_BUILD project, and com-
pile it as you would any other Visual Studio project. For Borland, makefiles are generated, and you
have to use the command line make supplied with that compiler. The makefiles are located in the
binary directory you specified. 

Once VTK has been built all libraries and executables produced will be located in the binary
directory you specified to CMake in a sub-folder called bin (unless you changed the
EXECUTABLE_OUTPUT_PATH, or LIBRARY_OUTPUT_PATH variables in CMake).

(Note: Do not use the MSVC++ “Rebuild All” menu selection to rebuild the source code. This
deletes all CMakeLists.txt files which are then automatically regenerated as part of the build pro-
cess. MSVC will then try reloading them and an error will result. Instead, to rebuild everything,
remove your VTK binary directory, rerun CMake, and then do a normal build.)

If you built VTK with BUILD_SHARED_LIBS on, then your client application will need to
locate and load the VTK DLLs at runtime. There are many different ways that your application might
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find the VTK DLLs at runtime. There are pros and cons associated with each way. The easiest
approach is to make sure your application and the VTK DLLs exist in the same directory. You can
copy all the VTK DLLs into your application's directory, or build your application into the same
directory the VTK DLLs were built in using EXECUTABLE_OUTPUT_PATH in your own applica-
tion's CMakeLists files. If your application’s executable files and the VTK DLLs exist in the same
directory, everything should just work. The "pro" of these approaches is their simplicity. The cons
are: if you make copies of the VTK DLLs, you'll need to make sure you copy them again if you
update and rebuild VTK; if your application's build output is mixed in with VTK's build output, it
may be difficult to determine which build product comes from which project if necessary.

Another alternative is to modify the PATH environment variable so that your application can
find the VTK DLLs even though they are not in the same directory. However, within this alternative,
there are a couple ways to accomplish the task. You can set up a command prompt where the PATH is
modified only in that command prompt and then launch your application from there, or you can
change the user's PATH environment variable or the system-wide PATH environment variable.
Changing the user’s or system-wide PATH environment variable is recommended unless you need to
have two or more distinct builds of VTK on the same computer.

The KWWidgets project (http://www.kwwidgets.org) provides a good example of setting
the PATH from a batch script (to avoid changing the PATH environment variable), see the KWWid-
getsSetupPaths.bat script in the build tree for the KWWidgets project. To obtain source code for
KWWidgets, follow the instructions found at http://www.kwwidgets.org.

To set up a command prompt that can be used to launch an executable that can find the VTK
DLLs, make a shortcut to a command prompt and then set it to call a batch file when it starts up. This
is the technique that Visual Studio uses to create a command prompt where you can run the command
line compiler or nmake. You can right click on a shortcut in the Windows Start menu and choose
Properties to see how other command prompt shortcuts work. You can also drag-and-drop one of
them to your desktop while holding down the control key to make a copy of it on your desktop. Then
you can modify the properties of the shortcut on your desktop to call your own batch file that sets up
your PATH and any other environment settings you may need for your application. Use the "/K batch-
filename.bat" argument to the command prompt to run the batch file and then leave the command
prompt running. Type "cmd /?" from any Windows command prompt for more information on the /K
option.

For further discussion of locating DLLs on Windows, see the Windows SDK documentation for
the LoadLibrary and LoadLibraryEx functions.

If you’ve made it this far, you’ve successfully built VTK on a PC. It can be a challenging pro-
cess because of the size and complexity of the software. Please pay careful attention to the instruc-
tions given earlier. If you do run into problems, you may wish to join the vtkusers mailing list (see
“Additional Resources” on page 6) and ask for help there. Commercial support is also available from
Kitware.

2.4 Installing VTK on Unix Systems

There are a wide variety of flavors of Unix systems. As a result you will have to compile the VTK
source code to build binaries and executables. 
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Source Code Installation 

This section will walk you through the steps required to build VTK on a UNIX system. Unlike Win-
dows, pre-compiled libraries and executables are not available for Unix systems, so you’ll have to
compile VTK yourself. (Note: check the vtkusers mailing list and other resources as described in
“Additional Resources” on page 6—some users maintain binaries on the Web.) Typically, it is a fairly
simple process, and it should take about one to four hours depending on the speed of your machine.
(High-end, large-memory multi-processor machines using parallel builds can build the C++ and Tcl
libraries and executables in under 10 minutes!) Most of this time is spent waiting for the computer to
compile the source code. Only about 10-30 minutes of your time will be required. The first step is to
make sure you have the necessary resources to build VTK. To be safe, you will need about 300 mega-
bytes of disk space. On some systems, such as SGI, you may need more space, especially if compiling
a debug version of VTK. You will also need a C++ compiler since VTK is written in C++. Typically
the C++ compiler will be called CC, g++, or acc. If you are not sure that you have a C++ compiler,
check with your support staff. 

If you are planning to use VTK with Tcl/Tk, Python, or Java, then you will first need to down-
load and install those packages. The Java JDK is available from Sun Microsystems at http://
www.java.sun.com. If you plan on using Tcl/Tk and it is not already installed on your system, then
you will need to download Tcl/Tk from http://www.tcl.tk. Python can be downloaded from
http://www.python.org. Follow the instructions in these packages to build them. 

CMake

Similar to the Windows environment, VTK on Unix uses CMake for the build process. (See the previ-
ous section on CMake.) There are precompiled binaries of CMake available for many Unix systems;
however, you may have to build CMake if binaries are not available. (Go to http://
www.cmake.org to download precompiled binaries.)

Installing CMake. If pre-compiled binaries are available, download and then extract the tar files
into your destination directory (typically /usr/local). Either make sure that cmake and associated
executables are in your path, or run cmake and its associated executables by giving their full path.

Building CMake. If a precompiled CMake binary is not available, you will have to build and install
CMake. To build and install CMake, simply untar the sources (found at http://www.cmake.org)
into a directory, and then run (in that directory): 

./configure 
make 
make install

If you do not have root privileges, you can skip the third step above (i.e., make install). The
CMake executables will be located at CMake/bin/. There are two different CMake executables
which can be used to configure VTK: ccmake that provides a terminal based interface very similar to
CMakeSetup described in the Windows installation section, and cmake which implements a wizard
that requires you to answer a list of questions in order to configure the build. 

It is a good idea to tell CMake which C++ and C compilers you want to use. On most Unix sys-
tems, you can set the information this way: 
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setenv CXX /your/c++/compiler 
setenv CC /your/c/compiler 

or 

export CXX=/your/c++/compiler 
export CC=/your/c/compiler

Otherwise CMake will automatically detect your compiler—however, this may not be the one that
you want if you have multiple compilers on your system. Once you have done this, create an empty
binary directory (e.g., VTK-bin) at the same level as the VTK source directory, and run CMake in it,
passing it the path to the VTK source directory as shown below.

cd VTK-bin
ccmake ../VTK

or

cd VTK-bin
cmake -i ../VTK

(The instructions in the following two subsections describe the differences between ccmake and
cmake -i.) UNIX developers familiar with configure scripts will notice that CMake and configure
are similar in their functionality. However, configure takes command line arguments to control the
generation of makefiles whereas in CMake, the build options can be set from a user interface.

Customizing the Build Using the Terminal Based User Interface (ccmake). ccmake has a simple
terminal based interface that allows you to customize the VTK build to your particular machine and
with the desired options. Once you run CMake using ccmake, you will be presented with a list of
options that can be modified to customize the VTK build. CMake will be able to set most of these
options to reasonable default values. To change a value, simply scroll with arrow keys and press
enter when the desired option is highlighted. You will then be able to edit the option (unless the
variable is a boolean, in which case, pressing enter will toggle the value). After completing the edit
operation, hit enter again to resume scrolling through the options. Once you set all the options you
want, press ‘c’. CMake will then process the configuration files and if necessary display new options
on top (for example, if you turn VTK_WRAP_TCL on, you will be presented with options for the
location of Tcl/Tk libraries and include paths). If there are new options, you should set them, (or leave
them as they are if you are satisfied with the default values) and re-configure by pressing ‘c’ and con-
tinue this process until there are no new options. Once this iterative process is completed, there will
be new commands available: Generate and Exit. You can now press ‘g’ to have CMake generate
new makefiles and exit. If you need to change build options in the future, simply re-run ccmake and
follow the instructions above. 

Customizing the Build Using the Interactive Wizard Mode (cmake -i). On some platforms the
terminal based interface provided by ccmake may not work. In this case try cmake with the -i (inter-
active wizard) option. Once you do so, it will ask you whether you want to see the advanced options.
Most users will not have to change the advanced options. Next, CMake will ask you a list of ques-
tions. For each option, there will be a line describing what it does and a default (current) value. In
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most cases, CMake will be able to generate acceptable default options. However, in certain cases, for
example when a library such as OpenGL library is not located in the expected place, you will have to
tell CMake the correct setting. Furthermore, by default, the bindings for Tcl, Python and Java are not
created. If you want support for one or more of these languages, you will have to turn on the appropri-
ate VTK_WRAP_XXX option on and, if necessary, tell CMake the location of necessary libraries and
header files. Once you answer all questions, all your makefiles will be generated and VTK will be
ready to build. If you need to change build options in the future, you can re-run CMake in wizard
mode and answer all questions again.

Compiling the Source Code 

Once CMake has completed running and produced the necessary makefiles, you can type make and
VTK should compile. Some make utilities such as GNU make (gmake) support parallel builds (e.g.,
gmake with the -j option). Use parallel make if possible, even if on a single processor system,
because usually the process is IO bound and the processor can handle multiple compiles. If you do
run into problems, you may wish to join the vtkusers mailing list (see “Additional Resources” on
page 6) and ask for help there. Commercial support is also available from Kitware. 

Building VTK On Multiple Platforms 

If you are planning to build VTK for multiple architectures then you can either make a copy of the
entire VTK tree for each architecture and follow the instructions above, or you can have one copy of
the VTK source tree and produce object code, libraries, and executables for each architecture in a sep-
arate directory. This approach requires creating a new build directory for each architecture such as
vtk-solaris (make sure that you have enough disk space). Assuming that the new directory is cre-
ated along side of the VTK source code directory, change directory (cd) into this directory and then
run CMake similar to the following example: 

cd /yourdisk 
ls (output is: VTK vtk-solaris vtk-sgi) 
cd vtk-solaris 
cmake -i ../VTK 

or 

ccmake ../VTK

This will create makefiles in the vtk-solaris directory. You can now follow the instructions in the
previous section for compiling VTK.

Installing VTK 

Now that VTK has been built, the executables and libraries will be located in the build directory, in
the sub-directory bin/. If you plan to share the build with more than one developer on the UNIX sys-
tem, and you have root privileges, it is often a good idea to run the make install command. This
will install VTK into /usr/local, unless you changed the build option CMAKE_INSTALL_PREFIX
to another location. Running make install will copy all the files you need to compile and run VTK
into a directory that other users can share. 
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This concludes the build and installation section for VTK under UNIX. If you need more infor-
mation about CMake, see http://www.cmake.org or purchase the Mastering CMake book from
Kitware (http://www.kitware.com/products/cmakebook.html). Chapter 3 of this software
guide provides more details on how to run examples and create your own applications. 
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System Overview 3

The purpose of this chapter is to provide you with an
overview of the Visualization Toolkit system, and to show you the basic information you’ll need to
create applications in C++, Java, Tcl, and Python. We begin by introducing basic system concepts and
object model abstractions. We close the chapter by demonstrating these concepts and describing what
you’ll need to know to build applications. 

3.1 System Architecture
The Visualization Toolkit consists of two basic subsys-
tems: a compiled C++ class library and an “inter-
preted” wrapper layer that lets you manipulate the
compiled classes using the languages Java, Tcl, and
Python. See Figure 3–1.

The advantage of this architecture is that you can
build efficient (in both CPU and memory usage) algo-
rithms in the compiled C++ language, and retain the
rapid code development features of interpreted lan-
guages (avoidance of compile/link cycle, simple but
powerful tools, and access to GUI tools). Of course,
for those proficient in C++ and who have the tools to
do so, applications can be built entirely in C++.

The Visualization Toolkit is an object-oriented system. The key to using VTK effectively is to
develop a good understanding of the underlying object models. Doing so will remove much of the
mystery surrounding the use of the hundreds of objects in the system. With this understanding in
place it’s much easier to combine objects to build applications. You’ll also need to know something
about the capabilities of the many objects in the system; this only comes with reviewing code exam-

Figure 3–1  The Visualization Toolkit
consists of a compiled (C++) core
wrapped with various interpreted lan-
guages (Java, Tcl, Python).

Interpreted Wrapper
(Tcl, Java, Python)

Compiled Core
(C++)
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ples and online documentation. In this User’s Guide, we’ve tried to provide you with useful combina-
tions of VTK objects that you can adapt to your own applications.

In the remainder of this section, we will introduce two major components of the Visualization
Toolkit: the visualization pipeline and the rendering engine. The visualization pipeline is used to
acquire or create data, process that data, and either write the results to a file or pass the results to the
rendering engine for display. The rendering engine is responsible for creating a visual representation
of the data. Note that these are not truly rigid architectural components of VTK but are instead con-
ceptual components. The discussion in this chapter will be fairly high-level, but when you combine
that with the specific examples in both this chapter and the next, as well as the hundreds of available
examples in the VTK source distribution you will gain a good understanding of these components.

Low-Level Object Model

The VTK object model can be thought of as being rooted in the superclass vtkObject. Nearly all VTK
classes are derived from this class, or in some special cases from its superclass vtkObjectBase. All
VTK must be created using the object's New() method, and must be destroyed using the object's
Delete() method. VTK objects cannot be allocated on the stack because the constructor is a protected
method. Using a common superclass and a unified method of creating and destroying object, VTK is
able to provide several basic object-oriented operations.

Reference Counting. Objects explicitly store a count of the number of pointers referencing them.
When an object is created through the static New() method of a class its initial reference count is 1
because a raw pointer must be used to refer to the new object:

vtkObjectBase* obj = vtkExampleClass::New();

When other references to the object are created or destroyed the reference count is incremented and
decremented using the Register() and UnRegister() methods. Usually this is handled automatically by
the various “set” methods provided in the object’s API:

otherObject->SetExample(obj);

The reference count is now 2 because both the original pointer and a pointer stored inside the other
object both refer to it. When the raw pointer originally storing the object is no longer needed the ref-
erence is removed using the Delete() method:

obj->Delete();

From this point forward it is no longer safe to use the original pointer to access the object because the
pointer does not own a reference to it. In order to ensure proper management of object references
every call to New() must be paired with a later call to Delete() to be sure no references are leaked.

A "smart pointer" implementation is provided by the class template vtkSmartPointer<> which
simplifies object management. The above example may be re-written:

vtkSmartPointer<vtkObjectBase> obj =
vtkSmartPointer<vtkExampleClass>::New();

otherObject->SetExample(obj);
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In this case the smart pointer automatically manages the reference it owns. When the smart pointer
variable goes out-of-scope and is no longer used, such as when a function in which it is a local vari-
able returns, it automatically informs the object by decrementing the reference count. By using the
static New() method provided by the smart pointer no raw pointer ever needs to hold a reference to
the object, so no call to Delete() is needed.

Run-Time Type Information. In C++ the real type of an object may be different from the type of
pointer used to reference it. All classes in the public interface of VTK have simple identifiers for class
names (no templates), so a string is sufficient to identify them. The type of a VTK object may be
obtained at run-time with the GetClassName() method:

const char* type = obj->GetClassName();

An object may be tested for whether it is an instance of a particular class or one of its subclasses using
the IsA() method:

if(obj->IsA("vtkExampleClass")) { ... }

A pointer of a superclass type may be safely converted to a more derived type using the static Safe-
DownCast() method provided by the class of the derived type:

vtkExampleClass* example = vtkExampleClass::SafeDownCast(obj)

This will succeed at run-time only if the object is truly an instance of the more-derived type and oth-
erwise will return a null pointer.

Object State Display. When debugging it is often useful to display a human-readable description of
the current state of an object. This can be obtained for VTK objects using the Print() method:

obj->Print(cout);

The Rendering Engine
The VTK rendering engine consists of the classes in VTK that are responsible for taking the results of
the visualization pipeline and displaying them into a window. This involves the following compo-
nents. Note that this is not an exhaustive list, but rather a sense of the most commonly used objects in
the rendering engine. The subheadings used here are the highest level superclass in VTK that repre-
sents this type of object, and in many cases where there are multiple choices these are abstract classes
defining the basic API across the various concrete subclasses that implement the functionality.. 

vtkProp. Visible depictions of data that exist in the scene are represented by a subclass of vtkProp.
The most commonly used subclasses of vtkProp for displaying objects in 3D are vtkActor (used to
represent geometric data in the scene) and vtkVolume (used to represent volumetric data in the scene).
There are also props that represent data in 2D such as vtkActor2D. The vtkProp subclass is generally
responsible for knowing its position, size, and orientation in the scene. The parameters used to control
the placement of the prop generally depend on whether the prop is for example a 3D object in the
scene, or a 2D annotation. For 3D props such as vtkActor and vtkVolume (both subclasses of
vtkProp3D which is itself a subclass of vtkProp), you can either directly control parameters such as
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the object's 3D position, orientation and scale, or you can use a 4x4 transformation matrix. For 2D
props that provide annotation such as the vtkScalarBarActor, the size and position of the annotation
can be defined in a variety of ways including specifying a position, width, and height relative to the
size of the entire viewport. In addition to providing placement control, props generally have a mapper
object that holds the data and knows how to render it, and a property object that controls parameters
such as color and opacity.

There are a large number (over 50) of specialized props such as vtkImageActor (used to display
an image) and vtkPieChartActor (used to create a pie chart visual representation of an array of data

(a) Image Data
(vtkImageData)

(e) Polygonal Data
(vtkPolyData)

(c) Structured Grid
(vtkStructuredGrid)

(f) Unstructured Grid
(vtkUnstructuredGrid)

(b) Rectilinear Grid
(vtkRectilinearGrid)

(d) Unstructured Points
(use vtkPolyData)

Figure 3–2  Dataset types found in VTK. Note that unstructured points can be represented by either polygonal
data or unstructured grids, so are not explicitly represented in the system.
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values). Some of these specialized props directly contain the parameters that control appearance, and
directly have a reference to the input data to be rendered, and therefore do not require the use of a
property or a mapper. The vtkFollower prop is a specialized subclass of vtkActor that will automati-
cally update its orientation in order to continually face a specified camera. This is useful for display-
ing billboards or text in the 3D scene and having them remain visible as the user rotates. The
vtkLODActor is also a subclass of vtkActor that automatically changes its geometric representation
in order to maintain interactive frame rates, and vtkLODProp3D is a subclass of vtkProp3D that
selects between a number of different mappers (perhaps even a mixture of volumetric and geometric
mappers) in order to provide interactivity. vtkAssembly allows hierarchies of actors, properly manag-
ing the transformations when the hierarchy is translated, rotated or scaled.

vtkAbstractMapper. Some props such as vtkActor and vtkVolume use a subclass of vtkAbstract-
Mapper to hold a reference to the input data and to provide the actual rendering functionality. The
vtkPolyDataMapper is the primary mapper for rendering polygonal geometry. For volumetric objects,
VTK provides several rendering techniques including the vtkFixedPointVolumeRayCastMapper that
can be used to rendering vtkImageData, and the vtkProjectedTetrahedra mapper that can be used to
render vtkUnstructuredGrid data.

vtkProperty and vtkVolumeProperty. Some props use a separate property object to hold the vari-
ous parameters that control the appearance of the data. This allows you to more easily share appear-
ance settings between different objects in your scene. The vtkActor object uses a vtkProperty to store
parameters such as color, opacity, and the ambient, diffuse, and specular coefficient of the material.
The vtkVolume object instead uses a vtkVolumeProperty to capture the parameters that are applicable
to a volumetric object, such as the transfer functions that map the scalar value to color and opacity.
Many mappers also provide functionality to set clipping planes that can be used to reveal interior
structure.

vtkCamera. The vtkCamera contains the parameters that control how you view the scene. The vtk-
Camera has a position, a focal point, and a vector defining the direction of "up" in the scene. Other
parameters control the specific viewing transformation (parallel or perspective), the scale or view
angle of the image, and the near and far clipping planes of the view frustum.

vtkLight. When lighting is computed for a scene, one or more vtkLight objects are required. The vtk-
Light objects store the position and orientation of the light, as well as the color and intensity. Lights
also have a type that describes how the light will move with respect to the camera. For example, a
Headlight is always located at the camera's position and shines on the camera's focal point, whereas a
SceneLight is located at a stationary position in the scene.

vtkRenderer. The objects that make up a scene including the props, the camera and the lights are col-
lected together in a vtkRenderer. The vtkRenderer is responsible for managing the rendering process
for the scene. Multiple vtkRenderer objects can be used together in a single vtkRenderWindow. These
renderers may render into different rectangular regions (known as viewports) of the render window,
or may be overlapping.

vtkRenderWindow. The vtkRenderWindow provides a connection between the operating system
and the VTK rendering engine. Platform specific subclasses of vtkRenderWindow are responsible for
opening a window in the native windowing system on your computer and managing the display pro-
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cess. When you develop with VTK, you simply use the platform-independent vtkRenderWindow
which is automatically replaced with the correct platform-specific subclass at runtime. The vtkRen-
derWindow contains a collection of vtkRenderers, and parameters that control rendering features such
as stereo, anti-aliasing, motion blur and focal depth.

vtkRenderWindowInteractor. The vtkRenderWindowInteractor is responsible for processing
mouse, key, and timer events and routing these through VTK's implementation of the command /
observer design pattern. A vtkInteractorStyle listens for these events and processes them in order to
provide motion controls such as rotating, panning and zooming. The vtkRenderWindowInteractor
automatically creates a default interactor style that works well for 3D scenes, but you can instead
select one for 2D image viewing for example, or create your own custom interactor style.

vtkTransform. Many of the objects in the scene that require placement such as props, lights, and
cameras have a vtkTransform parameter that can be used to easily manipulate the position and orien-
tation of the object. The vtkTransform can be used to describe the full range of linear (also known as
affine) coordinate transformation in three dimensions, which are internally represented as a 4x4
homogeneous transformation matrix. The vtkTransform object will start with a default identity matrix
or you can chain transformation together in a pipeline fashion to create complex behavior. The pipe-
line mechanism assures that if you modify any transform in the pipeline, all subsequent transforms
are updated accordingly.

vtkLookupTable, vtkColorTransferFunction, and vtkPiecewiseFunction. Visualizing scalar data
often involves defining a mapping from a scalar value to a color and opacity. This is true both in geo-
metric surface rendering where the opacity will define the translucency of the surface, and in volume
rendering where the opacity will represent the opacity accumulated along some length of of ray pass-
ing through the volume. For geometric rendering, this mapping is typically created using a vtk-
LookupTable, and in volume rendering both the vtkColorTransferFunction and the
vtkPiecewiseFunction will be utilized.

A minimal example. The following example (adapted from ./VTK/Examples/Rendering/Cxx/Cylin-
der.cxx) shows how some of these objects can be used to specify and render a scene.

 vtkCylinderSource *cylinder = vtkCylinderSource::New();

 vtkPolyDataMapper *cylinderMapper = vtkPolyDataMapper::New();
 cylinderMapper->SetInputConnection(cylinder->GetOutputPort());

 vtkActor *cylinderActor = vtkActor::New();
 cylinderActor->SetMapper(cylinderMapper);

 vtkRenderer *ren1 = vtkRenderer::New();
 ren1->AddActor(cylinderActor);

 vtkRenderWindow *renWin = vtkRenderWindow::New();
 renWin->AddRenderer(ren1);

 vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
 iren->SetRenderWindow(renWin);
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 renWin->Render();
 iren->Start();

In this example we have directly created a vtkActor, vtkPolyDataMapper, vtkRenderer, vtkRender-
Window and vtkRenderWindowInteractor. Note that a vtkProperty was automatically created by the
actor, and a vtkLight and a vtkCamera were automatically created by the vtkRenderer. 

The Visualization Pipeline
The visualization pipeline in VTK can be used to read or create data, analyze and create derivative
version of this data, and write the data to disk or pass it along to the rendering engine for display. For
example, you may read a 3D volume of data from disk, process it to create a set of triangles represent-
ing an isovalued surface through the volume, then write this geometric object back out to disk. Or,
you may create a set of spheres and cylinders to represent atoms and bonds, then pass these off to the
rendering engine for display.

The Visualization Toolkit uses a data flow approach to transform information into graphical
data. There are two basic types of objects involved in this approach.

• vtkDataObject
• vtkAlgorithm

Data objects represent data of various types. The class vtkDataObject can be viewed as a generic
“blob” of data. Data that has a formal structure is referred to as a dataset (class vtkDataSet). Figure 3–
2 shows the dataset objects supported in VTK. Datasets consist of a geometric and topological struc-
ture (points and cells) as illustrated by the figure; they also have associated attribute data such as sca-
lars or vectors. The attribute data can be associated with the points or cells of the dataset. Cells are
topological organizations of points; cells form the atoms of the dataset and are used to interpolate
information between points. Figure 19–20 and Figure 19–21 show twenty-three of the most common
cell types supported by VTK. Figure 3–3 shows the attribute data supported by VTK.

Algorithms, also referred to generally as filters, operate on data objects to produce new data
objects. Algorithms and data objects are connected together to form visualization pipelines (i.e., data-
flow networks). Figure 3–4 is a depiction of a visualization pipeline. 

This figure together with Figure 3–5 illustrate some important visualization concepts. Source
algorithms produce data by reading (reader objects) or constructing one or more data objects (proce-
dural source objects). Filters ingest one or more data objects and generate one or more data objects on
output. Mappers (or in some cases, specialized actors) take the data and convert it into a visual repre-
sentation that is displayed by the rendering engine. A writer can be thought of as a type of mapper that
writes data to a file or stream.

There are several important issues regarding the construction of the visualization pipeline that
we will briefly introduce here. First, pipeline topology is constructed using variations of the methods

aFilter->SetInputConnection( anotherFilter->GetOutputPort() );

which sets the input to the filter aFilter to the output of the filter anotherFilter. (Filters with
multiple inputs and outputs have similar methods.) Second, we must have a mechanism for control-
ling the execution of the pipeline. We only want to execute those portions of the pipeline necessary to
bring the output up to date. The Visualization Toolkit uses a lazy evaluation scheme (executes only
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Figure 3–3  Data attributes associated with the points and cells of a dataset. 
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when the data is requested) based on an internal modification time of each object. Third, the assembly
of the pipeline requires that only those objects compatible with one another can fit together with the
SetInputConnection() and GetOutputPort() methods. VTK produces errors at run-time if the
data object types are incompatible. Finally, we must decide whether to cache, or retain, the data
objects once the pipeline has executed. Since visualization datasets are typically quite large, this is
important to the successful application of visualization tools. VTK offers methods to turn data cach-
ing on and off, use of reference counting to avoid copying data, and methods to stream data in pieces
if an entire dataset cannot be held in memory. (We recommend that you review the chapter on the
Visualization Pipeline in The Visualization Toolkit An Object-Oriented Approach to 3D Graphics text
for more information.)

Please note that there are many varieties of both algorithm and data objects. Figure 16–2 shows
six of the most common data object types supported by the current version of VTK. Algorithm
objects vary in their type(s) of input data and output data and of course in the particular algorithm
implemented.

Pipeline Execution. In the previous section we discussed the need to control the execution of the
visualization pipeline. In this section we will expand our understanding of some key concepts regard-
ing pipeline execution.

As indicated in the previous section, the VTK visualization pipeline only executes when data is
required for computation (lazy evaluation). Consider this example where we instantiate a reader
object and ask for the number of points as shown below. (The language shown here is Tcl.)

No input
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No output
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Figure 3–5  Different types of algorithms. Filters ingest one or more inputs and produce one or more
output data objects.
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vtkPLOT3DReader reader
reader SetXYZFileName $VTK_DATA_ROOT/Data/combxyz.bin
[reader GetOutput] GetNumberOfPoints

the reader object will return “0” from the GetNumberOfPoints() method call, despite the fact that
the data file contains thousands of points. However, if you add the Update() method

reader Update
[reader GetOutput] GetNumberOfPoints

the reader object will return the correct number. In the first example, the GetNumberOfPoints()
methods does not require computation, and the object simply returns the current number of points,
which is “0”. In the second example, the Update() method forces execution of the pipeline, thereby
forcing the reader to execute and read the data from the file indicated. Once the reader has executed,
the number of points in its output is set correctly.

Normally, you do not need to manually invoke Update() because the filters are connected into a
visualization pipeline. In this case, when the actor receives a request to render itself, it forwards the
method to its mapper, and the Update() method is automatically sent through the visualization pipe-
line. A high-level view of pipeline execution appears in Figure 3–6. As this figure illustrates, the
Render() method often initiates the request for data; this request is then passed up through the pipe-
line. Depending on which portions of the pipeline are out-of-date, the filters in the pipeline may re-
execute, thereby bringing the data at the end of the pipeline up-to-date; the up-to-date data is then ren-
dered by the actor. (For more information about the execution process, see Chapter 15 “Managing
Pipeline Execution” on page 317.)

Image Processing. VTK supports an extensive set of image processing and volume rendering func-
tionality. In VTK, both 2D (image) and 3D (volume) data are referred to as vtkImageData. An image
dataset in VTK is one in which the data is arranged in a regular, axis-aligned array. Images, pixmaps,
and bitmaps are examples of 2D image datasets; volumes (a stack of 2D images) is a 3D image data-
set.

Algorithms in the imaging pipeline always input and output image data objects. Because of the
regular and simple nature of the data, the imaging pipeline has other important features. Volume ren-
dering is used to visualize 3D vtkImageData (see “Volume Rendering” on page 139), and special
image viewers are used to view 2D vtkImageData. Almost all algorithms in the imaging pipeline are
multithreaded and are capable of streaming data in pieces to satisfy a user-specified memory limit.
Filters automatically sense the number of cores and processors available on the system and create that

Figure 3–6  Conceptual overview of pipeline execution.
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number of threads during execution as well as automatically separating data into pieces that are
streamed through the pipeline. (See “vtkStreamingDemandDrivenPipeline” on page 325 for more
information.)

This concludes our brief overview of the Visualization Toolkit system architecture. We recom-
mend the The Visualization Toolkit An Object-Oriented Approach to 3D Graphics text for more
details on many of the algorithms found in VTK. Learning by example is another helpful approach.
Chapters 4 through 13 contain many annotated examples demonstrating various capabilities of VTK.
Also, since source code is available, you may wish to study the examples found in the VTK/Exam-
ples directory of the VTK source tree.

With this abbreviated introduction behind us, let’s look at ways to create applications in C++,
Tcl, Java, and Python.

3.2 Create An Application
This section covers the basic information you need to develop VTK applications in the four program-
ming languages Tcl, C++, Java, and Python. After reading this introduction, you should jump to the
subsection(s) that discuss the language(s) you are interested in using. In addition to providing you
with instructions on how to create and run a simple application, each section will show you how to
take advantage of callbacks in that language.

User Methods, Observers, and Commands
Callbacks (or user methods) are implemented in VTK using the Subject/Observer and Command
design pattern. This means that nearly every class in VTK (every subclass of vtkObject) has an
AddObserver() method that can be used to setup callbacks from VTK. The observer looks at every
event invoked on an object, and if it matches one of the events that the observer is watching for, then
an associated command is invoked (i.e., the callback). For example, all VTK filters invoke a
StartEvent right before they start to execute. If you add an observer that watches for a
StartEvent then it will get called every time that filter starts to execute. Consider the following Tcl
script that creates an instance of vtkElevationFilter, and adds an observer for the StartEvent to call
the procedure PrintStatus.

proc PrintStatus {} {
puts "Starting to execute the elevation filter"
}
vtkElevationFilter foo
foo AddObserver StartEvent PrintStatus

This type of functionality (i.e., callback) is available in all the languages VTK supports. Each section
that follows will show a brief example of how to use it. Further discussion on user methods is pro-
vided in “Integrating With The Windowing System” on page 421. (This section also discusses user
interface integration issues.)

To create your own application, we suggest starting with one of the examples that come with
VTK. They can be found in VTK/Examples in the source distribution. In the source distribution the
examples are organized first by topic and then by language. Under VTK/Examples you will find
directories for different topics, and under the directories there will be subdirectories for different lan-
guages such as Tcl.
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Tcl
Tcl is one of the easiest languages with which to start creating VTK applications. Once you have
installed VTK, you should be able to run the Tcl examples that come with the distribution. Under
UNIX you have to compile VTK with Tcl support as mentioned in “Installing VTK on Unix Systems”
on page 14. Under Windows you can just install the self-extracting archive as described in “Installing
VTK on Windows XP, Vista or later” on page 10.

Windows. Under Windows, you can run a Tcl script just by double clicking on the file (Cone.tcl in
this example). If nothing happens you might have an error in your script or a problem with associating
Tcl files with the vtk.exe executable. To detect this you need to run vtk.exe first. vtk.exe can be
found in your start menu under VTK. Once execution begins, a console window should appear with a
prompt in it. At this prompt type in a cd command to change to the directory where Cone.tcl is
located. Two examples are given below:

% cd "c:/VTK/Examples/Tutorial/Step1/Tcl"

Then you will need to source the example script using the following command.

% source Cone.tcl

Tcl will try to execute Cone.tcl, and you will be able to see errors or warning messages that would
otherwise not appear.

Unix. Under UNIX, Tcl development can be done by running the VTK executable (after you have
compiled the source code) that can be found in your binary directory (e.g., VTK-bin/bin/vtk, VTK-
Solaris/bin/vtk, etc.) and then providing the Tcl script as the first argument as shown below.

unix machine> cd VTK/Examples/Tutorial/Step1/Tcl
unix machine> /home/VTK-Solaris/bin/vtk Cone.tcl

User methods can be set up as shown in the introduction of this section. An example can be found in
Examples/Tutorial/Step2/Tcl/Cone2.tcl. The key changes are shown below.

proc myCallback {} {
puts "Starting to render"

}

vtkRenderer ren1
ren1 AddObserver StartEvent myCallback

You may instead simply provide the body of the proc directly to AddObserver().

vtkRenderer ren1
ren1 AddObserver StartEvent {puts "Starting to render"}

C++
Using C++ as your development language will typically result in smaller, faster, and more easily
deployed applications than most any other language. C++ development also has the advantage that
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you do not need to compile any additional support for Tcl, Java, or Python. This section will show
you how to create a simple VTK C++ application for the PC with Microsoft Visual C++ and also for
UNIX using an appropriate compiler. We will start with a simple example called Cone.cxx which
can be found in Examples/Tutorial/Step1/Cxx. For both Windows and UNIX you can use a
source code installation of VTK or installed binaries. These examples will work with both. 

The first step in building your C++ program is to use CMake to generate a makefile or work-
space file, depending on your compiler. The CMakeList.txt file that comes with Cone.cxx (shown
below) makes use of the FindVTK and UseVTK CMake modules. These modules attempt to locate
VTK and then setup your include paths and link lines for building C++ programs. If they do not suc-
cessfully find VTK, you will have to manually specify the appropriate CMake parameters and rerun
CMake as necessary.

PROJECT (Step1)

FIND_PACKAGE(VTK REQUIRED)
IF(NOT VTK_USE_RENDERING)
 MESSAGE(FATAL_ERROR

 "Example ${PROJECT_NAME} requires VTK_USE_RENDERING.")
ENDIF(NOT VTK_USE_RENDERING)
INCLUDE(${VTK_USE_FILE})

ADD_EXECUTABLE(Cone Cone.cxx)
TARGET_LINK_LIBRARIES(Cone vtkRendering)

Microsoft Visual C++. Once you have run CMake for the Cone example you are ready to start
Microsoft Visual C++ and load the generated solution file. For current .NET versions of the compile
this will be named Cone.sln.You can now select a build type (such as Release or Debug) and build
your application. If you want to integrate VTK into an existing project that does not use CMake, you
can copy the settings from this simple example into your existing workspaces. 

Now consider an example of a true Windows application. The process is very similar to what
we did above, except that we create a windows application instead of a console application, as shown
in the following. Much of the code is standard Windows code and will be familiar to any Windows
developer. This example can be found in VTK/Examples/GUI/Win32/SimpleCxx/
Win32Cone.cxx. Note that the only significant change to the CMakeLists.txt file is the addition
of the WIN32 parameter in the ADD_EXECUTABLE command.

#include "windows.h"
#include "vtkConeSource.h"
#include "vtkPolyDataMapper.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkRenderer.h"

static HANDLE hinst;
long FAR PASCAL WndProc(HWND, UINT, UINT, LONG);

// define the vtk part as a simple c++ class
class myVTKApp
{
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public:
myVTKApp(HWND parent);
~myVTKApp();

private:
vtkRenderWindow *renWin;
vtkRenderer *renderer;
vtkRenderWindowInteractor *iren;
vtkConeSource *cone;
vtkPolyDataMapper *coneMapper;
vtkActor *coneActor;

};

We start by including the required VTK include files. Next we have two standard windows prototypes
followed by a small class definition called myVTKApp. When developing in C++, you should try to
use object-oriented approaches instead of the scripting programming style found in many of the Tcl
examples. Here we are encapsulating the VTK components of the application into a small class.

This is the constructor for myVTKApp. As you can see it allocates the required VTK objects,
sets their instance variables, and then connects them to form a visualization pipeline. Most of this is
straightforward VTK code except for the vtkRenderWindow. This constructor takes a HWND handle
to the parent window that should contain the VTK rendering window. We then use this in the Set-
ParentId() method of vtkRenderWindow so that it will create its window as a child of the window
passed to the constructor.

myVTKApp::myVTKApp(HWND hwnd)
{

// Similar to Examples/Tutorial/Step1/Cxx/Cone.cxx
// We create the basic parts of a pipeline and connect them
this->renderer = vtkRenderer::New();
this->renWin = vtkRenderWindow::New();
this->renWin->AddRenderer(this->renderer);

 
// setup the parent window
this->renWin->SetParentId(hwnd);
this->iren = vtkRenderWindowInteractor::New();
this->iren->SetRenderWindow(this->renWin);

this->cone = vtkConeSource::New();
this->cone->SetHeight( 3.0 );
this->cone->SetRadius( 1.0 );
this->cone->SetResolution( 10 );
this->coneMapper = vtkPolyDataMapper::New();
this->coneMapper->SetInputConnection(this->cone->GetOutputPort());
this->coneActor = vtkActor::New();
this->coneActor->SetMapper(this->coneMapper);

this->renderer->AddActor(this->coneActor);
this->renderer->SetBackground(0.2,0.4,0.3);
this->renWin->SetSize(400,400);

// Finally we start the interactor so that event will be handled 
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this->renWin->Render(); 
}

The destructor simply frees all of the VTK objects that were allocated in the constructor. 

myVTKApp::~myVTKApp()
{

renWin->Delete();
renderer->Delete();
iren->Delete();
cone->Delete();
coneMapper->Delete();
coneActor->Delete();

}

The WinMain code here is all standard windows code and has no VTK references in it. As you can
see the application has control of the event loop. Events are handled by the WndProc described later
in this section.

int PASCAL WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow) 
{

static char szAppName[] = "Win32Cone";
HWND hwnd ;
MSG msg ;
WNDCLASS wndclass ;

if (!hPrevInstance)
{ 
wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance;
wndclass.hIcon = LoadIcon(NULL,IDI_APPLICATION);
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
wndclass.lpszMenuName = NULL;
wndclass.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
wndclass.lpszClassName = szAppName;
RegisterClass (&wndclass);
}

hinst = hInstance;

hwnd = CreateWindow ( szAppName,
"Draw Window",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
400,
480,
NULL,
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NULL,
hInstance,
NULL);

ShowWindow (hwnd, nCmdShow);
UpdateWindow (hwnd);
while (GetMessage (&msg, NULL, 0, 0))

{
TranslateMessage (&msg);
DispatchMessage (&msg);

}
return msg.wParam;

}

This WndProc is a very simple event handler. For a full application it would be significantly more
complicated, but the key integration issues are the same. At the top of this function we declare a static
reference to a myVTKApp instance. When handling the WM_CREATE method we create an Exit button
and then construct an instance of myVTKApp passing in the handle to the current window. The vtkRen-
derWindowInteractor will handle all of the events for the vtkRenderWindow, so you do not need to
handle them here. You probably will want to add code to handle resizing events so that the render
window resizes appropriately with respect to your overall user interface. If you do not set the
ParentId of the vtkRenderWindow, it will show up as a top-level independent window. Everything
else should behave the same as before.

long FAR PASCAL WndProc (HWND hwnd, UINT message,
UINT wParam, LONG lParam)
{

static HWND ewin;
static myVTKApp *theVTKApp;
switch (message)

{
case WM_CREATE:

{
ewin = CreateWindow("button","Exit",

WS_CHILD | WS_VISIBLE | SS_CENTER,
0,400,400,60,
hwnd,(HMENU)2,
(HINSTANCE)GetWindowLong(hwnd,GWL_HINSTANCE),
NULL);

theVTKApp = new myVTKApp(hwnd);
return 0;
}

case WM_COMMAND:
switch (wParam)
{
case 2:

PostQuitMessage (0);
if (theVTKApp)

{
delete theVTKApp;
theVTKApp = NULL;
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}
break;

}
return 0;

case WM_DESTROY:
PostQuitMessage (0);
if (theVTKApp)

{
delete theVTKApp;
theVTKApp = NULL;
}

return 0;
}

return DefWindowProc (hwnd, message, wParam, lParam);
}

UNIX. Creating a C++ application on UNIX is done by running CMake and then make. CMake cre-
ates a makefile that specifies the include paths, link lines, and dependencies. The make program then
uses this makefile to compile the application. This should result in a Cone executable that you can
run. If Cone.cxx does not compile then check the make errors and correct them. Make sure that the
values in the top of CMakeCache.txt are valid. If it does compile, but you receive errors when you
try running it, you might need to set your LD_LIBRARY_PATH as described in Chapter 2.

User Methods in C++. You can add user methods (using the observer/command design pattern) in
C++ by creating a subclass of vtkCommand that overrides the Execute() method. Consider the fol-
lowing example taken from VTK/Examples/Tutorial/Step2/Cxx/Cone2.cxx.

class vtkMyCallback : public vtkCommand { 
static myCallback *New() {return new vtkMyCallback;} 
virtual void Execute(vtkObject *caller, unsigned long, void *)

{
vtkRenderer *renderer = reinterpret_cast<vtkRenderer*>(caller);
cout << renderer->GetActiveCamera()->GetPosition()[0] << " "

<< renderer->GetActiveCamera()->GetPosition()[1] << " "
<< renderer->GetActiveCamera()->GetPosition()[2] << "\n";

}
};

While the Execute() method is always passed the calling object (caller) you are not required to use it.
If you do use the caller you will typically want to perform a SafeDownCast() to the actual type. For
example: 

virtual void Execute(vtkObject *caller, unsigned long, void *callData) 
{ 

vtkRenderer *ren = vtkRenderer::SafeDownCast(caller); 
if (ren) { ren->SetBackground(0.2,0.3,0.4); } 

}

Once you have created your subclass of vtkCommand you are ready to add an observer that will call
your command on certain events. This can be done as follows.
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// Here is where we setup the observer, 
//we do a new and ren1 will eventually free the observer 
vtkMyCallback *mo1 = vtkMyCallback::New(); 
ren1->AddObserver(vtkCommand::StartEvent,mo1);
mo1->Delete();

The above code creates an instance of myCallback and then adds an observer on ren1 for the
StartEvent. Whenever ren1 starts to render, the Execute() method of vtkMyCallback will be
called. When ren1 is deleted, the callback will be deleted as well.

Java
To create Java applications you must first have a working Java development environment. This sec-
tion provides instructions for using Sun's JDK 1.3 or later on either Windows or UNIX. Once your
JDK has been installed and you have installed VTK, you need to set your CLASSPATH environment
variable to include the VTK classes. Under Microsoft Windows this can be set by right clicking on
the My Computer icon, selecting the properties option, then selecting the Advanced tab, and then
clicking the Environment Variables button. Then add a CLASSPATH environment variable and set it to
include your the path to your vtk.jar file, your Wrapping/Java directory, and the current directory.
For a Windows build it will be something like "C:\vtk-bin\bin\vtk.jar;C:\vtk-
bin\Wrapping\Java;.". Under UNIX you should set your CLASSPATH environment variable to
something similar to "/yourdisk/vtk-bin/bin/vtk.jar;/yourdisk/vtk-bin/Wrapping/
Java;.".

The next step is to byte compile your Java program. For starters try byte compiling (with javac)
the Cone.java example that comes with VTK under VTK/Examples/Tutorial/Step1/Java.
Then you should be able to run the resulting application using the java command. It should display a
cone which rotates 360 degrees and then exits. The next step is to create your own applications using
the examples provided as a starting point.

public void myCallback()
{

System.out.println("Starting a render");
}

You set up a callback by passing three arguments. The first is the name of the event you are interested
in, the second is an instance of a class, the third is the name of the method you want to invoke. In this
example we set up the StartEvent to invoke the myCallback method on me (which is an instance of
Cone2). The myCallback method must of course be a valid method of Cone2 to avoid an error. (This
code fragment is from VTK/Examples/Tutorial/Step2/Java/cone2.java.)

Cone2 me = new Cone2();
ren1.AddObserver("StartEvent",me,"myCallback");

Python
If you have built VTK with Python support, a vtkpython executable will be created. Using this exe-
cutable, you should be able to run Examples/Tutorial/Step1/Python/Cone.py as follows.
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vtkpython Cone.py

Creating your own Python scripts is a simple matter of using some of our example scripts as a starting
point. User methods can be set up by defining a function and then passing it as the argument to the
AddObserver as shown below.

def myCallback(obj,event):
print "Starting to render"

ren1.AddObserver("StartEvent",myCallback)

The complete source code for the example shown above is in VTK/Examples/Tutorial/Step2/
Python/Cone2.py. 

3.3 Conversion Between Languages
As we have seen, VTK’s core is implemented in C++ and then wrapped with the Tcl, Java, and
Python programming languages. This means that you have a language choice when developing appli-
cations. Your choice will depend on which language you are most comfortable with, the nature of the
application, and whether you need access to internal data structures and/or have special performance
requirements. C++ offers several advantages over the other languages when you need to access inter-
nal data structure or require the highest-performing application possible. However, using C++ means
the extra burden of the compile/link cycle, which often slows the software development process.

You may find yourself developing prototypes in an interpreted language such as Tcl and then
converting them to C++. Or, you may discover example code (in the VTK distribution or from other
users) that you wish to convert to your implementation language.

Converting VTK code from one language to another is fairly straightforward. Class names and
method names remain the same across languages; what changes are the implementation details and
GUI interface, if any. For example, the C++ statement

anActor->GetProperty()->SetColor(red,green,blue);

in Tcl becomes

[anActor GetProperty] SetColor $red $green $blue

in Java becomes

anActor.GetProperty().SetColor(red,green,blue);

and in Python becomes

anActor.GetProperty().SetColor(red,green,blue)

One major limitation you’ll find is that some C++ applications cannot be converted to the other three
languages because of pointer manipulation.While it is always possible to get and set individual values
from the wrapped languages, it is not always possible to obtain a raw pointer to quickly traverse and
inspect or modify a large structure. If your application requires this level of data inspection or manip-
ulation, you can either develop directly in C++ or extend VTK at the C++ level with your required
high-performance classes, then use these new classes from your preferred interpreted language.
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The Basics 4

The purpose of this chapter is to introduce you to some of
VTK’s capabilities by way of a selected set of examples. Our focus will be on commonly used meth-
ods and objects, and combinations of objects. We will also introduce important concepts and useful
applications. By no means are all of VTK’s features covered; this chapter is meant to give you a
broad overview of what’s possible. You’ll want to refer to online documentation or class .h files to
learn about other options each class might have.

Most of the examples included here are implemented in the Tcl programming language. They
could just as easily be implemented in C++, Java, and Python—the conversion process between the
languages is straightforward. (See “Conversion Between Languages” on page 37.) C++ does offer
some advantages, mainly access and manipulation of data structures and pointers, and some examples
reflect this by being implemented in the C++ language.

Each example presented here includes sample code and often a supplemental image. We indi-
cate the name of the source code file (when one exists in the VTK source tree), so you will not have
to enter it manually. We recommend that you run and understand the example and then experiment
with object methods and parameters. You may also wish to try suggested alternative methods and/or
classes. Often, the Visualization Toolkit offers several approaches to achieve similar results. Note also
that the scripts are often modified from what’s found in the source code distribution. This is done to
simplify concepts or remove extraneous code.

Learning an object-oriented system like VTK first requires understanding the programming
abstraction, and then becoming familiar with the library of objects and their methods. We recommend
that you review “System Architecture” on page 19 for information about the programming abstrac-
tion. The examples in this chapter will then provide you with a good overview of the many VTK
objects.
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4.1 Creating Simple Models
The use of the Visualization Toolkit typically goes as follows: read/generate some data, filter it, render
it, and interact with it. In this section, we’ll start by looking at ways to read and generate data.

There are two basic ways to obtain data. The data may exist in a file (or files, streams, etc.) that
is read into the system, or the data may be procedurally generated (via an algorithm or mathematical
expression). Recall that objects that initiate the processing of data in the visualization pipeline are
called source objects (see Figure 3–5). Objects that generate data are called procedural (source)
objects, and objects that read data are called reader (source) objects.

Procedural Source Object
We’ll start off by rendering a simple cylinder. The example code shown below (VTK/Examples/
Rendering/Tcl/Cylinder.tcl) demonstrates many basic concepts in the visualization pipeline
and rendering engine. Refer to Figure 4–1 to see the results of running the script.

We begin the script by invoking a Tcl command to load the VTK package (package require
vtk) and create a GUI interpreter (package require vtkinteraction) that lets you type com-
mands at run-time. Also, we load vtktesting which defines a set of colors, one of which (tomato) is
used later in the script.

package require vtk
package require vtkinteraction
package require vtktesting

We then create a procedural source object: vtkCylinderSource. This source creates a polygonal repre-
sentation of a cylinder. The output of the cylinder is set as the input to the vtkPolyDataMapper via the
method SetInputConnection(). We create an actor (the object that is rendered) that refers to the map-
per as its defining geometry. Notice the way objects are constructed in Tcl: we use the class name fol-
lowed by the desired instance name.

vtkCylinderSource cylinder
  cylinder SetResolution 8
vtkPolyDataMapper cylinderMapper
  cylinderMapper SetInputConnection [cylinder GetOutputPort]
vtkActor cylinderActor
  cylinderActor SetMapper cylinderMapper
  eval [cylinderActor GetProperty] SetColor $tomato

 cylinderActor RotateX 30.0

Figure 4–1  Using Tcl/Tk
to program an interpreted
application.
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  cylinderActor RotateY -45.0

As a reminder of how similar a C++ implementation is to a Tcl (or other interpreted languages) imple-
mentation, the same code implemented in C++ is shown below, and can be found in VTK/Examples/
Rendering/Cxx/Cylinder.cxx.

vtkCylinderSource *cylinder = vtkCylinderSource::New();
cylinder->SetResolution(8);

vtkPolyDataMapper *cylinderMapper = vtkPolyDataMapper::New();
cylinderMapper->SetInputConnection(cylinder->GetOutputPort());

vtkActor *cylinderActor = vtkActor::New();
cylinderActor->SetMapper(cylinderMapper);
cylinderActor->GetProperty()->SetColor(1.0000, 0.3882, 0.2784);
cylinderActor->RotateX(30.0);
cylinderActor->RotateY(-45.0);

Recall that source objects initiate the visualization pipeline, and mapper objects (or prop objects that
include mapping functionality) terminate the pipeline, so in this example we have a pipeline consist-
ing of two algorithms (i.e., a source and mapper). The VTK pipeline uses a lazy evaluation scheme,
so even though the pipeline is connected, no generation or processing of data has yet occurred (since
we have not yet requested the data).

Next we create graphics objects which will allow us to render the actor. The vtkRenderer
instance ren1 coordinates the rendering process for a viewport of the render window renWin. The
render window interactor iren is a 3D widget that allows us to manipulate the camera.

#Create the graphics structure
vtkRenderer ren1
vtkRenderWindow renWin
  renWin AddRenderer ren1
vtkRenderWindowInteractor iren
  iren SetRenderWindow renWin

Notice that we’ve associated the renderer with the render window via the AddRenderer() method. We
must also associate the actor with the renderer using the AddActor() method.

# Add the actors to the renderer, set the background and size
ren1 AddActor cylinderActor
ren1 SetBackground 0.1 0.2 0.4
renWin SetSize 200 200

The SetBackground() method specifies the background color of the rendering window using RGB
(red, green, blue) values between (0,1), and SetSize() specifies the window size in pixels. Finally, we
conclude this example by associating the GUI interactor with the render window interactor’s user-
defined method. (The user-defined method is invoked by pressing the u key when the mouse focus is
in the rendering window. See “Using VTK Interactors” on page 45. Also see “User Methods, Observ-
ers, and Commands” on page 29) The Initialize() method begins the event loop, and the Tcl/Tk com-
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mand wm withdraw . makes sure that the interpreter widget .vtkInteract is not visible when the
application starts.

# Associate the “u” keypress with a UserEvent and start the event loop
iren AddObserver UserEvent {wm deiconify .vtkInteract}
iren Initialize

# suppress the tk window
wm withdraw .

When the script is run, the visualization pipeline will execute because the rendering engine will
request data. (The window expose event will force the render window to render itself.) Only after the
pipeline executes are the filters up-to-date with respect to the input data. If you desire, you can manu-
ally cause execution of the pipeline by invoking renWin Render.

After you get this example running, you might try a couple of things. First, use the interactor by
mousing in the rendering window. Next, change the resolution of the cylinder object by invoking the
cylinder SetResolution 12. You can do this by editing the example file and re-executing it, or by
pressing u in the rendering window to bring up the interpreter GUI and typing the command there.
Remember, if you are using the Tcl interactor popup, the changes you make are visible only after data
is requested, so follow changes with a renWin Render command, or by mousing in the rendering
window.

Reader Source Object
This example is similar to the previous example except that we
read a data file rather than procedurally generating the data. A
stereo-lithography file is read (suffix .stl) that represents
polygonal data using the binary STL data format. (Refer to
Figure 4–2 and the Tcl script VTK/Examples/Rendering/
Tcl/CADPart.tcl.) 

vtkSTLReader part
part SetFileName \

$VTK_DATA_ROOT/Data/42400-IDGH.stl
vtkPolyDataMapper partMapper

partMapper SetInputConnection \
[part GetOutputPort]

vtkLODActor partActor
partActor SetMapper partMapper

Notice the use of the vtkLODActor. This actor changes its representation to maintain interactive per-
formance. Its default behavior is to create a point cloud and wireframe, bounding-box outline to rep-
resent the intermediate and low-level representations. (See “Level-Of-Detail Actors” on page 55 for
more information.) The model used in this example is small enough that on most computers today
you will only see the high-level representation (the full geometry of the model).

Many of the readers do not sense when the input file(s) change and re-execute. For example, if
the file 42400-IDGH.stl changes, the pipeline will not re-execute. You can manually modify
objects by invoking the Modified() method on them. This will cause the filter to re-execute, as well as
all filters downstream of it.

Figure 4–2  Reader source object.
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The Visualization Toolkit has limited, built-in modeling capabilities. If you want to use VTK to
edit and manipulate complex models (e.g., those created by a solid modeler or modeling tool), you’ll
typically use a reader (see “Readers” on page 239) to interface to the data. (Another option is import-
ers, which are used to ingest entire scenes. See “Importers” on page 245 for more information.)

4.2 Using VTK Interactors
Once you’ve visualized your data, you typically want to interact with it. The Visualization Toolkit
offers several approaches to do this. The first approach is to use the built in class vtkRenderWindow-
Interactor. The second approach is to create your own interactor by specifying event bindings. And
don’t forget that if you are using an interpreted language you can type commands at run-time. You
may also wish to refer to “Picking” on page 59 to see how to select data from the screen. (Note:
Developers can also interface to a windowing system of their choice. See “Integrating With The Win-
dowing System” on page 421.)

vtkRenderWindowInteractor

The simplest way to interact with your data is to instantiate vtkRenderWindowInteractor. This class
responds to a pre-defined set of events and actions and provides a way to override the default actions.
vtkRenderWindowInteractor allows you to control the camera and actors and offers two interaction
styles: position sensitive (i.e., joystick mode) and motion sensitive (i.e., trackball mode). (More about
interactor styles in the next section.)

vtkRenderWindowInteractor responds to the following events in the render window. (Remem-
ber that multiple renderers can draw into a rendering window and that the renderer draws into a view-
port within the render window. Interactors support multiple renderers in a render window.)

• Keypress j / Keypress t — Toggle between joystick (position sensitive) and trackball
(motion sensitive) styles. In joystick style, motion occurs continuously as long as a mouse but-
ton is pressed. In trackball style, motion occurs when the mouse button is pressed and the
mouse pointer moves.

• Keypress c / Keypress a — Toggle between camera and actor (object) modes. In camera
mode, mouse events affect the camera position and focal point. In object mode, mouse events
affect the actor that is under the mouse pointer.

• Button 1 — Rotate the camera around its focal point (if camera mode) or rotate the actor
around its origin (if actor mode). The rotation is in the direction defined from the center of the
renderer’s viewport towards the mouse position. In joystick mode, the magnitude of the rotation
is determined by the distance between the mouse and the center of the render window.

• Button 2 — Pan the camera (if camera mode) or translate the actor (if object mode). In joy-
stick mode, the direction of pan or translation is from the center of the viewport towards the
mouse position. In trackball mode, the direction of motion is the direction the mouse moves.
(Note: With a 2-button mouse, pan is defined as <Shift>-Button 1.)

• Button 3 — Zoom the camera (if camera mode), or scale the actor (if object mode). Zoom in/
increase scale if the mouse position is in the top half of the viewport; zoom out/decrease scale if
the mouse position is in the bottom half. In joystick mode, the amount of zoom is controlled by
the distance of the mouse pointer from the horizontal centerline of the window.
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• Keypress 3 — Toggle the render window into and out of stereo mode. By default, red-blue
stereo pairs are created. Some systems support Crystal Eyes LCD stereo glasses; you have to
invoke SetStereoTypeToCrystalEyes() on the rendering window.

• Keypress e/q — Exit or quit the application.
• Keypress f — Fly-to the point under the cursor. This sets the focal point and allows rotations

around that point.
• Keypress p — Perform a pick operation. The render window interactor has an internal

instance of vtkPropPicker that it uses to pick. See “Picking” on page 59 for more informa-
tion about picking.

• Keypress r — Reset the camera view along the current view direction. Centers the actors and
moves the camera so that all actors are visible.

• Keypress s — Modify the representation of all actors so that they are surfaces.
• Keypress u — Invoke the user-defined method. Typically, this keypress will bring up an

interactor that you can type commands into.
• Keypress w — Modify the representation of all actors so that they are wireframe.

The default interaction style is position sensitive (i.e., joystick style)—that is, it manipulates the cam-
era or actor and renders continuously as long as a mouse button is pressed. If you don’t like the
default behavior, you can change it or write your own. (See “vtkRenderWindow Interaction Style” on
page 421 for information about writing your own style.)

vtkRenderWindowInteractor has other useful features. Invoking LightFollowCameraOn() (the
default behavior) causes the light position and focal point to be synchronized with the camera posi-
tion and focal point (i.e., a “headlight” is created). Of course, this can be turned off with
LightFollowCameraOff(). A callback that responds to the “u” keypress can be added with “AddOb-
server(UserEvent) method. It is also possible to set several pick-related methods. AddObserver(Start-
PickEvent) defines a method to be called prior to picking, and AddObserver(EndPickEvent) defines a
method after the pick has been performed. (Please see “User Methods, Observers, and Commands”
on page 29 for more information on defining user methods.) You can also specify an instance of a
subclass of vtkAbstractPicker to use via the SetPicker() method. (See “Picking” on page 59.)

If you are using a prop that adjusts rendering quality based on desired interactivity, you may
wish to set the desired frame rate via SetDesiredUpdateRate() in the interactor. Normally, this is han-
dled automatically. (When the mouse buttons are activated, the desired update rate is increased; when
the mouse button is released, the desired update rate is set back down.) Refer to “Level-Of-Detail
Actors” on page 55, the “vtkLODProp3D” on page 57, and the chapter on “Volume Rendering” on
page 139 for further information on how props and their associated mappers may adjust render style
to achieve a desired frame rate..

We’ve seen how to use vtkRenderWindowInteractor previously, here’s a recapitulation.

vtkRenderWindowInteractor iren
iren SetRenderWindow renWin
iren AddObserver UserEvent {wm deiconify .vtkInteract}

Interactor Styles
There are two distinctly different ways to control interaction style in VTK. The first is to use a sub-
class of vtkInteractorStyle, either one supplied with the system or one that you write. The second
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method is to add observers that watch for events on the vtkRenderWindowInteractor and define your
own set of callbacks (or commands) to implement the style. (Note: 3D widgets are another, more
complex way to interact with data in the scene. See “3D Widgets” on page 72 for more information.)

vtkInteractorStyle. The class vtkRenderWindowInteractor can support different interaction styles.
When you type “t” or “j” in the interactor (see the previous section) you are changing between track-
ball and joystick interaction styles. The way this works is that vtkRenderWindowInteractor translates
window-system-specific events it receives (e.g., mouse button press, mouse motion, keyboard events)
to VTK events such as MouseMoveEvent, StartEvent, and so on. (See “User Methods, Observers, and
Commands” on page 29 for related information.) Different styles then observe particular events and
perform the action(s) appropriate to the event. To set the style, use the
vtkRenderWindowInteractor::SetInteractorStyle() method. For example:

vtkInteractorStyleFlight flightStyle
vtkRenderWindowInteractor iren

iren SetInteractorStyle flightStyle

(Note: When vtkRenderWindowInteractor is instantiated, a window-system specific render window
interactor is actually instantiated. For example, on Unix systems the class
vtkXRenderWindowInteractor is actually created and returned as an instance of vtkRenderWindow-
Interactor. On Windows, the class vtkWin32RenderWindowInteractor is instantiated.)

Adding vtkRenderWindowInteractor Observers. While a variety of interactor styles are available
in VTK, you may prefer to create your own custom style to meet the needs of a particular application.
In C++ the natural approach is to subclass vtkInteractorStyle. (See “vtkRenderWindow Interaction
Style” on page 421.) However, in an interpreted language (e.g., Tcl, Python, or Java), this is difficult
to do. For interpreted languages the simplest approach is to use observers to define particular interac-
tion bindings. (See “User Methods, Observers, and Commands” on page 29.) The bindings can be
managed in any language that VTK supports, including C++, Tcl, Python, and Java. An example of
this is found in the Tcl code VTK/Examples/GUI/Tcl/CustomInteraction.tcl, which defines
bindings for a simple Tcl application. Here’s an excerpt to give you an idea of what’s going on. 

vtkRenderWindowInteractor iren
iren SetInteractorStyle ""
iren SetRenderWindow renWin

# Add the observers to watch for particular events. These invoke
# Tcl procedures.

set Rotating 0
set Panning 0
set Zooming 0

iren AddObserver LeftButtonPressEvent {global Rotating; set Rotating 1}
iren AddObserver LeftButtonReleaseEvent \

{global Rotating; set Rotating 0}
iren AddObserver MiddleButtonPressEvent {global Panning; set Panning 1}
iren AddObserver MiddleButtonReleaseEvent \

{global Panning; set Panning 0}
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iren AddObserver RightButtonPressEvent {global Zooming; set Zooming 1}
iren AddObserver RightButtonReleaseEvent {global Zooming; set Zooming 0}
iren AddObserver MouseMoveEvent MouseMove
iren AddObserver KeyPressEvent Keypress

proc MouseMove {} {
...
set xypos [iren GetEventPosition]

 set x [lindex $xypos 0]
 set y [lindex $xypos 1]

...
}

proc Keypress {} {
 set key [iren GetKeySym]

if { $key == "e" } {
vtkCommand DeleteAllObjects
exit

}
...

}

Note that a key step in this example is disabling the default interaction style by invoking
SetInteractionStyle(““). Observers are then added to watch for particular events which are tied to the
appropriate Tcl procedures. 

This example is a simple way to add bindings from a Tcl script. If you would like to create a full
GUI using Tcl/Tk, then use the vtkTkRenderWidget, and refer to “Tcl/Tk” on page 433 for more
details.

4.3 Filtering Data
The previous example pipelines consisted of a source and mapper object; the pipeline had no filters.
In this section we show how to add a filter into the pipeline.

Filters are connected by using the SetInputConnection() and GetOutputPort() methods. For
example, we can modify the script in “Reader Source Object” on page 44 to shrink the polygons that
make up the model. The script is shown below. (Only the pipeline and other pertinent objects are
shown.) The complete script can be found at
VTK/Examples/Rendering/Tcl/FilterCADPart.tcl.

vtkSTLReader part
part SetFileName \

“$VTK_DATA_ROOT/Data/42400-IDGH.stl”
vtkShrinkPolyData shrink

shrink SetInputConnection [part GetOutputPort]
shrink SetShrinkFactor 0.85
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vtkPolyDataMapper partMapper
partMapper SetInputConnection \
[shrink GetOutputPort]

vtkLODActor partActor
  partActor SetMapper partMapper

As you can see, creating a visualization pipeline is simple. You
need to select the right classes for the task at hand, make sure that
the input and output type of connected filters are compatible, and
set the necessary instance variables. (Input and output types are
compatible when the output dataset type of a source or filter is
acceptable as input to the next filter or mapper in the pipeline. The
output dataset type must either match the input dataset type
exactly or be a subclass of it.) Visualization pipelines can contain
loops, but the output of a filter cannot be directly connected to its
input.

4.4 Controlling The Camera
You may have noticed that in the proceeding scripts no cameras or lights were instantiated. If you’re
familiar with 3D graphics, you know that lights and cameras are necessary to render objects. In VTK,
if lights and cameras are not directly created, the renderer automatically instantiates them.

Instantiating The Camera
The following Tcl script shows how to instantiate and associate a camera with a renderer.

vtkCamera cam1
  cam1 SetClippingRange 0.0475572 2.37786
  cam1 SetFocalPoint 0.052665 -0.129454 -0.0573973
  cam1 SetPosition 0.327637 -0.116299 -0.256418
  cam1 ComputeViewPlaneNormal
  cam1 SetViewUp -0.0225386 0.999137 0.034901
ren1 SetActiveCamera cam1

Alternatively, if you wish to access a camera that already exists (for example, a camera that the ren-
derer has automatically instantiated), in Tcl you would use

set cam1 [ren1 GetActiveCamera]
$cam1 Zoom 1.4

Let’s review some of the camera methods that we’ve just introduced. SetClippingPlane() takes two
arguments, the distance to the near and far clipping planes along the view plane normal. Recall that all
graphics primitives not between these planes are eliminated during rendering, so you need to make
sure the objects you want to see lie between the clipping planes. The FocalPoint and Position (in
world coordinates) instance variables control the direction and position of the camera.
ComputeViewPlaneNormal() resets the normal to the view plane based on the current position and
focal point. (If the view plane normal is not perpendicular to the view plane you can get some inter-

Figure 4–3  Filtering data. Here
we use a filter to shrink the poly-
gons forming the model towards
their centroid.
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esting shearing effects.) Setting the ViewUp controls the “up” direction for the camera. Finally, the
Zoom() method magnifies objects by changing the view angle (i.e., SetViewAngle()). You can also
use the Dolly() method to move the camera in and out along the view plane normal to either enlarge
or shrink the visible actors.

Simple Manipulation Methods
The methods described above are not always the most convenient ones for controlling the camera. If
the camera is “looking at” the point you want (i.e., the focal point is set), you can use the Azimuth()
and Elevation() methods to move the camera about the focal point.

cam1 Azimuth 150
cam1 Elevation 60

These methods move the camera in a spherical coordinate system centered at the focal point by mov-
ing in the longitude direction (azimuth) and the latitude direction (elevation) by the angle (in degrees)
given. These methods do not modify the view-up vector and depend on the view-up vector remaining
constant. Note that there are singularities at the north and south poles — the view-up vector becomes
parallel with the view plane normal. To avoid this, you can force the view-up vector to be orthogonal
to the view vector by using OrthogonalizeViewUp(). However, this changes the camera coordinate
system, so if you’re flying around an object with a natural horizon or view-up vector (such as terrain),
camera manipulation is no longer natural with respect to the data.

Controlling The View Direction
A common function of the camera is to generate a view from a particular direction. You can do this by
invoking SetFocalPoint(), SetPosition(), and ComputeViewPlaneNormal() followed by invoking
ResetCamera() on the renderer associated with the camera.

vtkCamera cam1
  cam1 SetFocalPoint 0 0 0
  cam1 SetPosition 1 1 1
  cam1 ComputeViewPlaneNormal
  cam1 SetViewUp 1 0 0
  cam1 OrthogonalizeViewUp
ren1 SetActiveCamera cam1
ren1 ResetCamera

The initial direction (view vector or view plane normal) is computed from the focal point and position
of the camera, which, together with ComputeViewPlaneNormal(), defines the initial view vector.
Optionally, you can specify an initial view-up vector and orthogonalize it with respect to the view
vector. The ResetCamera() method then moves the camera along the view vector so that the ren-
derer’s actors are all visible to the camera. 

Perspective Versus Orthogonal Views
In the previous examples, we have assumed that the camera is a perspective camera where a view
angle controls the projection of the actors onto the view plane during the rendering process. Perspec-
tive projection, while generating more natural looking images, introduces distortion that can be unde-
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sirable in some applications. Orthogonal (or parallel) projection is an alternative projection method.
In orthogonal projection, view rays are parallel, and objects are rendered without distance effects.

To set the camera to use orthogonal projection, use the vtkCamera::ParallelProjectionOn()
method. In parallel projection mode, the camera view angle no longer controls zoom. Instead, use the
SetParallelScale() method to control the magnification of the actors.

Saving/Restoring Camera State

Another common requirement of applications is the capability to save and restore camera state (i.e.,
recover a view). To save camera state, you’ll need to save (at a minimum) the clipping range, the
focal point and position, and the view-up vector. You’ll also want to compute the view plane normal
(as shown in the example in “Instantiating The Camera” on page 49). Then, to recover camera state,
simply instantiate a camera with the saved information, and assign it to the appropriate renderer (i.e.,
SetActiveCamera()).

In some cases you may need to store additional information. For example, if the camera view
angle (or parallel scale) is set, you’ll need to save this. Or, if you are using the camera for stereo view-
ing, the EyeAngle and Stereo flags are required.

4.5 Controlling Lights
Lights are easier to control than cameras. The most frequently used methods are SetPosition(),
SetFocalPoint(), and SetColor(). The position and focal point of the light control the direction in
which the light points. The color of the light is expressed as an RGB vector. Also, lights can be turned
on and off via the SwitchOn() and SwitchOff() methods, and the brightness of the light can be set
with the SetIntensity() method.

By default, instances of vtkLight are directional lights. That is, the position and focal point
define a vector parallel to which light rays travel, and the light source is assumed to be located at the
infinity point. This means that the lighting on an object does not change if the focal point and position
are translated identically.

Lights are associated with renderers as follows.

vtkLight light
light SetColor 1 0 0
light SetFocalPoint [cam1 GetFocalPoint]
light SetPosition [cam1 GetPosition]

ren1 AddLight light

Here we’ve created a red headlight: a light located at the camera’s (cam1’s) position and pointing
towards the camera’s focal point. This is a useful trick, and is used by the interactive renderer to posi-
tion the light as the camera moves. (See “Using VTK Interactors” on page 45.)

Positional Lights

It is possible to create positional (i.e., spot lights) by using the PositionalOn() method. This method is
used in conjunction with the SetConeAngle() method to control the spread of the spot. A cone angle
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of 180 degrees indicates that no spot light effects will be applied (i.e., no truncated light cone), only
the effects of position.

4.6 Controlling 3D Props
Objects in VTK that are to be drawn in the render window are generically known as “props.” (The
word prop comes from the vocabulary of theater—a prop is something that appears on stage.) There
are several different types of props including vtkProp3D and vtkActor. vtkProp3D is an abstract
superclass for those types of props existing in 3D space. The class vtkActor is a type of vtkProp3D
whose geometry is defined by analytic primitives such as polygons and lines. 

Specifying the Position of a vtkProp3D

We have already seen how to use cameras to move around an object; alternatively, we can also hold
the camera steady and transform the props. The following methods can be used to define the position
of a vtkProp3D (and its subclasses).

• SetPosition(x,y,z) — Specify the position of the vtkProp3D in world coordinates. 

• AddPosition(deltaX,deltaY,deltaZ) — Translate the prop by the specified amount
along each of the x, y, and z axes.

• RotateX(theta), RotateY(theta), RotateZ(theta) — Rotate the prop by theta
degrees around the x, y, z coordinate axes, respectively.

• SetOrientation(x,y,z) — Set the orientation of the prop by rotating about the z axis, then
about the x axis, and then about the y axis.

• AddOrientation(a1,a2,a3) — Add to the current orientation of the prop.

• RotateWXYZ(theta,x,y,z) — Rotate the prop by theta degress around the x-y-z vector
defined.

• SetScale(sx,sy,sz) — Scale the prop in the x, y, z axes coordinate directions.

• SetOrigin(x,y,z) — Specify the origin of the prop. The origin is the point around which
rotations and scaling occur.

These methods work together in complex ways to control the resulting transformation matrix. The
most important thing to remember is that the operations listed above are applied in a particular order,
and the order of application dramatically affects the resulting actor position. The order used in VTK
to apply these transformations is as follows:

1. Shift to Origin

2. Scale 

3. Rotate Y

4. Rotate X

5. Rotate Z 

6. Shift from Origin

7. Translate
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The shift to and from the origin is a negative and positive translation of the Origin value, respectively.
The net translation is given by the Position value of the vtkProp3D. The most confusing part of these
transformations are the rotations. For example, performing an x rotation followed by a y rotation
gives very different results than the operations applied in reverse order (see Figure 4–4). For more
information about actor transformation, please refer to the Visualization Toolkit text.

In the next section we describe a variety of vtkProp3D’s—of which the most widely used class
in VTK is called vtkActor. Later on (see “Controlling vtkActor2D” on page 62) we will examine 2D
props (i.e., vtkActor2D) which tend to be used for annotation and other 2D operations.

Actors

An actor is the most common type of vtkProp3D. Like other concrete subclasses of vtkProp3D,
vtkActor serves to group rendering attributes such as surface properties (e.g., ambient, diffuse, and
specular color), representation (e.g., surface or wireframe), texture maps, and/or a geometric defini-
tion (a mapper). 

Defining Geometry. As we have seen in previous examples, the geometry of an actor is specified
with the SetMapper() method:

vtkPolyDataMapper mapper
mapper SetInputConnection [aFilter GetOutputPort]

vtkActor anActor
anActor SetMapper mapper

In this case mapper is of type vtkPolyDataMapper, which renders geometry using analytic primitives
such as points, lines, polygons, and triangle strips. The mapper terminates the visualization pipeline
and serves as the bridge between the visualization subsystem and the graphics subsystem.

Actor Properties. Actors refer to an instance of vtkProperty, which in turn controls the appearance of
the actor. Probably the most used property is actor color, which we will describe in the next section.
Other important features of the property are its representation (points, wireframe, or surface), its
shading method (either flat or Gouraud shaded), the actor’s opacity (relative transparency), and the
ambient, diffuse, and specular color and related coefficients. The following script shows how to set
some of these instance variables.

Figure 4–4  The effects of applying rotation in different order. On the left, first an x rotation followed by
a y rotation; on the right, first a y rotation followed by an x rotation.
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vtkActor anActor
anActor SetMapper mapper
[anActor GetProperty] SetOpacity 0.25
[anActor GetProperty] SetAmbient 0.5
[anActor GetProperty] SetDiffuse 0.6
[anActor GetProperty] SetSpecular 1.0
[anActor GetProperty] SetSpecularPower 10.0

Notice how we dereference the actor’s property via the GetProperty() method. Alternatively, we can
create a property and assign it to the actor.

vtkProperty prop
prop SetOpacity 0.25
prop SetAmbient 0.5
prop SetDiffuse 0.6
prop SetSpecular 1.0
prop SetSpecularPower 10.0

vtkActor anActor
anActor SetMapper mapper
anActor SetProperty prop

The advantage of the latter method is that we can control the properties of several actors by assigning
each the same property.

Actor Color. Color is perhaps the most important property applied to an actor. The simplest proce-
dure for controlling this property is the SetColor() method, used to set the red, green, and blue (RGB)
values of the actor. Each value ranges from zero to one.

[anActor GetProperty] SetColor 0.1 0.2 0.4

Alternatively, you can set the ambient, diffuse, and specular colors separately.

vtkActor anActor
anActor SetMapper mapper
[anActor GetProperty] SetAmbientColor .1 .1 .1
[anActor GetProperty] SetDiffuseColor .1 .2 .4
[anActor GetProperty] SetSpecularColor 1 1 1

In this example we’ve set the ambient color to a dark gray, the diffuse color to a shade of blue, and the
specular color to white. (Note: The SetColor() method sets the ambient, diffuse, and specular colors
to the color specified.)

Important: The color set in the actor’s property only takes effect if there is no scalar data avail-
able to the actor’s mapper. By default, the mapper’s input scalar data colors the actor, and the actor’s
color is ignored. To ignore the scalar data, use the method ScalarVisibilityOff() as shown in the Tcl
script below.

vtkPolyDataMapper planeMapper
  planeMapper SetInputConnection [CompPlane GetOutputPort]
  planeMapper ScalarVisibilityOff
vtkActor planeActor
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  planeActor SetMapper planeMapper
[planeActor GetProperty] SetRepresentationToWireframe
[planeActor GetProperty] SetColor 0 0 0 

Actor Transparency. Many times it is useful to adjust transparency (or opacity) of an actor. For
example, if you wish to show internal organs surrounded by the skin of a patient, adjusting the trans-
parency of the skin allows the user to see the organs in relation to the skin. Use the
vtkProperty::SetOpacity() method as follows.

vtkActor popActor
  popActor SetMapper popMapper

[popActor GetProperty] SetOpacity 0.3
  [popActor GetProperty] SetColor .9 .9 .9

Please note that transparency is implemented in the rendering library using an -blending process.
This process requires that polygons are rendered in the correct order. In practice, this is very difficult
to achieve, especially if you have multiple transparent actors. To order polygons, you should add
transparent actors to the end of renderer’s list of actors (i.e., add them last). Also, you can use the fil-
ter vtkDepthSortPolyData to sort polygons along the view vector. Please see VTK/Examples/
VisualizationAlgorithms/Tcl/DepthSort.tcl for an example using this filter. For more
information on this topic see “Translucent polygonal geometry” on page 79 

Miscellaneous Features. Actors have several other important features. You can control whether an
actor is visible with the VisibilityOn() and VisibilityOff() methods. If you don’t want to pick an actor
during a picking operation, use the PickableOff() method. (See “Picking” on page 59 for more infor-
mation about picking.) Actors also have a pick event that can be invoked when they are picked. Addi-
tionally you can get the axis-aligned bounding box of actor with the GetBounds() method.

Level-Of-Detail Actors

One major problem with graphics systems is that they often become too slow for interactive use. To
handle this problem, VTK uses level-of-detail actors to achieve acceptable rendering performance at
the cost of lower-resolution representations. 

In “Reader Source Object” on page 44 we saw how to use a vtkLODActor. Basically, the sim-
plest way to use vtkLODActor is to replace instances of vtkActor with instances of vtkLODActor. In
addition, you can control the representation of the levels of detail. The default behavior of vtkLOD-
Actor is to create two additional, lower-resolution models from the original mapper. The first is a
point cloud, sampled from the points defining the mapper’s input. You can control the number of
points in the cloud as follows. (The default is 150 points.)

vtkLODActor dotActor
dotActor SetMapper dotMapper
dotActor SetNumberOfCloudPoints 1000

The lowest resolution model is a bounding box of the actor. Additional levels of detail can be added
using the AddLODMapper() method. They do not have to be added in order of complexity.

To control the level-of-detail selected by the actor during rendering, you can set the desired
frame rate in the rendering window:

α
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vtkRenderWindow renWin
renWin SetDesiredUpdateRate 5.0

which translates into five frames per second. The vtkLODActor will automatically select the appro-
priate level-of-detail to yield the requested rate. (Note: The interactor widgets such as
vtkRenderWindowInteractor automatically control the desired update rate. They typically set the
frame rate very low when a mouse button is released, and increase the rate when a mouse button is
pressed. This gives the pleasing effect of low-resolution/high frame rate models with camera motion,
and high-resolution/low frame rate when the camera stops. If you would like more control over the
levels-of-detail, see “vtkLODProp3D” on page 57. vtkLODProp3D allow you to specifically set each
level.)

Assemblies
Actors are often grouped in hierarchal assemblies so that the motion of one actor affects the position
of other actors. For example, a robot arm might consist of an upper arm, forearm, wrist, and end
effector, all connected via joints. When the upper arm rotates around the shoulder joint, we expect the
rest of the arm to move with it. This behavior is implemented using assemblies, which are a type of
(subclass of) vtkActor. The following script shows how it’s done (from VTK/Examples/
Rendering/Tcl/assembly.tcl).

# create four parts: a top level assembly and three primitives
vtkSphereSource sphere
vtkPolyDataMapper sphereMapper
  sphereMapper SetInputConnection [sphere GetOutputPort]
vtkActor sphereActor
  sphereActor SetMapper sphereMapper
  sphereActor SetOrigin 2 1 3
  sphereActor RotateY 6
  sphereActor SetPosition 2.25 0 0
  [sphereActor GetProperty] SetColor 1 0 1

vtkCubeSource cube
vtkPolyDataMapper cubeMapper
  cubeMapper SetInputConnection [cube GetOutputPort]
vtkActor cubeActor
  cubeActor SetMapper cubeMapper
  cubeActor SetPosition 0.0 .25 0
  [cubeActor GetProperty] SetColor 0 0 1

vtkConeSource cone
vtkPolyDataMapper coneMapper
  coneMapper SetInputConnection [cone GetOutputPort]
vtkActor coneActor
  coneActor SetMapper coneMapper
  coneActor SetPosition 0 0 .25
  [coneActor GetProperty] SetColor 0 1 0

vtkCylinderSource cylinder
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vtkPolyDataMapper cylinderMapper
  CylinderMapper SetInputConnection [cylinder GetOutputPort]
vtkActor cylinderActor
  cylinderActor SetMapper cylinderMapper

 [cylinderActor GetProperty] SetColor 1 0 0

vtkAssembly assembly
assembly AddPart cylinderActor

  assembly AddPart sphereActor
  assembly AddPart cubeActor
  assembly AddPart coneActor
  assembly SetOrigin 5 10 15
  assembly AddPosition 5 0 0
  assembly RotateX 15

# Add the actors to the renderer, set the background and size
ren1 AddActor assembly
ren1 AddActor coneActor

Notice how we use vtkAssembly’s AddPart() method to build the hierarchies. Assemblies can be
nested arbitrarily deeply as long as there are not any self-referencing cycles. Note that vtkAssembly is
a subclass of vtkProp3D, so it has no notion of properties or of an associated mapper. Therefore, the
leaf nodes of the vtkAssembly hierarchy must carry information about material properties (color, etc.)
and any associated geometry. Actors may also be used by more than one assembly (notice how
coneActor is used in the assembly and as an actor). Also, the renderer’s AddActor() method is used
to associate the top level of the assembly with the renderer; those actors at lower levels in the assem-
bly hierarchy do not need to be added to the renderer since they are recursively rendered.

You may be wondering how to distinguish the use of an actor relative to its context if an actor is
used in more than one assembly, or is mixed with an assembly as in the example above. (This is par-
ticularly important in activities like picking, where the user may need to know which vtkProp was
picked as well as the context in which it was picked.) We address this issue along with the introduc-
tion of the class vtkAssemblyPath, which is an ordered list of vtkProps with associated transformation
matrices (if any), in detail in “Picking” on page 59.

Volumes
The class vtkVolume is used for volume rendering. It is analogous to the class vtkActor. Like vtkAc-
tor, vtkVolume inherits methods from vtkProp3D to position and orient the volume. vtkVolume has an
associated property object, in this case a vtkVolumeProperty. Please see “Volume Rendering” on
page 116 for a thorough description of the use of vtkVolume and a description of volume rendering.

vtkLODProp3D
The vtkLODProp3D class is similar to vtkLODActor (see “Level-Of-Detail Actors” on page 55) in
that it uses different representations of itself in order to achieve interactive frame rates. Unlike vtk-
LODActor, vtkLODProp3D supports both volume rendering and surface rendering. This means that
you can use vtkLODProp3D in volume rendering applications to achieve interactive frame rates. The
following example shows how to use the class.
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vtkLODProp3D lod
set level1 [lod AddLOD volumeMapper volumeProperty2 0.0]
set level2 [lod AddLOD volumeMapper volumeProperty 0.0]
set level3 [lod AddLOD probeMapper_hres probeProperty 0.0]
set level4 [lod AddLOD probeMapper_lres probeProperty 0.0]
set level5 [lod AddLOD outlineMapper outlineProperty 0.0]

Basically, you create different mappers each corresponding to a different rendering complexity, and
add the mappers to the vtkLODProp3D. The AddLOD() method accepts either volume or geometric
mappers and optionally a texture map and/or property object. (There are different signatures for this
method depending on what information you wish to provide.) The last value in the field is an esti-
mated time to render. Typically you set it to zero to indicate that there is no initial estimate. The
method returns an integer id that can be used to access the appropriate LOD (i.e., to select a level or
delete it).

vtkLODProp3D measures the time it takes to render each LOD and sorts them appropriately.
Then, depending on the render window’s desired update rate, vtkLODProp3D selects the appropriate
level to render. See “Using a vtkLODProp3D to Improve Performance” on page 135 for more infor-
mation.

4.7 Using Texture
Texture mapping is a powerful graphics tool for creating realistic and compelling visualizations. The
basic idea behind 2D texture mapping is that images can be “pasted” onto a surface during the render-
ing process, thereby creating richer and more detailed images. Texture mapping requires three pieces
of information: a surface to apply the texture to; a texture map, which in VTK is a vtkImageData data-
set (i.e., a 2D image); and texture coordinates, which control the positioning of the texture on the sur-
face. 

The following example (Figure 4–5) demonstrates the use
of texture mapping (see VTK/Examples/Rendering/Tcl/
TPlane.tcl). Notice that the texture map (of class vtkTexture)
is associated with the actor, and the texture coordinates come
from the plane (the texture coordinates are generated by vtk-
PlaneSource when the plane is created). 

# load in the texture map
vtkBMPReader bmpReader

bmpReader SetFileName \
"$VTK_DATA_ROOT/Data/masonry.bmp"

vtkTexture atext
atext SetInputConnection [bmpReader GetOutputPort]
atext InterpolateOn

# create a plane source and actor
vtkPlaneSource plane
vtkPolyDataMapper planeMapper

planeMapper SetInputConnection [plane GetOutputPort]
vtkActor planeActor

planeActor SetMapper planeMapper

Figure 4–5  Texture map on
plane
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planeActor SetTexture atext

Often times texture coordinates are not available, usually because they are not generated in the pipe-
line. If you need to generate texture coordinates, refer to “Generate Texture Coordinates” on
page 111. Although some older graphics card have limitations on the dimensions of textures (e.g. they
must be a power of two and less than 1024 on a side), VTK allows arbitrarily sized textures. At run
time, VTK will query the graphics system to determine its capabilities, and will automatically resam-
ple your texture to meet the card's requirements.

4.8 Picking 
Picking is a common visualization task. Picking is used to select data and actors or to query underly-
ing data values. A pick is made when a display position (i.e., pixel coordinate) is selected and used to
invoke vtkAbstractPicker’s Pick() method. Depending on the type of picking class, the information
returned from the pick may be as simple as an x-y-z global coordinate, or it may include cell ids, point
ids, cell parametric coordinates, the instance of vtkProp that was picked, and/or assembly paths. The
syntax of the pick method is as follows.

Pick(selectionX, selectionY, selectionZ, Renderer)

Notice that the pick method requires a renderer. The actors associated with the renderer are the candi-
dates for pick selection. Also, selectionZ is typically set to 0.0—it relates to depth in the z-buffer.
(In typical usage, this method is not invoked directly. Rather the user interacts with the class
vtkRenderWindowInteractor which manages the pick. In this case, the user would control the picking
process by assigning an instance of a picking class to the vtkRenderWindowInteractor, as we will see
in a later example.)

The Visualization Toolkit supports several types of pickers of varying functionality and perfor-
mance. (Please see Figure 19–16 which is an illustration of the picking class hierarchy.) The class
vtkAbstractPicker serves as the base class for all pickers. It defines a minimal API which allows the
user to retrieve the pick position (in global coordinates) using the GetPickPosition() method. 

Two direct subclasses of vtkAbstractPicker exist. The first, vtkWorldPointPicker, is a fast (usu-
ally in hardware) picking class that uses the z-buffer to return the x-y-z global pick position. However,
no other information (about the vtkProp that was picked, etc.) is returned. The class vtkAbstractProp-
Picker is another direct subclass of vtkAbstractPicker. It defines an API for pickers that can pick an
instance of vtkProp. There are several convenience methods in this class to allow querying for the
return type of a pick.

• GetProp() — Return the instance of vtkProp that was picked. If anything at all was picked,
then this method will return a pointer to the instance of vtkProp, otherwise NULL is returned.

• GetProp3D() — If an instance of vtkProp3D was picked, return a pointer to the instance of
vtkProp3D.

• GetActor2D() — If an instance of vtkActor2D was picked, return a pointer to the instance of
vtkActor2D.

• GetActor() — If an instance of vtkActor was picked, return a pointer to the instance of
vtkActor.
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• GetVolume() — If an instance of vtkVolume was picked, return a pointer to the instance of
vtkVolume.

• GetAssembly() — If an instance of vtkAssembly was picked, return a pointer to the instance
of vtkAssembly.

• GetPropAssembly() — If an instance of vtkPropAssembly was picked, return a pointer to the
instance of vtkPropAssembly.

A word of caution about these methods. The class (and its subclass) return information about the top
level of the assembly path that was picked. So if you have an assembly whose top level is of type
vtkAssembly, and whose leaf node is of type vtkActor, the method GetAssembly() will return a
pointer to the instance of vtkAssembly, while the GetActor() method will return a NULL pointer (i.e.,
no vtkActor). If you have a complex scene that includes assemblies, actors, and other types of props,
the safest course to take is to use the GetProp() method to determine whether anything at all was
picked, and then use GetPath().

There are three direct subclasses of vtkAbstractPropPicker. These are vtkPropPicker,
vtkAreaPicker, and vtkPicker. vtkPropPicker uses hardware picking to determine the instance of vtk-
Prop that was picked, as well as the pick position (in global coordinates). vtkPropPicker is generally
faster than all other decendents of vtkAbstractPropPicker but it cannot return information detailed
information about what was picked. 

vtkAreaPicker and its hardware picking based descendent vtkRenderedAreaPicker are similarly
incapable of determining detailed information, as all three exist for the purpose of identifying entire
objects that are shown on screen. The AreaPicker classes differ from all other pickers in that they can
determine what lies begin an entire rectangular region of pixels on the screen instead of only what lies
behind a single pixel. These classes have an AreaPick(x_min, y_min, x_max, y_max, Renderer)
method that can be called in addition to the standard Pick(x,y,z, Renderer) method. If you need
detailed information, for example specific cells and points or information about what lies behind an
area, review the following picker explanations below.

vtkPicker is a software-based picker that selects vtkProp’s based on their bounding box. Its pick
method fires a ray from the camera position through the selection point and intersects the bounding
box of each prop 3D; of course, more than one prop 3D may be picked. The “closest” prop 3D in
terms of its bounding box intersection point along the ray is returned. (The GetProp3Ds() method can
be used to get all prop 3D’s whose bounding box was intersected.) vtkPicker is fairly fast but cannot
generate a single unique pick.

vtkPicker has two subclasses that can be used to retrieve more detailed information about what
was picked (e.g., point ids, cell ids, etc.) vtkPointPicker selects a point and returns the point id and
coordinates. It operates by firing a ray from the camera position through the selection point, and pro-
jecting those points that lie within Tolerance onto the ray. The projected point closest to the camera
position is selected, along with its associated actor. (Note: The instance variable Tolerance is
expressed as a fraction of the renderer window’s diagonal length.) vtkPointPicker is slower than vtk-
Picker but faster than vtkCellPicker. It cannot always return a unique pick because of the tolerances
involved.

vtkCellPicker selects a cell and returns information about the intersection point (cell id, global
coordinates, and parametric cell coordinates). It operates by firing a ray and intersecting all cells in
each actor’s underlying geometry, determining if each intersects this ray, within a certain specified
tolerance. The cell closest to the camera position along the specified ray is selected, along with its
associated actor. (Note: The instance variable Tolerance is used during intersection calculation, and
you may need to experiment with its value to get satisfactory behavior.) vtkCellPicker is the slowest
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of all the pickers, but provides the most information. It will generate a unique pick within the toler-
ance specified.

Several events are defined to interact with the pick operation. The picker invokes StartPickEv-
ent prior to executing the pick operation. EndPickEvent is invoked after the pick operation is com-
plete. The picker’s PickEvent and the actor’s PickEvent are invoked each time an actor is picked.
(Note that no PickEvent is invoked when using vtkWorldPointPicker.)

vtkAssemblyPath
An understanding of the class vtkAssemblyPath is essential if you are to perform picking in a scene
with different types of vtkProp’s, especially if the scene contains instances of vtkAssembly. vtkAs-
semblyPath is simply an ordered list of vtkAssemblyNode’s, where each node contains a pointer to a
vtkProp, as well as an optional vtkMatrix4x4. The order of the list is important: the start of the list
represents the root, or top level node in an assembly hierarchy, while the end of the list represents a
leaf node in an assembly hierarchy. The ordering of the nodes also affects the associated matrix. Each
matrix is a concatenation of the node’s vtkProp’s matrix with the previous matrix in the list. Thus, for
a given vtkAssemblyNode, the associated vtkMatrix4x4 represents the position and orientation of the
vtkProp (assuming that the vtkProp is initially untransformed).

Example
Typically, picking is automatically managed by vtkRenderWindowInteractor (see “Using VTK Inter-
actors” on page 45 for more information about interactors). For example, when pressing the p key,
vtkRenderWindowInteractor invokes a pick with its internal instance of vtkPropPicker. You can then
ask the vtkRenderWindowInteractor for its picker, and gather the information you need. You can also
specify a particular vtkAbstractPicker instance for vtkRenderWindowInteractor to use, as the follow-
ing script illustrates. The results on a sample data set are shown in Figure 4–6. The script for this
example can be found in VTK/Examples/Annotation/Tcl/annotatePick.tcl.

vtkCellPicker picker
  picker AddObserver EndPickEvent annotatePick
vtkTextMapper textMapper
set tprop [textMapper GetTextProperty]
  $tprop SetFontFamilyToArial
  $tprop SetFontSize 10
  $tprop BoldOn
  $tprop ShadowOn
  $tprop SetColor 1 0 0
vtkActor2D textActor
  textActor VisibilityOff
  textActor SetMapper textMapper
vtkRenderWindowInteractor iren
  iren SetRenderWindow renWin
  iren SetPicker picker

proc annotatePick {} {
  if { [picker GetCellId] < 0 } {

textActor VisibilityOff
} else {

set selPt [picker GetSelectionPoint]

Figure 4–6  Annotating a pick
operation.
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set x [lindex $selPt 0] 
set y [lindex $selPt 1]
set pickPos [picker GetPickPosition]
set xp [lindex $pickPos 0] 
set yp [lindex $pickPos 1]
set zp [lindex $pickPos 2]
textMapper SetInput "($xp, $yp, $zp)"
textActor SetPosition $x $y
textActor VisibilityOn

}
renWin Render

}
picker Pick 85 126 0 ren1

This example uses a vtkTextMapper to draw the world coordinate of the pick on the screen. (See
“Text Annotation” on page 63 for more information.) Notice that we register the EndPickEvent to
perform setup after the pick occurs. The method is configured to invoke the annotatePick() proce-
dure when picking is complete.

4.9 vtkCoordinate and Coordinate Systems
The Visualization Toolkit supports several different coordinate systems, and the class vtkCoordinate
manages transformations between them. The supported coordinate systems are as follows.

• DISPLAY — x-y pixel values in the (rendering) window. (Note that vtkRenderWindow is a
subclass of vtkWindow). The origin is the lower-left corner (which is true for all 2D coordinate
systems described below).

• NORMALIZED DISPLAY — x-y (0,1) normalized values in the window.

• VIEWPORT — x-y pixel values in the viewport (or renderer — a subclass of vtkViewport)

• NORMALIZED VIEWPORT — x-y (0,1) normalized values in viewport

• VIEW — x-y-z (-1,1) values in camera coordinates (z is depth)

• WORLD — x-y-z global coordinate value

• USERDEFINED - x-y-z in user-defined space. The user must provide a transformation method
for user defined coordinate systems. See vtkCoordinate for more information.

The class vtkCoordinate can be used to transform between coordinate systems and can be linked
together to form “relative” or “offset” coordinate values. Refer to the next section for an example of
using vtkCoordinate in an application.

4.10 Controlling vtkActor2D
vtkActor2D is analogous to vtkActor except that it draws on the overlay plane and does not have a
4x4 transformation matrix associated with it. Like vtkActor, vtkActor2D refers to a mapper
(vtkMapper2D) and a property object (vtkProperty2D). The most difficult part when working with
vtkActor2D is positioning it. To do that, the class vtkCoordinate is used. (See previous section, “vtk-
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Coordinate and Coordinate Systems”.) The following script shows how to use the vtkCoordinate
object.

vtkActor2D bannerActor
  bannerActor SetMapper banner
  [bannerActor GetProperty] SetColor 0 1 0
  [bannerActor GetPositionCoordinate] 

SetCoordinateSystemToNormalizedDisplay
  [bannerActor GetPositionCoordinate] SetValue 0.5 0.5

What’s done in this script is to access the coordinate object and define it’s coordinate system. Then
the appropriate value is set for that coordinate system. In this script a normalized display coordinate
system is used, so display coordinates range from zero to one, and the values (0.5,0.5) are set to posi-
tion the vtkActor2D in the middle of the rendering window. vtkActor2D also provides a convenience
method, SetDisplayPosition(), that sets the coordinate system to DISPLAY and uses the input param-
eters to set the vtkActor2D’s position using pixel offsets in the render window. The example in the
following section shows how the method is used.

4.11 Text Annotation
The Visualization Toolkit offers two ways to annotate images. First, text (and graphics) can be ren-
dered on top of the underlying 3D graphics window (often referred to as rendering in the overlay
plane). Second, text can be created as 3D polygonal data and transformed and displayed as any other
3D graphics object. We refer to this as 2D and 3D annotation, respectively. See Figure 4–7 to see the
difference.

2DText Annotation
To use 2D text annotation, we employ 2D actors (vtkActor2D and its subclasses such as
vtkScaledTextActor) and mappers (vtkMapper2D and subclasses such as vtkTextMapper). 2D actors
and mappers are similar to their 3D counterparts except that they render in the overlay plane on top of
underlying graphics or images. Here’s an example Tcl script found in VTK/Examples/
Annotation/Tcl/TestText.tcl; the results are shown on the left side of Figure 4–7.

vtkSphereSource sphere
vtkPolyDataMapper sphereMapper
  sphereMapper SetInputConnection [sphere GetOutputPort]

Figure 4–7  2D (left) and 3D (right) annotation.
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  sphereMapper GlobalImmediateModeRenderingOn
vtkLODActor sphereActor
  sphereActor SetMapper sphereMapper

vtkTextActor textActor
  textActor SetTextScaleModeToProp
  textActor SetDisplayPosition 90 50 
  textActor SetInput "This is a sphere"

# Specify an initial size
  [textActor GetPosition2Coordinate] \ 

SetCoordinateSystemToNormalizedViewport
  [textActor GetPosition2Coordinate] SetValue 0.6 0.1

set tprop [textActor GetTextProperty]
  $tprop SetFontSize 18
  $tprop SetFontFamilyToArial
  $tprop SetJustificationToCentered
  $tprop BoldOn
  $tprop ItalicOn
  $tprop ShadowOn
  $tprop SetColor 0 0 1

# Create the RenderWindow, Renderer and both Actors
vtkRenderer ren1
vtkRenderWindow renWin
  renWin AddRenderer ren1
vtkRenderWindowInteractor iren
  iren SetRenderWindow renWin

# Add the actors to the renderer
ren1 AddViewProp textActor
ren1 sphereActor

Instances of the class vtkTextProperty allow you to control font family (Arial, Courier, or Times), set
text color, turn bolding and italics on and off, and apply font shadowing. (Shadowing is used to make
the font more readable when placed on top of complex background images.) The position and color of
the text is controlled by the associated vtkActor2D. (In this example, the position is set using display
or pixel coordinates.) 

vtkTextProperty also supports justification (vertical and horizontal) and multi-line text. Use the
methods SetJustificationToLeft(), SetJustificationToCentered(), and SetJustificationToRight() to con-
trol the horizontal justification. Use the methods SetVerticalJustificationToBottom(),
SetVerticalJustificationToCentered(), and SetVerticalJustificationToTop() to control vertical justifica-
tion. By default, text is left-bottom justified. To insert multi-line text, use the \n character embedded
in the text. The example in Figure 4–8 demonstrates justification and multi-line text (taken from
VTK/Examples/Annotation/Tcl/multiLineText.tcl). The essence of the example is shown
below.

vtkTextMapper textMapperL
  textMapperL SetInput "This is\nmulti-line\ntext output\n(left-top)"
  set tprop [textMapperL GetTextProperty]
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  $tprop ShallowCopy multiLineTextProp
  $tprop SetJustificationToLeft
  $tprop SetVerticalJustificationToTop
  $tprop SetColor 1 0 0
vtkActor2D textActorL
  textActorL SetMapper textMapperL  
  [textActorL GetPositionCoordinate] \

SetCoordinateSystemToNormalizedDisplay
  [textActorL GetPositionCoordinate] SetValue 0.05 0.5

Note the use of the vtkCoordinate object (obtained by invoking the GetPositionCoordinate() method)
to control the position of the actor in the normalized display coordinate system. See the section “vtk-
Coordinate and Coordinate Systems” on page 62 for more information about placing annotation.

3D Text Annotation and vtkFollower
3D text annotation is implemented using vtkVectorText to create a polygonal representation of a text
string, which is then appropriately positioned in the scene. One useful class for positioning 3D text is
vtkFollower. This class is a type of actor that always faces the renderer’s active camera, thereby insur-
ing that the text is readable. This Tcl script found in VTK/Examples/Annotation/Tcl/
textOrigin.tcl shows how to do this (Figure 4–7). The example creates an axes and labels the
origin using an instance of vtkVectorText in combination with a vtkFollower.

vtkAxes axes
  axes SetOrigin 0 0 0
vtkPolyDataMapper axesMapper
  axesMapper SetInputConnection [axes GetOutputPort]
vtkActor axesActor
  axesActor SetMapper axesMapper

vtkVectorText atext
  atext SetText "Origin"
vtkPolyDataMapper textMapper
  textMapper SetInputConnection [atext GetOutputPort]
vtkFollower textActor
  textActor SetMapper textMapper
  textActor SetScale 0.2 0.2 0.2
  textActor AddPosition 0 -0.1 0
...etc...after rendering...
textActor SetCamera [ren1 GetActiveCamera]

Figure 4–8  Justification and use of
multi-line text. Use the \n character
embedded in the text string to gener-
ate line breaks. Both vertical and
horizontal justification is supported. 
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As the camera moves around the axes, the follower will orient itself to face the camera. (Try this by
mousing in the rendering window to move the camera.)

4.12 Special Plotting Classes 

The Visualization Toolkit provides several composite
classes that perform supplemental plotting opera-
tions. These include the ability to plot scalar bars,
perform simple x-y plotting, and place flying axes
for 3D spatial context.

Scalar Bar
The class vtkScalarBar is used to create a color-
coded key that relates color values to numerical data
values as shown in Figure 4–9. There are three parts
to the scalar bar: a rectangular bar with colored seg-
ments, labels, and a title. To use vtkScalarBar, you
must reference an instance of vtkLookupTable
(defines colors and the range of data values), posi-
tion and orient the scalar bar on the overlay plane, and optionally specify attributes such as color (of
the labels and the title), number of labels, and text string for the title. The following example shows
typical usage. 

vtkScalarBarActor scalarBar
  scalarBar SetLookupTable [mapper GetLookupTable]
  scalarBar SetTitle "Temperature"
  [scalarBar GetPositionCoordinate] \ 

SetCoordinateSystemToNormalizedViewport
  [scalarBar GetPositionCoordinate] SetValue 0.1 0.01
  scalarBar SetOrientationToHorizontal
  scalarBar SetWidth 0.8
  scalarBar SetHeight 0.17

The orientation of the scalar bar is controlled by the methods SetOrientationToVertical() and
vtkSetOrientationToHorizontal(). To control the position of the scalar bar (i.e., its lower-left corner),
set the position coordinate (in whatever coordinate system you desire—see “vtkCoordinate and Coor-
dinate Systems” on page 62), and then specify the width and height using normalized viewport values
(or alternatively, specify the Position2 instance variable to set the upper-right corner). 

X-Y Plots
The class vtkXYPlotActor generates x-y plots from one or more input datasets, as shown in Figure 4–
10. This class is particularly useful for showing the variation of data across a sequence of points such
as a line probe or a boundary edge. 

To use vtkXYPlotActor2D, you must specify one or more input datasets, axes, and the plot title,
and position the composite actor on the overlay plane. The PositionCoordinate instance variable

Figure 4–9  vtkScalarBarActor used to
create color legends.



4.12  Special Plotting Classes 67

defines the location of the lower-left corner of the x-y plot (specified in normalized viewport coordi-
nates), and the Position2Coordinate instance variable defines the upper-right corner. (Note: The
Position2Coordinate is relative to PositionCoordinate, so you can move the vtkXYPlotActor around
the viewport by setting just the PositionCoordinate.) The combination of the two position coordinates
specifies a rectangle in which the plot will lie. The following example (from VTK/Examples/
Annotation/Tcl/xyPlot.tcl) shows how the class is used. 

vtkXYPlotActor xyplot
  xyplot AddInput [probe GetOutput]
  xyplot AddInput [probe2 GetOutput]
  xyplot AddInput [probe3 GetOutput]
  [xyplot GetPositionCoordinate] SetValue 0.0 0.67 0
  [xyplot GetPosition2Coordinate] SetValue 1.0 0.33 0
  xyplot SetXValuesToArcLength
  xyplot SetNumberOfXLabels 6
  xyplot SetTitle "Pressure vs. Arc Length (Zoomed View)"
  xyplot SetXTitle ""
  xyplot SetYTitle "P"
  xyplot SetXRange .1 .35
  xyplot SetYRange .2 .4
  [xyplot GetProperty] SetColor 0 0 0

Note the x axis definition. By default, the x coordinate is set as the point index in the input datasets.
Alternatively, you can use arc length and normalized arc length of lines used as input to vtkXYPlot-
Actor to generate the x values.

Figure 4–10  Example of using the
vtkXYPlotActor2D class to display
three probe lines using three different
techniques (see VTK/Hybrid/Testing/
Tcl/xyPlot.tcl).

Figure 4–11  Use of
vtkCubeAxisActor2D. On the
left, outer edges of the cube are
used to draw the axes. On the
right, the closest vertex to the
camera is used.
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Bounding Box Axes (vtkCubeAxesActor2D) 
Another composite actor class is vtkCubeAxesActor2D. This class can be used to indicate the posi-
tion in space that the camera is viewing, as shown in Figure 4–11. The class draws axes around the
bounding box of the input dataset labeled with x-y-z coordinate values. As the camera zooms in, the
axes are scaled to fit within the cameras viewport, and the label values are updated. The user can con-
trol various font attributes as well as the relative font size (The font size is selected automatically—
the method SetFontFactor() can be used to affect the size of the selected font.) The following script
demonstrates how to use the class (taken from VTK/Examples/Annotation/Tcl/
cubeAxes.tcl).

vtkTextProperty tprop
tprop SetColor 1 1 1
tprop ShadowOn

vtkCubeAxesActor2D axes 
  axes SetInput [normals GetOutput]
  axes SetCamera [ren1 GetActiveCamera]
  axes SetLabelFormat "%6.4g"
  axes SetFlyModeToOuterEdges
  axes SetFontFactor 0.8
  axes SetAxisTitleTextProperty tprop

axis SetAxisLabelTextProperty tprop

Note that there are two ways that the axes can be drawn. By default, the outer edges of the bounding
box are used (SetFlyModeToOuterEdges()). You can also place the axes at the vertex closest to the
camera position (SetFlyModeToClosestTriad()).

Labeling Data

In some applications, you may wish to display numerical values from an underlying data set. The
class vtkLabeledDataMapper allows you to label the data associated with the points of a dataset. This
includes scalars, vectors, tensors, normals, texture coordinates, and field data, as well as the point ids
of the dataset. The text labels are placed on the overlay plane of the rendered image as shown in Fig-
ure 4–12. The figure was generated from the Tcl script VTK/Examples/Annotation/Tcl/
labeledMesh.tcl which is included in part below. The script uses three new classes,

Figure 4–12  Labelling point and cell ids on
a sphere within a rectangular window.
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vtkCellCenters (to generate points at the parametric centers of cells), vtkIdFilter (to generate ids as
scalar or field data from dataset ids), and vtkSelectVisiblePoints (to select those points currently visi-
ble), to label the cell and point ids of the sphere. In addition, vtkSelectVisiblePoints has the ability to
define a “window” in display (pixel) coordinates in which it operates—all points outside of the win-
dow are discarded.

# Create a sphere
vtkSphereSource sphere
vtkPolyDataMapper sphereMapper
  sphereMapper SetInputConnection [sphere GetOutputPort]
  sphereMapper GlobalImmediateModeRenderingOn
vtkActor sphereActor
  sphereActor SetMapper sphereMapper
# Generate ids for labeling
vtkIdFilter ids
  ids SetInputConnection [sphere GetOutputPort]
  ids PointIdsOn
  ids CellIdsOn
  ids FieldDataOn

vtkRenderer ren1

# Create labels for points
vtkSelectVisiblePoints visPts
  visPts SetInputConnection [ids GetOutputPort]
  visPts SetRenderer ren1
  visPts SelectionWindowOn
  visPts SetSelection $xmin [expr $xmin + $xLength] \

  $ymin [expr $ymin + $yLength]
vtkLabeledDataMapper ldm
  ldm SetInput [visPts GetOutput]
  ldm SetLabelFormat "%g"

ldm SetLabelModeToLabelFieldData
vtkActor2D pointLabels
  pointLabels SetMapper ldm  

# Create labels for cells
vtkCellCenters cc
  cc SetInputConnection [ids GetOutputPort]
vtkSelectVisiblePoints visCells
  visCells SetInputConnection [cc GetOutputPort]
  visCells SetRenderer ren1
  visCells SelectionWindowOn
  visCells SetSelection $xmin [expr $xmin + $xLength] \

  $ymin [expr $ymin + $yLength]
vtkLabeledDataMapper cellMapper
  cellMapper SetInputConnection [visCells GetOutputPort]
  cellMapper SetLabelFormat "%g"

cellMapper SetLabelModeToLabelFieldData
[cellMapper GetLabelTextProperty] SetColor 0 1 0

vtkActor2D cellLabels
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  cellLabels SetMapper cellMapper

# Add the actors to the renderer, set the background and size
ren1 AddActor sphereActor
ren1 AddActor2D pointLabels
ren1 AddActor2D cellLabels

4.13 Transforming Data
As we saw in the section “Notice how we use vtkAssembly’s AddPart() method to build the hierar-
chies. Assemblies can be nested arbitrarily deeply as long as there are not any self-referencing cycles.
Note that vtkAssembly is a subclass of vtkProp3D, so it has no notion of properties or of an associ-
ated mapper. Therefore, the leaf nodes of the vtkAssembly hierarchy must carry information about
material properties (color, etc.) and any associated geometry. Actors may also be used by more than
one assembly (notice how coneActor is used in the assembly and as an actor). Also, the renderer’s
AddActor() method is used to associate the top level of the assembly with the renderer; those actors at
lower levels in the assembly hierarchy do not need to be added to the renderer since they are recur-
sively rendered.” on page 57, it is possible to position and orient vtkProp3D’s in world space. How-
ever, in many applications we wish to transform the data prior to using it in the visualization pipeline.
For example, to use a plane to cut (“Cutting” on page 98) or clip (“Clip Data” on page 110) an object,
the plane must be positioned within the pipeline, not via the actor transformation matrix. Some
objects (especially procedural source objects) can be created at a specific position and orientation in
space. For example, vtkSphereSource has Center and Radius instance variables, and vtkPlaneSource
has Origin, Point1, and Point2 instance variables that allow you to position the plane using three
points. However, many classes do not provide this capability without moving data into a new posi-
tion. In this case, you must transform the data using vtkTransformFilter or
vtkTransformPolyDataFilter.

vtkTransformFilter is a filter that takes vtkPointSet data-
set objects as input. Datasets that are subclasses of the abstract
class vtkPointSet represent points explicitly, that is, an instance
of vtkPoints is used to store coordinate information. vtkTrans-
formFilter applies a transformation matrix to the points and cre-
ate a transformed points array; the rest of the dataset structure
(i.e., cell topology) and attribute data (e.g., scalars, vectors, etc.)
remains unchanged. vtkTransformPolyDataFilter does the same
thing as vtkTransformFilter except that it is more convenient to
use in a visualization pipeline containing polygonal data.

The following example (taken from VTK/Examples/
DataManipulation/Tcl/marching.tcl with results shown
in Figure 4–13) uses a vtkTransformPolyDataFilter to reposi-
tion a 3D text string. (See “3D Text Annotation and vtkFol-
lower” on page 65 for more information about 3D text.)

#define the text for the labels
vtkVectorText caseLabel
 caseLabel SetText "Case 12c - 11000101"
vtkTransform aLabelTransform

Figure 4–13  Transforming data
within the pipeline.
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 aLabelTransform Identity
 aLabelTransform Translate -.2 0 1.25
 aLabelTransform Scale .05 .05 .05
vtkTransformPolyDataFilter labelTransform
 labelTransform SetTransform aLabelTransform
 labelTransform SetInputConnection [caseLabel GetOutputPort]
vtkPolyDataMapper labelMapper
 labelMapper SetInputConnection [labelTransform GetOutputPort];
vtkActor labelActor
 labelActor SetMapper labelMapper

Notice that vtkTransformPolyDataFilter requires that you supply it with an instance of vtkTransform.
Recall that vtkTransform is used by actors to control their position and orientation in space. Instances
of vtkTransform support many methods, some of the most commonly used are shown here.

• RotateX(angle) — apply rotation (angle in degrees) around the x axis

• RotateY(angle) — apply rotation around the y axis

• RotateZ(angle) — apply rotation around the z axis

• RotateWXYZ(angle,x,y,z) — apply rotation around a vector defined by x-y-z 
components

• Scale(x,y,z) — apply scale in the x, y, and z directions

• Translate(x,y,z) — apply translation

• Inverse() — invert the transformation matrix

• SetMatrix(m) — specify the 4x4 transformation matrix directly

• GetMatrix(m) — get the 4x4 transformation matrix

• PostMultiply() — control the order of multiplication of transformation matrices. If
PostMultiply() is invoked, matrix operations are applied on the left hand side of the current
matrix.

• PreMultiply() — matrix multiplications are applied on the right hand side of the current
transformation matrix

The last two methods described above remind us that the order in which transformations are applied
dramatically affects the resulting transformation matrix. (See “Notice how we use vtkAssembly’s
AddPart() method to build the hierarchies. Assemblies can be nested arbitrarily deeply as long as
there are not any self-referencing cycles. Note that vtkAssembly is a subclass of vtkProp3D, so it has
no notion of properties or of an associated mapper. Therefore, the leaf nodes of the vtkAssembly hier-
archy must carry information about material properties (color, etc.) and any associated geometry.
Actors may also be used by more than one assembly (notice how coneActor is used in the assem-
bly and as an actor). Also, the renderer’s AddActor() method is used to associate the top level of the
assembly with the renderer; those actors at lower levels in the assembly hierarchy do not need to be
added to the renderer since they are recursively rendered.” on page 57.) We recommend that you
spend some time experimenting with these methods and the order of application to fully understand
vtkTransform.
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Advanced Transformation

Advanced users may wish to use VTK’s extensive transformation hierarchy. (Much of this work was
done by David Gobbi.) The hierarchy, of which the class hierarchy is shown in Figure 19–17, sup-
ports a variety of linear and non-linear transformations.

A wonderful feature of the VTK transformation hierarchy is that different types of transforma-
tion can be used in a filter to give very different results. For example, the vtkTransformPolyDataFilter
accepts any transform of type vtkAbstractTransform (or a subclass). This includes transformation
types ranging from the linear, affine vtkTransform (represented by a 4x4 matrix) to the non-linear,
warping vtkThinPlateSplineTransform, which is a complex function representing a correlation
between a set of source and target landmarks.

3D Widgets

Interactor styles (see “Using VTK Interactors” on page 45) are generally used to control the camera
and provide simple keypress and mouse-oriented interaction techniques. Interactor styles have no rep-
resentation in the scene; that is, they cannot be “seen” or interacted with, the user must know what the
mouse and key bindings are in order to use them. Certain operations, however, are greatly facilitated
by the ability to operate directly on objects in the scene. For example, starting a rake of streamlines
along a line is easily performed if the endpoints of the line can be interactively positioned.

3D widgets have been designed to provide this functionality. Like the class vtkInteractorStyle,
3D widgets are subclasses of vtkInteractorObserver. That is, they watch for events invoked by
vtkRenderWindowInteractor. (Recall that vtkRenderWindowInteractor translates windowing-system
specific events into VTK event invocations.) Unlike vtkInteractorStyle, however, 3D widgets
represent themselves in the scene in various ways. Figure 4–14 illustrates some of the many 3D
widgets found in VTK. 

The following is a list of the most important widgets currently found in VTK and a brief
description of their features. Note that some of the concepts mentioned here have not yet been
covered in this text. Please refer to “Interaction, Widgets and Selections” on page 255 to learn more
about a particular concept and the various widgets available in VTK.

• vtkScalarBarWidget — Manage a vtkScalarBar including positioning, scaling, and orienting it.
(See “Scalar Bar” on page 66 for more information about scalar bars.)

• vtkPointWidget — Position a point x-y-z location in 3D space. The widget produces a polygo-
nal output. Point widgets are typically used for probing. (See “Probing” on page 100.)

• vtkLineWidget — Place a straight line with a specified subdivision resolution. The widget pro-
duces a polygonal output. A common use of the line widget is to probe (“Probing” on page 100)
and plot data (“X-Y Plots” on page 66) or produce streamlines (“Streamlines” on page 95) or
stream surfaces (“Stream Surfaces” on page 97).

• vtkPlaneWidget — Orient and position a finite plane. The plane resolution is variable, and the
widget produces an implicit function and a polygonal output. The plane widget is used for prob-
ing (“Probing” on page 100) and seeding streamlines (“Streamlines” on page 95).

• vtkImplicitPlaneWidget — Orient and position an unbounded plane. The widget produces an
implicit function and a polygonal output. The polygonal output is created by clipping the plane
with a bounding box. The implicit plane widget is typically used for probing (“Probing” on
page 100), cutting (“Cutting” on page 98), and clipping data (“Clip Data” on page 110).
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• vtkBoxWidget — Orient and position a bounding box. The widget produces an implicit func-
tion and a transformation matrix. The box widget is used to transform vtkProp3D’s and sub-
classes (“Transforming Data” on page 70) or to cut (“Cutting” on page 98) or clip data (“Clip
Data” on page 110).

Figure 4–14  Some of the 3D widgets found in VTK.

vtkScalarBarWidget vtkPointWidget vtkLineWidget

vtkPlaneWidget vtkImplicitPlaneWidget vtkBoxWidget

vtkImagePlaneWidget vtkSphereWidget vtkSplineWidget
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• vtkImagePlaneWidget — Manipulate three orthogonal planes within a 3D volumetric data set.
Probing of the planes to obtain data position, pixel value, and window-level is possible. The
image plane widget is used to visualize volume data (“Image Processing and Visualization” on
page 103).

• vtkSphereWidget — Manipulate a sphere of variable resolution. The widget produces an
implicit function and a transformation matrix and enables the control of focal point and position
to support such classes as vtkCamera and vtkLight. The sphere widget can be used for control-
ling lights and cameras (“Controlling The Camera” on page 49 and “Controlling Lights” on
page 51), for clipping (“Clip Data” on page 110), and for cutting (“Cutting” on page 98).

• vtkSplineWidget — Manipulate an interpolating 3D spline (“Creating Movie Files” on
page 248). The widget produces polygonal data represented by a series of line segments of
specified resolution. The widget also directly manages underlying splines for each of the x-y-z
coordinate values.

While each widget provides different functionality and offers a different API, 3D widgets are similar
in how they are set up and used. The general procedure is as follows.

1. Instantiate the widget.

2. Specify the vtkRenderWindowInteractor to observe. The vtkRenderWindowInteractor invokes 
events that the widget may process.

3. Create callbacks (i.e., commands) as necessary using the Command/Observer mechanism—see 
“User Methods, Observers, and Commands” on page 29. The widgets invoke the events 
StartInteractionEvent, InteractionEvent, and EndInteractionEvent.

4. Most widgets require “placing” – positioning in the scene. This typically entails specifying an 
instance of vtkProp3D, a dataset, or explicitly specifying a bounding box, and then invoking the 
PlaceWidget() method.

5. Finally, the widget must be enabled. By default, a keypress i will enable the widget and it 
will appear in the scene.

Note that more than one widget can be enabled at any given time, and the widgets function fine in
combination with an instance of vtkInteractorStyle. Thus mousing in the scene not on any particular
widget will engage the vtkInteractorStyle, but mousing on a particular widget will engage just that
widget—typically no other widget or interactor style will see the events. (One notable exception is the
class vtkInteractorEventRecorder that records events and then passes them along. It can also playback
events. This is a very useful class for recording sessions and testing.)
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The following example (found in VTK/Examples/
GUI/Tcl/ImplicitPlaneWidget.tcl) demonstrates
how to use a 3D widget. The vtkImplicitPlaneWidget will
be used to clip an object. (See “Clip Data” on page 110 for
more information in clipping.) In this example the
vtkProp3D to be clipped is a mace formed from a sphere
and cone glyphs located at the sphere points and oriented
in the direction of the sphere normals. (See “Glyphing” on
page 94 for more information about glyphing.) The mace
is clipped with a plane that separates it into two parts, one
of which is colored green. The vtkImplicitPlaneWidget is
used to control the position and orientation of the clip
plane by mousing on the widget normal vector, moving the
point defining the origin of the plane, or translating the
plane by grabbing the widget bounding box.

vtkSphereSource sphere 
vtkConeSource cone
vtkGlyph3D glyph
  glyph SetInputConnection [sphere GetOutputPort]
  glyph SetSourceConnection [cone GetOutputPort]
  glyph SetVectorModeToUseNormal
  glyph SetScaleModeToScaleByVector
  glyph SetScaleFactor 0.25 

# The sphere and spikes are appended 
# into a single polydata. 
# This makes things simpler to manage.
vtkAppendPolyData apd
  apd AddInputConnection [glyph GetOutputPort]
  apd AddInputConnection [sphere GetOutputPort]

vtkPolyDataMapper maceMapper
maceMapper SetInputConnection [apd GetOutputPort]

vtkLODActor maceActor
  maceActor SetMapper maceMapper
  maceActor VisibilityOn

# This portion of the code clips the mace with the vtkPlanes 
# implicit function. The clipped region is colored green.
vtkPlane plane
vtkClipPolyData clipper
  clipper SetInputConnection [apd GetOutputPort]
  clipper SetClipFunction plane
  clipper InsideOutOn

vtkPolyDataMapper selectMapper
  selectMapper SetInputConnection [clipper GetOutputPort]

vtkLODActor selectActor

Figure 4–15  Using the implicit
plane widget (vtkImplicitPlaneWidget).



76 The Basics

  selectActor SetMapper selectMapper
  [selectActor GetProperty] SetColor 0 1 0
  selectActor VisibilityOff
  selectActor SetScale 1.01 1.01 1.01
vtkRenderer ren1
vtkRenderWindow renWin
  renWin AddRenderer ren1
vtkRenderWindowInteractor iren
  iren SetRenderWindow renWin

# Associate the line widget with the interactor
vtkImplicitPlaneWidget planeWidget
 planeWidget SetInteractor iren
 planeWidget SetPlaceFactor 1.25
 planeWidget SetInput [glyph GetOutput]
 planeWidget PlaceWidget
 planeWidget AddObserver InteractionEvent myCallback

ren1 AddActor maceActor
ren1 AddActor selectActor

iren AddObserver UserEvent {wm deiconify .vtkInteract}
renWin Render

# Prevent the tk window from showing up then start the event loop.
wm withdraw .

proc myCallback {} {
  planeWidget GetPlane plane
  selectActor VisibilityOn
}

As shown above, the implicit plane widget is instantiated and placed. The placing of the widget is
with respect to a dataset. (The Tcl statement “[glyph GetOutput]” returns a vtkPolyData, a subclass of
vtkDataSet.) The PlaceFactor adjusts the relative size of the widget. In this example the widget is
grown 25% larger than the bounding box of the input dataset. The key to the behavior of the widget is
the addition of an observer that responds to the InteractionEvent. StartInteraction and EndInteraction
are typically invoked by the widget on mouse down and mouse up respectively; the InteractionEvent
is invoked on mouse move. The InteractionEvent is tied to the Tcl procedure myCallback that copies
the plane maintained by the widget to an instance of vtkPlane—an implicit function used to do the
clipping. (See “Implicit Modeling” on page 213.)

The 3D widgets are a powerful feature in VTK that can quickly add complex interaction to any
application. We encourage you to explore the examples included with the VTK distribution (in
Examples/GUI and Hybrid/Testing/Cxx) to see the breadth and power of their capabilities.

4.14 Antialiasing
There are two ways to enable antialiasing with VTK: per primitive type or through multisampling.
Multisampling usually gives more pleasant result.
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Both antialiasing methods are controlled with the vtkRenderWindow API. When multisampling
is enabled and supported by the graphics card, the per-primitive-type antialiasing flags are ignored. In
both cases, the setting has to be done after the creation of a vtkRenderWindow object but before its
initialization on the the screen.

Note that in general, the antialiasing result differs among actual OpenGL implementations. (an
OpenGL implementation is either a software implementation, like Mesa, or the combination of a
graphics card and its driver)  

Per-primitive type antialiasing
Three flags, one for each type of primitive, control antialiasing:

• PointSmoothing,
• LineSmoothing and
• PolygonSmoothing.

Initially, they are all disabled. Here are the 4 steps in required order to enable antialiasing on point
primitives:

1. vtkRenderWindow *w=vtkRenderWindow::New();
2. w->SetMultiSamples(0);
3. w->SetPointSmoothing(1);
4. w->Render();

Here is a complete example to display the vertices of a mesh representing a sphere with point anti-
aliasing:

#include "vtkRenderWindowInteractor.h"
#include "vtkRenderWindow.h"
#include "vtkRenderer.h"
#include "vtkSphereSource.h"
#include "vtkPolyDataMapper.h"
#include "vtkProperty.h"

int main()
{

Figure 4–16  Effect of antialiasing techniques on a wireframe sphere.
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  vtkRenderWindowInteractor *i=vtkRenderWindowInteractor::New();
  vtkRenderWindow *w=vtkRenderWindow::New();
  i->SetRenderWindow(w);
  
  w->SetMultiSamples(0); // no multisampling
  w->SetPointSmoothing(1); // point antialiasing
  
  vtkRenderer *r=vtkRenderer::New();
  w->AddRenderer(r);
  
  vtkSphereSource *s=vtkSphereSource::New();
  vtkPolyDataMapper *m=vtkPolyDataMapper::New();
  m->SetInputConnection(s->GetOutputPort());

  vtkActor *a=vtkActor::New();
  a->SetMapper(m);
  vtkProperty *p=a->GetProperty();
  p->SetRepresentationToPoints(); // we want to see points
  p->SetPointSize(2.0); // big enough to notice antialiasing
  p->SetLighting(0); // don't be disturb by shading
  r->AddActor(a);
  
  i->Start();
  
  s->Delete();
  m->Delete();
  a->Delete();
  r->Delete();
  w->Delete();
  i->Delete();
}

The following lines are specific to point antialiasing:

w->SetPointSmoothing(1);
p->SetRepresentationToPoints();
p->SetPointSize(2.0);

You can visualize line antialiasing by changing them to:

w->SetLineSmoothing(1);
p->SetRepresentationToWireframe();
p->SetLineWidth(2.0);

You can visualize polygon antialiasing with simply:

w->PolygonSmoothing(1);
p->SetRepresentationToSurface();
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Multisampling
Multisampling gives better result than the previous method. Initially, multisampling is enabled. But it
is only effective if the graphics card support it. Currently, VTK supports multisampling on X window
only. To disable multisampling, set the MultiSamples value (initially set to 8) to 0:

1. 1 vtkRenderWindow *w=vtkRenderWindow::New();
2. 2 w->SetMultiSamples(0); // disable multisampling.
3. 3 w->Render();

Going back to the previous example, if you are using X11, just get rid of line disabling multisampling
and we will see the effect of multisampling on points, lines or polygons. 

4.15 Translucent polygonal geometry
Rendering the geometry as translucent is a powerful tool for visualization. It allows to "see through"
the data. It can be used also to focus on a region of interest; the region of interest is rendered as
opaque and the context is renderered as translucent. 

Rendering translucent geometry is not trivial: the final color of a pixel on the screen is the con-
tribution of all the geometry primitives visible through the pixel. The color of the pixel is the result of
blending operations between the colors of all visible primitives. Blending operations themselves are
usually order-dependent (ie not commutative). Therefore, for a correct rendering, depth sorting is
required. However, depth sorting has a computational cost. 

VTK offers three ways to render translucent polygonal geometry. Each of them is a tradeoff
between correctness (quality) and cost (of depth sorting). 

Fast and Incorrect. Start ignoring the previous remark about depth sorting. There is then no extra
computational cost but the result on the screen is incorrect. However, depending of the application
context, the result might be good enough. 

Slower and Almost Correct. This method consists in using two filters. First, append all the polygo-
nal geometry with vtkAppendPolyData. Then connect the output port of vtkAppendPolyData to the
input port of vtkDepthSortPolyData. Depth sorting is performed per centroid of geometry primitives,
not per pixel. For this reason it is not correct but it solves most of the ordering issues and gives a
result usually good enough. Look at VTK/Hybrid/Testing/Tcl/depthSort.tcl for an example.

Very Slow and Correct. If the graphics card supports it (nVidia only), use "depth peeling". It per-
forms per pixel sorting (better result) but it is really slow. Before the first Render, ask for alpha bits on
the vtkRenderWindow:

vtkRenderWindow *w=vtkRenderWindow::New();
w->SetAlphaBitPlanes(1);

Make sure multisampling is disabled:
w->SetMultiSamples(0);

On the renderer, enable depth peeling:
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vtkRenderer *r=vtkRenderer::New();
r->SetUseDepthPeeling(1);

Set the depth peeling parameters (the maximum number of rendering passes and the occlusion ratio).
The parameters are explained in the next section.

r->SetMaximumNumberOfPeels(100);
r->SetOcclusionRatio(0.1);

Render the scene:

w->Render();

Finally, you can check that the graphics card supported depth peeling:

r->GetLastRenderingUsedDepthPeeling();

Depth Peeling Parameters. In order to play with the depth peeling parameters, it is necessary to
understand the algorithm itself. The algorithm peels the translucent geometry from front to back until
there is no more geometry to render. The iteration loop stops either if it reaches the maximum number
of iterations set by the user or if the number of pixels modified by the last peel is less than some ratio
of the area of the window (this ratio is set by the user, if the ratio is set to 0.0, it means the user wants
the exact result. A ratio of 0.2 will render faster than a ratio of 0.1).

OpenGL requirements. The graphics card supports depth peeling, if the following OpenGL exten-
sions are supported:

* GL_ARB_depth_texture or OpenGL>=1.4
* GL_ARB_shadow or OpenGL>=1.4
* GL_EXT_shadow_funcs or OpenGL>=1.5
* GL_ARB_vertex_shader or OpenGL>=2.0
* GL_ARB_fragment_shader or OpenGL>=2.0
* GL_ARB_shader_objects or OpenGL>=2.0
* GL_ARB_occlusion_query or OpenGL>=1.5
* GL_ARB_multitexture or OpenGL>=1.3
* GL_ARB_texture_rectangle
* GL_SGIS_texture_edge_clamp, GL_EXT_texture_edge_clamp or OpenGL>=1.2 

In practice, it works with nVidia GeForce 6 series and above or with Mesa (e.g. 7.4). It does not work
with ATI cards.

Example. Here a complete example that uses depth peeling (you can also look for files having Depth-
Peeling in their name in VTK/Rendering/Testing/Cxx).

#include "vtkRenderWindowInteractor.h"
#include "vtkRenderWindow.h"
#include "vtkRenderer.h"
#include "vtkActor.h"

#include "vtkImageSinusoidSource.h"
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#include "vtkImageData.h"
#include "vtkImageDataGeometryFilter.h"
#include "vtkDataSetSurfaceFilter.h"
#include "vtkPolyDataMapper.h"
#include "vtkLookupTable.h"
#include "vtkCamera.h"

int main()
{
  vtkRenderWindowInteractor *iren=vtkRenderWindowInteractor::New();
  vtkRenderWindow *renWin = vtkRenderWindow::New();
  renWin->SetMultiSamples(0);
  
  renWin->SetAlphaBitPlanes(1);
  iren->SetRenderWindow(renWin);
  renWin->Delete();
  
  vtkRenderer *renderer = vtkRenderer::New();
  renWin->AddRenderer(renderer);
  renderer->Delete();
  renderer->SetUseDepthPeeling(1);
  renderer->SetMaximumNumberOfPeels(200);
  renderer->SetOcclusionRatio(0.1);
  
  vtkImageSinusoidSource *imageSource=vtkImageSinusoidSource::New();
  imageSource->SetWholeExtent(0,9,0,9,0,9);
  imageSource->SetPeriod(5);
  imageSource->Update();
  
  vtkImageData *image=imageSource->GetOutput();
  double range[2];
  image->GetScalarRange(range);
  
  vtkDataSetSurfaceFilter *surface=vtkDataSetSurfaceFilter::New();
  
  surface->SetInputConnection(imageSource->GetOutputPort());
  imageSource->Delete();

  vtkPolyDataMapper *mapper=vtkPolyDataMapper::New();
  mapper->SetInputConnection(surface->GetOutputPort());
  surface->Delete();
  
  vtkLookupTable *lut=vtkLookupTable::New();
  lut->SetTableRange(range);
  lut->SetAlphaRange(0.5,0.5);
  lut->SetHueRange(0.2,0.7);
  lut->SetNumberOfTableValues(256);
  lut->Build();
  
  mapper->SetScalarVisibility(1);
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  mapper->SetLookupTable(lut);
  lut->Delete();
  
  vtkActor *actor=vtkActor::New();
  renderer->AddActor(actor);
  actor->Delete();
  actor->SetMapper(mapper);
  mapper->Delete();
  
  renderer->SetBackground(0.1,0.3,0.0);
  renWin->SetSize(400,400);
  
  renWin->Render();
  if(renderer->GetLastRenderingUsedDepthPeeling())
    {
    cout<<"depth peeling was used"<<endl;
    }
  else
    {
    cout<<"depth peeling was not used (alpha blending instead)"<<endl;
    }
  vtkCamera *camera=renderer->GetActiveCamera();
  camera->Azimuth(-40.0);
  camera->Elevation(20.0);
  renWin->Render();
  
  iren->Start();
}

Painter mechanism: customizing the polydata mapper. Sometimes you want full control of the
steps used to render a polydata. VTK makes it possible with the use of the painter mechanism. Thanks
to the factory design pattern, the following line actually creates a vtkPainterPolyDataMapper:

vtkPolyDataMapper *m=vtkPolyDataMapper::New();

You can have access to the vtkPainterPolyDataMapper API by downcasting:

vtkPainterPolyDataMapper 
*m2=vtkPainterPolyDataMapper::SafeDownCast(m);

This polydata mapper delegates the rendering to a vtkPainter object. SetPainter() and GetPainter()
gives access to this delegate.

vtkPainter itself is just an abstract API shared by concrete Painters. Each of them is responsible
for one stage of the rendering. This mechanism allows to choose and combine stages. For example
vtkPolygonsPainter is responsible for drawing polygons whereas vtkLightingPainter is responsible
for setting lighting parameters. The combination of painters forms a chain of painters. It is a chain
because each painter can delegate part of the execution of the rendering to another painter.

Most of the time, you don't need to explicitly set the chain of painters: vtkDefaultPainter
already set a standard chain of painters for you.
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Writing your own painter. Writing your own painter consists essentially in writing 2 classes: an
abstract subclass of vtkPainter, a concrete class with the OpenGL implementation.

Let's take a look at an existing Painter: vtkLightingPainter. vtkLightingPainter derives from
vtkPainter and is almost empty. The real implementation is in the concrete class vtkOpenGLLighting-
Painter which overrides the protected method RenderInternal().

The arguments of RenderInternal() are essentially the renderer and the actor. Implementing
RenderInternal() consists in writing the actual rendering stage code and calling the next Painter in the
painter chain (the "delegate") by calling this->Superclass::RenderInternal(). 

4.16 Animation
• Animation is important component of Visualization System, etc.

• It is possible to create simple animations by writing loops that continuously change some
parameter on a filter and render. However such implementations can become complicated when
multiple parameter changes are involved. 

• VTK provides a framework comprising of vtkAnimationCue and vtkAnimationScene to man-
age animation setup and playback.

• vtkAnimationCue corresponds to an entity that changes with time e.g. position of an actor;
while vtkAnimationScene represents a scene or a setup for the animation comprising of
instances of vtkAnimationCue. 

Animation Scene (vtkAnimationScene)

vtkAnimationScene represents a scene or a setup for the animation. An animation is generated by ren-
dering frames in a sequence while changing some visualization parameter(s) before rendering each
frame. Every frame has an animation time associated with it, which can be used to determine the
frame's place in the animation. Animation time is simply a counter that continuously increases over
the duration of the animation based on the play-mode.

Following are important methods on a vtkAnimationScene:

SetStartTime()/SetEndTime()
These represent the start and end times of the animation scene. This is the range that the
animation time covers during playback. 

SetPlayMode()
This is used to control they playback mode i.e. how the animation time is changed. There
are two modes available:

Sequence Mode (PLAYMODE_SEQUENCE) 
In this mode, the animation time is increased by (1/frame-rate) for every frame until the
EndTime is reached. Hence the number of frames rendered in a single run is fixed irre-
spective of how long each frame takes to render.

RealTime Mode (PLAYMODE_REALTIME) 
In this mode, the animation runs for approximately (EndTime-StartTime) seconds, where
the animation time at nth frame is given by (animation time and (n-1)th frame + time to
render (n-1)th frame). Thus the number of frames rendered changes depending on how
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long each frame takes to render.

SetFrameRate()
Frame rate is the number of frames per unit time. This is used only in sequence play-
mode.

AddCue(), RemoveCue(), RemoveAllCue()
Methods to add/remove animation cues from the scene.

SetAnimationTime()
SetAnimationTime can be used to explicitly advance to a particular frame.

GetAnimationTime()
GetAnimationTime() can be called during playback to query the animation clock time.

Play()
Starts playing the animation.

SetLoop()
When set to True, Play() results in playing the animation in a loop.

Animation Cue (vtkAnimationCue)
vtkAnimationCue corresponds to an entity that changes in an animation. vtkAnimation-
Cue does not know how to bring about the changes to the parameters. So the user has to
either subclass vtkAnimationCue or use event observers to perform the changes as the
animation progresses.

A cue has a start-time and an end-time in an animation scene. During playback, a cue is active when
the scene's animation time is within the range specified the start and end times for the cue. When the
cue is activated, it fires the vtkCommand::StartAnimationCueEvent. For every subsequent frame, it
fires the vtkCommand::AnimationCueTickEvent until the end-time is reached when the vtkCom-
mand::EndAnimationCueEvent is fired. Following are the important methods of vtkAnimationCue

SetTimeMode
TimeMode defines how the start and time times are specified. There are two modes avail-
able. 

Relative (TIMEMODE_RELATIVE) 
In this mode the animation cue times are specified relative to the start of the animation
scene.

Normalized (TIMEMODE_NORMALIZED) 
In this mode, the cue start and end times are always in the range [0, 1] where 0 corre-
sponds to the start and 1 corresponds to the end of the animation scene.

SetStartTime/SetEndTime
These are used to indicate the range of animation time when this cue is active. When the
TimeMode is TIMEMODE_RELATIVE, these are specified in the same unit as the ani-
mation scene start and end times and are relative to the start of the animation scene. If
TimeMode is TIMEMODE_NORMALIZED, these are in the range [0, 1] where 0 corre-
sponds to the start of the animation scene while 1 corresponds to the end of the animation
scene.

GetAnimationTime()
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This is provided for the event handler for vtkCommand::AnimationCueTickEvent. It can
be used by the handler to determine how far along in the animation the current frame it.
It's value depends on the TimeMode. If TimeMode is Relative, then the value will be
number of time units since the cue was activated. If TimeMode is Normalized then it will
be value in the range [0, 1] where 0 is the start of the cue, while 1 is the end of the cue.

GetClockTime()
This is same as the animation clock time returned by vtkAnimationScene::GetAnimation-
Time(). It is valid only in the event handler for vtkCommand::AnimationCueTickEvent.

GetDeltaTime()
This can be used to obtain the change in animation click time from when the previous
frame was rendered, if any. Again, this is valid in only in the event handler for vtkCom-
mand::AnimationCueTickEvent.

TickInternal(double currentime, double deltatime, double clocktime)
As mentioned earlier, one can subclasses vtkAnimationCue, instead of writing event han-
dlers to do the animation, in which case you can override this method. The arguments
correspond to the values returned by GetAnimationTime(), GetDeltaTime() and Get-
ClockTime() respectively.

StartCueInternal(), EndCueInternal()
These methods can be overridden in subclasses to do setup and cleanup and start and end
of the cue during playback. Alternatively, one can add event observers for the vtkCom-
mand::StartAnimationCueEvent and vtkCommand::EndAnimationCueEvent to do the
same.

In the following example, we create a simple animation where the StartTheta of a vtkSphereSource is
varied over the length of the animation. We use normalized time mode for the animation cue in this
example, so that we can change the scene times or the cue times and the code to change the StartTheta
value can still remain unchanged.

class vtkCustomAnimationCue: public vtkAnimationCue
{
public:
  static vtkCustomAnimationCue* New();
  vtkTypeRevisionMacro(vtkCustomAnimationCue, vtkAnimationCue);

vtkRenderWindow *RenWin;
  vtkSphereSource* Sphere;

protected:
  vtkCustomAnimationCue()
    {
    this->RenWin = 0;
    this->Sphere = 0;
    }

  // Overridden to adjust the sphere's radius depending on the frame we
// are rendering. In this animation we want to change the StartTheta
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// of the sphere from 0 to 180 over the length of the cue.
  virtual void TickInternal(double currenttime, double deltatime,
    double clocktime)
    {
    double new_st = currenttime * 180;
      // since the cue is in normalized mode, the currentime will be in the
      // range [0,1], where 0 is start of the cue and 1 is end of the cue.
    this->Sphere->SetStartTheta(new_st);
    this->RenWin->Render();
    }

};
vtkStandardNewMacro(vtkCustomAnimationCue);
vtkCxxRevisionMacro(vtkCustomAnimationCue, "$Revision$");

int main(int argc, char *argv[])
{
  // Create the graphics structure. The renderer renders into the
  // render window.
  vtkRenderer *ren1=vtkRenderer::New();
  vtkRenderWindow *renWin=vtkRenderWindow::New();
  renWin->SetMultiSamples(0);
  renWin->AddRenderer(ren1);

  vtkSphereSource* sphere = vtkSphereSource::New();
  vtkPolyDataMapper* mapper = vtkPolyDataMapper::New();
  mapper->SetInputConnection(sphere->GetOutputPort());
  vtkActor* actor = vtkActor::New();
  actor->SetMapper(mapper);
  ren1->AddActor(actor);

  ren1->ResetCamera(); 
  renWin->Render();

// Create an Animation Scene
  vtkAnimationScene *scene = vtkAnimationScene::New();
  scene->SetModeToSequence();
  scene->SetFrameRate(30);
  scene->SetStartTime(0);
  scene->SetEndTime(60);

// Create an Animation Cue to animate the camera.
  vtkCustomAnimationCue *cue1 = vtkCustomAnimationCue::New();
  cue1->Sphere = sphere;
  cue1->RenWin = renWin;
  cue1->SetTimeModeToNormalized();
  cue1->SetStartTime(0);
  cue1->SetEndTime(1.0);
  scene->AddCue(cue1);
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  scene->Play();
  scene->Stop();

  ren1->Delete();
  renWin->Delete();
  scene->Delete();
  cue1->Delete();
  return 0;
}





Chapter 5

Visualization Techniques 5

Some basic tools to render and interact with data were
presented in the previous chapter. In this chapter we’ll show you a variety of visualization techniques.
These techniques (implemented as filters) are organized according to the type of data they operate on.
Some filters are general and can be applied to any type of data—those filters that accept input of class
vtkDataSet (or any subclass). Many filters are more specialized to the type of input they accept (e.g.,
vtkPolyData). There is one class of filters—those that accept input of type vtkImageData (or its obso-
lete subclass vtkStructuredPoints)—that are not addressed in this chapter. Instead, filters of this type
are described in the next chapter (“Image Processing and Visualization” on page 103).

Please keep two things to keep in mind while you read this chapter. First, filters generate a vari-
ety of output types, and the output type is not necessarily the same as the input type. Second, filters
are used in combination to create complex data processing pipelines. Often there are patterns of
usage, or common combinations of filters, that are used. In the following examples you may wish to
note these combinations.

5.1 Visualizing vtkDataSet (and Subclasses)
In this section, we’ll show you how to perform some common visualization operations on data
objects of type vtkDataSet. Recall that vtkDataSet is the superclass for all concrete types of visualiza-
tion data (see Figure 3–2). Therefore, the methods described here are applicable to all of the various
data types. (In other words, all filters taking vtkDataSet as input will also accept vtkPolyData, vtkIm-
ageData, vtkStructuredGrid, vtkRectilinearGrid, and vtkUnstructuredGrid.)

Working With Data Attributes

Data attributes are information associated with the structure of the dataset (as described in “The Visu-
alization Pipeline” on page 25). In VTK, attribute data is associated with points (point attribute data)
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and cells (cell attribute data). Attribute data, along with the dataset structure, are processed by the
many VTK filters to generate new structures and attributes. A general introduction to attribute data is
beyond the scope of this section, but a simple example will demonstrate the basic ideas. (For more
information you may wish to refer to “Field and Attribute Data” on page 362 and Figure 16–1.)

Data attributes are simply vtkDataArrays which may be labeled as being one of scalars, vectors,
tensors, normals, texture coordinates, global ids (for identifying redundant elements), or pedigree ids
(for tracing element history up the pipeline). The points and the cells of a vtkDataSet may have their
own independent data attributes. The data attributes may be associated with the points or cells of a
vtkDataSet. Every vtkDataArray associated with a vtkDataSet is a concrete subclass of vtkDataArray,
such as vtkFloatArray or vtkIntArray. These data arrays can be thought of as contiguous, linear
blocks of memory of the named native type. Within this linear block, the data array is thought to con-
sist of subarrays or “tuples.” Creating attribute data means instantiating a data array of desired type,
specifying the tuple size, inserting data, and associating it with a dataset, as shown in the following
Tcl script. The association may have the side effect of labeling the data as scalars, vectors, tensors,
texture coordinates, or normals. For example:

vtkFloatArray scalars
scalars InsertTuple1 0 1.0
scalars InsertTuple1 1 1.2
...etc...

vtkDoubleArray vectors
vectors SetNumberOfComponents 3
vectors InsertTuple3 0 0.0 0.0 1.0
vectors InsertTuple3 1 1.2 0.3 1.1
...etc...

vtkIntArray justAnArray
justAnArray SetNumberOfComponents 2
justAnArray SetNumberOfTuples $numberOfPoints
justAnArray SetName “Solution Attributes”
justAnArray SetTuple2 0 1 2
justAnArray SetTuple2 1 3 4
...etc...

vtkPolyData polyData;#A concrete type of vtkDataSet
[polyData GetPointData] SetScalars scalars
[polyData GetCellData] SetVectors vectors
[polyData GetPointData] AddArray justAnArray

Here we create three arrays of types float, double, and int. The first array (scalars) is instanti-
ated and by default has a tuple size of one. The method InsertTuple1() is used to place data into the
array (all methods named Insert___() allocate memory as necessary to hold data). The next data array
(vectors) is created with a tuple size of three, because vectors are defined as having three compo-
nents, and InsertTuple3 is used to add data to the array. Finally, we create a general array of tuple size
two, and allocate memory using SetNumberOfTuples(). We then use SetTuple2() to add data; this
method assumes that memory has been allocated and is therefore faster than the similar Insert__()
methods. Notice that the labelling of what is a scalar, vector, etc. occurs when we associate the data
arrays with the point data or cell data of the dataset (using the methods SetScalars() and SetVectors()).
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Please remember that the number of point attributes (e.g., number of scalars in this example) must
equal the number of points in the dataset, and the number of cell attributes (e.g., number of vectors)
must match the number of cells in the dataset.

Similarly, to access attribute data, use these methods

set scalars [[polyData GetPointData] GetScalars]
set vectors [[polyData GetCellData] GetVectors]

You’ll find that many of the filters work with attribute data specifically. For example, vtkElevation-
Filter generates scalar values based on their elevation in a specified direction. Other filters work with
the structure of the dataset, and generally ignore or pass the attribute data through the filter (e.g., vtk-
DecimatePro). And finally, some filters work with (portions of) the attribute data and the structure to
generate their output. vtkMarchingCubes is one example. It uses the input scalars in combination with
the dataset structure to generate contour primitives (i.e., triangles, lines or points). Other types of
attribute data, such as vectors, are interpolated during the contouring process and sent to the output of
the filter.

Another important issue regarding attribute data is that some filters will process only one type
of attribute (point data versus cell data), ignoring or passing to their output the other attribute data
type. You may find that your input data is of one attribute type and you want to process it with a filter
that will not handle that type, or you simply want to convert from one attribute type to another. There
are two filters that can help you with this: vtkPointDataToCellData and vtkCellDataToPointData,
which convert to and from point and cell data attributes. Here’s an example of their use (from the Tcl
script VTK/Examples/DataManipulation/Tcl/pointToCellData.tcl).

vtkUnstructuredGridReader reader
  reader SetFileName "$VTK_DATA_ROOT/Data/blow.vtk"
  reader SetScalarsName "thickness9"
  reader SetVectorsName "displacement9"
vtkPointDataToCellData p2c
  p2c SetInputConnection [reader GetOutputPort]
  p2c PassPointDataOn
vtkWarpVector warp
  warp SetInputConnection [p2c GetOutputPort]
vtkThreshold thresh
  thresh SetInputConnection [warp GetOutputPort]
  thresh ThresholdBetween 0.25 0.75
  thresh SetAttributeModeToUseCellData

This example is interesting because it demonstrates the conversion between attribute data types
(vtkPointDataToCellData), and the use of a filter that can process either cell data or point data
(vtkThreshold). The method PassPointDataOn() indicates to vtkPointDataToCellData to create cell
data and also pass to its output the input point data. The method SetAttributeModeToUseCellData()
configures the vtkThreshold filter to use the cell data to perform the thresholding operation.

The conversion between point and cell data and vice versa is performed using an averaging
algorithm. Point data is converted to cell data by averaging the values of the point data associated
with the points used by a given cell. Cell data is converted to point data by averaging the cell data
associated with the cells that use a given point.
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Color Mapping
Probably the single most used visualization technique is color-
ing objects via scalar value, or color mapping. The ideas
behind this technique is simple: scalar values are mapped
through a lookup table to obtain a color, and the color is
applied during rendering to modify the appearance of points or
cells. Before proceeding with this section, make sure that you
understand how to control the color of an actor (see “Actor
Color” on page 54). 

In VTK, color mapping is typically controlled by sca-
lars, which we assume you’ve created or read from a data file,
and the lookup table, which is used by instances of vtkMapper
to perform color mapping. It is also possible to use any data
array to perform the coloring by using the method
ColorByArrayComponent(). If not specified, a default lookup
table is created by the mapper, but you can create your own
(taken from VTK/Examples/Rendering/Tcl/rainbow.tcl—see Figure 5–1).

vtkLookupTable lut
lut SetNumberOfColors 64
lut SetHueRange 0.0 0.667
lut Build

  for {set i 0} {$i<16} {incr i 1} {
    eval lut SetTableValue [expr $i*16] $red 1
    eval lut SetTableValue [expr $i*16+1] $green 1
    eval lut SetTableValue [expr $i*16+2] $blue 1
    eval lut SetTableValue [expr $i*16+3] $black 1
  }
vtkPolyDataMapper planeMapper
  planeMapper SetLookupTable lut
  planeMapper SetInputConnection [plane GetOutputPort]
  planeMapper SetScalarRange 0.197813 0.710419
vtkActor planeActor
  planeActor SetMapper planeMapper

Lookup tables can be manipulated in two different ways, as this example illustrates. First, you can
specify a HSVA (Hue-Saturation-Value-Alpha transparency) ramp that is used to generate the colors
in the table using linear interpolation in HSVA space (the Build() method actually generates the
table). Second, you can manually insert colors at specific locations in the table. Note that the number
of colors in the table can be set. In this example we generate the table with the HSVA ramp, and then
replace colors in the table with the SetTableValue() method.

The mapper’s SetScalarRange() method controls how scalars are mapped into the table. Scalar
values greater than the maximum value are clamped to the maximum value. Scalar values less than
the minimum value are clamped to the minimum value. Using the scalar range let’s you “expand” a
region of the scalar data by mapping more colors to it.

Sometimes the scalar data is actually color, and does not need to be mapped through a lookup
table. The mapper provides several methods to control the mapping behavior. 

Figure 5–1  Color mapping.
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• SetColorModeToDefault() invokes the default mapper behavior. The default behavior treats 3
component scalars of data type unsigned char as colors and performs no mapping; all other
types of scalars are mapped through the lookup table.

• SetColorModeToMapScalars() maps all scalars through the lookup table, regardless of type. If
the scalar has more than one component per tuple, then the scalar’s zero’th component is used
perform the mapping.

Another important feature of vtkMapper is controlling which attribute data (i.e., point or cell scalars,
or a general data array) is used to color objects. The following methods let you control this behavior.
Note that these methods give strikingly different results: point attribute data is interpolated across ren-
dering primitives during the rendering process, whereas cell attribute data colors the cell a constant
value.

• SetScalarModeToDefault() invokes the default mapper behavior. The default behavior uses
point scalars to color objects unless they are not available, in which case cell scalars are used, if
they are available. 

• SetScalarModeToUsePointData() always uses point data to color objects. If no point scalar data
is available, then the object color is not affected by scalar data.

• SetScalarModeToUseCellData() always uses cell data to color objects. If no cell scalar data is
available, then the object color is not affected by scalar data.

• SetScalarModeToUsePointFieldData() indicates that neither the point or cell scalars are to be
used, but rather a data array found in the point attribute data. This method should be used in
conjunction with ColorByArrayComponent() to specify the data array and component to use as
the scalar.

• SetScalarModeToUseCellFieldData() indicates that neither the point or cell scalars are to be
used, but rather a data array found in the cell field data. This method should be used in conjunc-
tion with ColorByArrayComponent() to specify the data array and component to use as the sca-
lar.

Normally the default behavior works well, unless both cell and point scalar data is available. In this
case, you will probably want to explicitly indicate whether to use point scalars or cell scalars to color
your object.

Contouring 
Another common visualization technique is generating contours.
Contours are lines or surfaces of constant scalar value. In VTK,
the filter vtkContourFilter is used to perform contouring as
shown in the following Tcl example from VTK/Examples/
VisualizationAlgorithms/Tcl/VisQuad.tcl—refer to
Figure 5–2. 

# Create 5 surfaces in range specified
vtkContourFilter contours

contours SetInputConnection [sample \
GetOutputPort]

contours GenerateValues 5 0.0 1.2 Figure 5–2  Generating contours.
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vtkPolyDataMapper contMapper
contMapper SetInputConnection [contours GetOutputPort]
contMapper SetScalarRange 0.0 1.2

vtkActor contActor
contActor SetMapper contMapper

You can specify contour values in two ways. The simplest way is to use the SetValue() method to
specify the contour number and its value (multiple values can be specified)

contours SetValue 0 0.5

The above example demonstrated the second way: via the GenerateValues() method. With this
method, you specify the scalar range and the number of contours to be generated in the range (end
values inclusive).

Note that there are several objects in VTK that perform contouring specialized to a particular
dataset type (and are faster). Examples include vtkSynchronizedTemplates2D and
vtkSynchronizedTemplates3D. You do not need to instantiate these directly if you use vtkContourFil-
ter; the filter will select the best contouring function for your dataset type automatically.

Glyphing 

Glyphing is a visualization technique that represents data by
using symbols, or glyphs (Figure 5–3). The symbols can be
simple or complex, ranging from oriented cones to show vec-
tor data, to complex, multi-variate glyphs such as Chernoff
faces (symbolic representations of the human face whose
expression is controlled by data values). In VTK, the
vtkGlyph3D class allows you to create glyphs that can be
scaled, colored, and oriented along a direction. The glyphs
are copied to each point of the input dataset. The glyph itself
is defined using the second input connection to the filter. (It
accepts datasets of type vtkPolyData). The following script
demonstrates the use of vtkGlyph3D (the Tcl script is taken
from VTK/Examples/VisualizationAlgorithms/Tcl/
spikeF.tcl). 

vtkPolyDataReader fran
  fran SetFileName "$VTK_DATA_ROOT/Data/fran_cut.vtk"
vtkPolyDataNormals normals
  normals SetInputConnection [fran GetOutputPort]
  normals FlipNormalsOn
vtkPolyDataMapper franMapper
  franMapper SetInputConnection [normals GetOutputPort]
vtkActor franActor
  franActor SetMapper franMapper

[franActor GetProperty] SetColor 1.0 0.49 0.25

vtkMaskPoints ptMask
  ptMask SetInputConnection [normals GetOutputPort]

Figure 5–3  Glyphs showing
surface normals.



5.1  Visualizing vtkDataSet (and Subclasses) 95

  ptMask SetOnRatio 10
  ptMask RandomModeOn

# In this case we are using a cone as a glyph. We transform the cone so
# its base is at 0,0,0. This is the point where glyph rotation occurs.
vtkConeSource cone
  cone SetResolution 6
vtkTransform transform
  transform Translate 0.5 0.0 0.0
vtkTransformPolyDataFilter transformF
  transformF SetInputConnection [cone GetOutputPort]
  transformF SetTransform transform

vtkGlyph3D glyph
  glyph SetInputConnection [ptMask GetOutputPort]
  glyph SetSourceConnection [transformF GetOutputPort]
  glyph SetVectorModeToUseNormal
  glyph SetScaleModeToScaleByVector
  glyph SetScaleFactor 0.004
vtkPolyDataMapper spikeMapper
  spikeMapper SetInputConnection [glyph GetOutputPort]
vtkActor spikeActor
  spikeActor SetMapper spikeMapper
  eval [spikeActor GetProperty] SetColor 0.0 0.79 0.34

The purpose of the script is to indicate the direction of surface normals using small, oriented cones.
An input dataset (from a Cyberware laser digitizing system) is read and displayed. Next, the filter vtk-
MaskPoints is used to subsample the points (and associated point attribute data) from the Cyberware
data. This serves as the input to the vtkGlyph3D instance. A vtkConeSource is used as the Source for
the glyph instance. Notice that the cone is translated (with vtkTransformPolyDataFilter) so that its
base is on the origin (0,0,0) (since vtkGlyph3D rotates the source object around the origin).

The vtkGlyph3D object glyph is configured to use the point attribute normals as the orienta-
tion vector. (Alternatively, use SetVectorModeToUseVector() to use the vector data instead of the nor-
mals.) It also scales the cones by the magnitude of the vector value there, with the given scale factor.
(You can scale the glyphs by scalar data or turn data scaling off with the methods
SetScaleModeToScaleByScalar() and SetScaleModeToDataScalingOff().)

It is also possible to color the glyphs with scalar or vector data, or by the scale factor. You can
also create a table of glyphs, and use scalar or vector data to index into the table. Refer to the online
documentation for more information.

Streamlines

A streamline can be thought of as the path that a massless particle takes in a vector field (e.g., velocity
field). Streamlines are used to convey the structure of a vector field. Usually multiple streamlines are
created to explore interesting features in the field (Figure 5–4). Streamlines are computed via numer-
ical integration (integrating the product of velocity times ), and are therefore only approximations
to the actual streamlines. 

Δt



96 Visualization Techniques

Creating a streamline requires specifying a starting
point (or points, if multiple streamlines), an integration
direction (along the flow, or opposite the flow direction, or
in both directions), and other parameters to control its
propagation. The following script shows how to create a
single streamline. The streamline is wrapped with a tube
whose radius is proportional to the inverse of velocity mag-
nitude. This indicates where the flow is slow (fat tube) and
where it is fast (thin tube). This Tcl script is extracted from
VTK/Examples/VisualizationAlgorithms/Tcl/
officeTube.tcl.

# Read structured grid data
vtkStructuredGridReader reader
  reader SetFileName "$VTK_DATA_ROOT/Data/office.binary.vtk"
  reader Update #force a read to occur

# Create source for streamtubes
vtkRungeKutta4 integ
vtkStreamTracer streamer
  streamer SetInputConnection [reader GetOutputPort]
  streamer SetStartPosition 0.1 2.1 0.5
  streamer SetMaximumPropagation 500

streamer SetMaximumPropagationUnitToTimeUnit
  streamer SetInitialIntegrationStep 0.05

streamer SetInitialIntegrationStepUnitToCellLengthUnit
streamer SetIntegrationDirectionToBoth
streamer SetIntegrator integ

vtkTubeFilter streamTube
  streamTube SetInputConnection [streamer GetOutputPort]

streamTube SetInputArrayToProcess 1 0 0 \
vtkDataObject::FIELD_ASSOCIATION_POINTS vectors

  streamTube SetRadius 0.02
  streamTube SetNumberOfSides 12
  streamTube SetVaryRadiusToVaryRadiusByVector
vtkPolyDataMapper mapStreamTube
  mapStreamTube SetInputConnection [streamTube GetOutputPort]
  eval mapStreamTube SetScalarRange \
    [[[[reader GetOutput] GetPointData] GetScalars] \

GetRange] #this is why we did an Update
vtkActor streamTubeActor
  streamTubeActor SetMapper mapStreamTube

[streamTubeActor GetProperty] BackfaceCullingOn

In this example we have selected a starting point by specifying the world coordinate (0.1,2.1,0.5). It is
also possible to specify a starting location by using cellId, cell subId, and parametric coordinates. The
MaximumPropagation instance variable controls the maximum length of the streamline (measured in
units specified by the MaximumPropagationUnit instance variable, in this case time). If you want
greater accuracy (at the cost of more computation time), set the InitialIntegrationStep instance vari-

Figure 5–4  Streamline wrapped with
a tube.
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able to a smaller value. (In this case, this is specified in terms of cell’s length; it is possible to choose
time or distance by setting InitialIntegrationStepUnit.) Accuracy can also be controlled by choosing a
different subclass of vtkInitialValueProblemSolver such as vtkRungeKutta2 or vtkRungeKutta45
(which allows for adaptive control of the step size). By default, the stream tracer class uses
vtkRungeKutta2 to perform the numerical integration. You can also control the direction of integra-
tion with the following methods.

• SetIntegrationDirectionToForward() 

• SetIntegrationDirectionToBackward() 

• SetIntegrationDirectionToBoth()

Lines are often difficult to see and create useful images from. In this example we wrap the lines with
a tube filter. The tube filter is configured to vary the radius of the tube inversely proportional to the
velocity magnitude (i.e., a flux-preserving relationship if the flow field is incompressible). The Set-
VaryRadiusToVaryRadiusByVector() enables this. You can also vary the radius by scalar value (Set-
VaryRadiusToVaryRadiusByScalar()) or turn off the variable radius
(SetVaryRadiusToVaryRadiusOff()). Note that the tube filter has to be told which array to use when
scaling its radius. In this case, the array with the name “vectors” was selected using SetInputArrayTo-
Process().

As suggested earlier, we often wish to generate many streamlines simultaneously. One way to
do this is to use the SetSourceConnection() method to specify an instance of vtkDataSet whose points
are used to seed streamlines. Here is an example of its use (from VTK/Examples/
VisualizationAlgorithms/Tcl/officeTubes.tcl).

vtkPointSource seeds
  seeds SetRadius 0.15

seeds SetCenter 0.1 2.1 0.5
  seeds SetNumberOfPoints 6
vtkRungeKutta4 integ
vtkStreamTracer streamer
  streamer SetInputConnection [reader GetOutputPort]
  streamer SetSourceConnection [seeds GetOutput]
  streamer SetMaximumPropagationTime 500

streamer SetMaximumPropagationUnitToTimeUnit
streamer SetInitialIntegrationStep 0.05
streamer SetInitialIntegrationStepUnitToCellLengthUnit
streamer SetIntegrationDirectionToBoth
streamer SetIntegrator integ

Notice that the example uses the source object vtkPointSource to create a spherical cloud of points,
which are then set as the source to streamer. For every point (inside the input dataset) a streamline
will be computed.

Stream Surfaces

Advanced users may want to use VTK’s stream surface capability. Stream surfaces are generated in
two parts. First, a rake or series of ordered points are used to generate a series of streamlines. Then,
vtkRuledSurfaceFilter is used to create a surface from the streamlines. It is very important that the
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points (and hence streamlines) are ordered carefully because the vtkRuledSurfaceFilter assumes that
the lines lie next to one another, and are within a specified distance (DistanceFactor) of the neighbor
to the left and right. Otherwise, the surface tears or you can obtain poor results. The following script
demonstrates how to create a stream surface (taken from the Tcl script VTK/Examples/
VisualizationAlgorithms/Tcl/streamSurface.tcl and shown in Figure 5–5).

vtkLineSource rake
 rake SetPoint1 15 -5 32
 rake SetPoint2 15 5 32
 rake SetResolution 21
vtkPolyDataMapper rakeMapper
 rakeMapper SetInputConnection [rake 
GetOutputPort]
vtkActor rakeActor
 rakeActor SetMapper rakeMapper 

vtkRungeKutta4 integ
vtkStreamTracer sl
 sl SetInputConnection [pl3d GetOutputPort]
 sl SetSourceConnection [rake GetOutputPort]
 sl SetIntegrator integ
 sl SetMaximumPropagation 0.1

sl SetMaximumPropagationUnitToTimeUnit
 sl SetInitialIntegrationStep 0.1

sl SetInitialIntegrationStepUnitToCellLengthUnit
 sl SetIntegrationDirectionToBackward

vtkRuledSurfaceFilter scalarSurface
 scalarSurface SetInputConnection [sl GetOutputPort]
 scalarSurface SetOffset 0 
 scalarSurface SetOnRatio 2 
 scalarSurface PassLinesOn
 scalarSurface SetRuledModeToPointWalk
 scalarSurface SetDistanceFactor 30 
vtkPolyDataMapper mapper
 mapper SetInputConnection [scalarSurface GetOutputPort]
 eval mapper SetScalarRange [[pl3d GetOutput] GetScalarRange]
vtkActor actor
 actor SetMapper mapper 

A nice feature of the vtkRuledSurfaceFilter is the ability to turn off strips if multiple lines are pro-
vided as input to the filter (the method SetOnRatio()). This helps understand the structure of the sur-
face.

Cutting
Cutting, or slicing, a dataset in VTK entails creating a “cross-section” through the dataset using any
type of implicit function. For example, we can slice through a dataset with a plane to create a planar
cut. The cutting surface interpolates the data as it cuts, which can then be visualized using any stan-
dard visualization technique. The result of cutting is always of type vtkPolyData. (Cutting a n-dimen-

Figure 5–5  Stream surface.
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sional cell results in a (n-1)-dimensional output primitive. For example, cutting a tetrahedron creates
either a triangle or quadrilateral.) 

In the following Tcl example, a combustor (struc-
tured grid) is cut with a plane as shown in Figure 5–6. The
example is taken from the Tcl script VTK/Graphics/
Testing/Tcl/probe.tcl. 

vtkPlane plane
  eval plane SetOrigin [[pl3d GetOutput] 
GetCenter]
  plane SetNormal -0.287 0 0.9579
vtkCutter planeCut
  planeCut SetInputConnection [pl3d GetOutputPort]
  planeCut SetCutFunction plane
vtkPolyDataMapper cutMapper
  cutMapper SetInputConnection [planeCut GetOutputPort]
  eval cutMapper SetScalarRange \
   [[[[pl3d GetOutput] GetPointData] GetScalars] GetRange]
vtkActor cutActor
  cutActor SetMapper cutMapper

vtkCutter requires that you specify an implicit function with which to cut. Also, you may wish to
specify one or more cut values using the SetValue() or GenerateValues() methods. These values spec-
ify the value of the implicit function used to perform the cutting. (Typically the cutting value is zero,
meaning that the cut surface is precisely on the implicit function. Values less than or greater than zero
are implicit surfaces below and above the implicit surface. The cut value can also be thought of as a
“distance” to the implicit surface, which is only strictly true for vtkPlane.)

Merging Data
Up to this point we have seen simple, linear visualization pipelines. However, it is possible for pipe-
lines to branch, merge and even have loops. It is also possible for pieces of data to move from one leg
of the pipeline to another. In this section and the following, we introduce two filters that allow you to
build datasets from other datasets. We’ll start with vtkMergeFilter.

vtkMergeFilter merges pieces of data from several datasets into a new dataset. For example,
you can take the structure (topology and geometry) from one dataset, the scalars from a second, and
the vectors from a third dataset, and combine them into a single dataset. Here’s an example of its use
(From the Tcl script VTK/Examples/VisualizationAlgorithms/Tcl/imageWarp.tcl).
(Please ignore those filters that you don’t recognize, focus on the use of vtkMergeFilter. We’ll
describe more fully the details of the script in “Warp Based On Scalar Values” on page 106.)

vtkBMPReader reader
 reader SetFileName $VTK_DATA_ROOT/Data/masonry.bmp
vtkImageLuminance luminance
 luminance SetInputConnection [reader GetOutputPort]
vtkImageDataGeometryFilter geometry
 geometry SetInputConnection [luminance GetOutputPort]
vtkWarpScalar warp
 warp SetInputConnection [geometry GetOutputPort]

Figure 5–6  Cutting a combustor.
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 warp SetScaleFactor -0.1

# use merge to put back scalars from image file
vtkMergeFilter merge
 merge SetGeometryConnection [warp GetOutputPort]
 merge SetScalarsConnection [reader GetOutputPort]
vtkDataSetMapper mapper
 mapper SetInputConnection [merge GetOutputPort]
 mapper SetScalarRange 0 255
 mapper ImmediateModeRenderingOff
vtkActor actor
 actor SetMapper mapper

What’s happening here is that the dataset (or geometry) from vtkWarpScalar (which happens to be of
type vtkPolyData) is combined with the scalar data from the vtkBMPReader. The pipeline has split
and rejoined because the geometry had to be processed separately (in the imaging pipeline) from the
scalar data.

When merging data, the number of tuples found in the data arrays that make up the point attri-
bute data must equal the number of points. This is also true for the cell data.

Appending Data
Like vtkMergeFilter, vtkAppendFilter (and its specialized cousin vtkAppendPolyData) builds a new
dataset by appending datasets. The append filters take a list of inputs, each of which must be the same
type. During the append operation, only those data attributes that are common to all input datasets are
appended together. A great example of its application is shown in the example in the following sec-
tion.

Probing 
Probing is a process of sampling one dataset with another
dataset. In VTK, you can use any dataset as a probe geometry
onto which point data attributes are mapped from another
dataset. For example, the following Tcl script (taken from
VTK/Examples/VisualizationAlgorithms/Tcl/
probeComb.tcl) creates three planes (which serve as the
probe geometry) used to sample a structured grid dataset. The
planes are then processed with vtkContourFilter to generate
contour lines. 

# Create pipeline
vtkPLOT3DReader pl3d
  pl3d SetXYZFileName "$VTK_DATA_ROOT/Data/combxyz.bin"
  pl3d SetQFileName "$VTK_DATA_ROOT/Data/combq.bin"
  pl3d SetScalarFunctionNumber 100
  pl3d SetVectorFunctionNumber 202
  pl3d Update;#force data read

Figure 5–7  Probing data.
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# Create the probes. Transform them into right place.
vtkPlaneSource plane
  plane SetResolution 50 50
vtkTransform transP1
  transP1 Translate 3.7 0.0 28.37
  transP1 Scale 5 5 5
  transP1 RotateY 90
vtkTransformPolyDataFilter tpd1
  tpd1 SetInputConnection [plane GetOutputPort]
  tpd1 SetTransform transP1
vtkOutlineFilter outTpd1
  outTpd1 SetInputConnection [tpd1 GetOutputPort]
vtkPolyDataMapper mapTpd1
  mapTpd1 SetInputConnection [outTpd1 GetOutputPort]
vtkActor tpd1Actor
  tpd1Actor SetMapper mapTpd1
  [tpd1Actor GetProperty] SetColor 0 0 0

vtkTransform transP2
  transP2 Translate 9.2 0.0 31.20
  transP2 Scale 5 5 5
  transP2 RotateY 90
vtkTransformPolyDataFilter tpd2
  tpd2 SetInputConnection [plane GetOutputPort]
  tpd2 SetTransform transP2
vtkOutlineFilter outTpd2
  outTpd2 SetInputConnection [tpd2 GetOutputPort]
vtkPolyDataMapper mapTpd2
  mapTpd2 SetInputConnection [outTpd2 GetOutputPort]
vtkActor tpd2Actor
  tpd2Actor SetMapper mapTpd2
  [tpd2Actor GetProperty] SetColor 0 0 0

vtkTransform transP3
  transP3 Translate 13.27 0.0 33.30
  transP3 Scale 5 5 5
  transP3 RotateY 90
vtkTransformPolyDataFilter tpd3
  tpd3 SetInputConnection [plane GetOutputPort]
  tpd3 SetTransform transP3
vtkOutlineFilter outTpd3
  outTpd3 SetInputConnection [tpd3 GetOutputPort]
vtkPolyDataMapper mapTpd3
  mapTpd3 SetInputConnection [outTpd3 GetOutputPort]
vtkActor tpd3Actor
  tpd3Actor SetMapper mapTpd3
  [tpd3Actor GetProperty] SetColor 0 0 0

vtkAppendPolyData appendF
  appendF AddInputConnection [tpd1 GetOutputPort]
  appendF AddInputConnection [tpd2 GetOutputPort]
  appendF AddInputConnection [tpd3 GetOutputPort]
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vtkProbeFilter probe
  probe SetInputConnection [appendF GetOutputPort]
  probe SetSourceConnection [pl3d GetOutputPort]
vtkContourFilter contour
  contour SetInputConnection [probe GetOutputPort]
  eval contour GenerateValues 50 [[pl3d GetOutput]\

GetScalarRange]
vtkPolyDataMapper contourMapper
  contourMapper SetInputConnection [contour GetOutputPort]
  eval contourMapper SetScalarRange [[pl3d GetOutput]\

GetScalarRange]
vtkActor planeActor
  planeActor SetMapper contourMapper

Notice that the probe is set using the SetInputConnection() method of vtkProbeFilter, and the dataset
to probe is set using the SetSourceConnection() method.

Another useful application of probing is resampling data. For example, if you have an unstruc-
tured grid and wish to visualize it with tools specific to vtkImageData (such as volume rendering—
see “Volume Rendering” on page 139), you can use vtkProbeFilter to sample the unstructured grid
with a volume, and then visualize the volume. It is also possible to probe data with lines (or curves)
and use the output to perform x-y plotting.

One final note: cutting and probing can give similar results, although there is a difference in res-
olution. Similar to the example described in “Cutting” on page 98, vtkProbeFilter could be used with
a vtkPlaneSource to generate a plane with data attributes from the structured grid. However, cutting
creates surfaces with a resolution dependent on the resolution of the input data. Probing creates sur-
faces (and other geometries) with a resolution independent of the input data. Care must be taken when
probing data to avoid under- or oversampling. Undersampling can result in errors in visualization, and
oversampling can consume excessive computation time.

Color An Isosurface With Another Scalar 

A common visualization task is to generate an isosurface
and then color it with another scalar. While you might do
this with a probe, there is a much more efficient way when
the dataset that you isosurface contains the data you wish to
color the isosurface with. This is because the vtkContourFil-
ter (which generates the isosurface) interpolates all data to
the isosurface during the generation process. The interpo-
lated data can then be used during the mapping process to
color the isosurface. Here’s an example from the VTK/
Examples/VisualizationAlgorithms/Tcl/ColorIsosurface.tcl. 

vtkPLOT3DReader pl3d
  pl3d SetXYZFileName "$VTK_DATA_ROOT/Data/combxyz.bin"
  pl3d SetQFileName "$VTK_DATA_ROOT/Data/combq.bin"
  pl3d SetScalarFunctionNumber 100
  pl3d SetVectorFunctionNumber 202
  pl3d AddFunction 153
  pl3d Update

Figure 5–8  Coloring an isosur-
face with another scalar.
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vtkContourFilter iso
  iso SetInputConnection [pl3d GetOutputPort]
  iso SetValue 0 .24
vtkPolyDataNormals normals
  normals SetInputConnection [iso GetOutputPort]
  normals SetFeatureAngle 45
vtkPolyDataMapper isoMapper
  isoMapper SetInputConnection [normals GetOutputPort]
  isoMapper ScalarVisibilityOn
  isoMapper SetScalarRange 0 1500
  isoMapper SetScalarModeToUsePointFieldData
  isoMapper ColorByArrayComponent "VelocityMagnitude" 0
vtkLODActor isoActor
  isoActor SetMapper isoMapper
  isoActor SetNumberOfCloudPoints 1000

First, the dataset is read with a vtkPLOT3DReader. Here we add a function to be read (function num-
ber 153) which we know to be named “Velocity Magnitude.” An isosurface is generated which also
interpolates all its input data arrays including the velocity magnitude data. We then use the velocity
magnitude to color the contour by invoking the method SetScalarModeToUsePointFieldData() and
specifying the data array to use to color with the ColorByArrayComponent() method. 

Extract Subset of Cells
Visualization data is often large and processing such data can be quite costly in execution time and
memory requirements. As a result, the ability to extract pieces of data is important. Many times only
a subset of the data contains meaningful information, or the resolution of the data can be reduced
without significant loss of accuracy.

The Visualization Toolkit offers several tools to
extract portions of, or subsample data. We’ve already seen
how vtkProbeFilter can be used to subsample data (see
“Probing” on page 100). Other tools include classes to sub-
sample data, and tools to extract cells within a region in
space. (Subsampling tools are specific to a type of dataset.
See “Subsampling Image Data” on page 105 for informa-
tion about subsampling image datasets, and “Subsampling
Structured Grids” on page 113 for information about sub-
sampling structured grids.) In this section, we describe how
to extract pieces of a dataset contained within a region in
space.

The class vtkExtractGeometry extracts all cells in a
dataset that lie either inside or outside of a vtkImplicitFunc-
tion (remember, implicit functions can consist of boolean combinations of other implicit functions).
The following script creates a boolean combination of two ellipsoids that is used as the extraction
region. A vtkShrinkFilter is also used to shrink the cells so you can see what’s been extracted. (The
Tcl script is from VTK/Examples/VisualizationAlgorithms/Tcl/ExtractGeometry.tcl.)

vtkQuadric quadric
  quadric SetCoefficients .5 1 .2 0 .1 0 0 .2 0 0

Figure 5–9  Extracting cells.
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vtkSampleFunction sample
  sample SetSampleDimensions 50 50 50
  sample SetImplicitFunction quadric
  sample ComputeNormalsOff
vtkTransform trans
  trans Scale 1 .5 .333
vtkSphere sphere
  sphere SetRadius 0.25
  sphere SetTransform trans
vtkTransform trans2
  trans2 Scale .25 .5 1.0
vtkSphere sphere2
  sphere2 SetRadius 0.25
  sphere2 SetTransform trans2
vtkImplicitBoolean union
  union AddFunction sphere
  union AddFunction sphere2
  union SetOperationType 0;#union

vtkExtractGeometry extract
  extract SetInputConnection [sample GetOutputPort]
  extract SetImplicitFunction union
vtkShrinkFilter shrink
  shrink SetInputConnection [extract GetOutputPort]
  shrink SetShrinkFactor 0.5
vtkDataSetMapper dataMapper
  dataMapper SetInputConnection [shrink GetOutputPort]
vtkActor dataActor
  dataActor SetMapper dataMapper

The output of vtkExtractGeometry is always a vtkUnstructuredGrid. This is because the extraction
process generally disrupts the topological structure of the dataset, and the most general dataset form
(i.e., vtkUnstructuredGrid) must be used to represent the output.

As a side note: implicit functions can be transformed by assigning them a vtkTransform. If
specified, the vtkTransform is used to modify the evaluation of the implicit function. You may wish to
experiment with this capability.

Extract Cells as Polygonal Data

Most dataset types cannot be directly rendered by graphics hardware or libraries. Only polygonal data
(vtkPolyData) is commonly supported by rendering systems. Structured datasets, especially images
and sometimes volumes, are also supported by graphics systems. All other datasets require special
processing if they are to be rendered. In VTK, one approach to rendering non-polygonal datasets is to
convert them to polygonal data. This is the function of vtkGeometryFilter.

vtkGeometryFilter accepts as input any type of vtkDataSet, and generates vtkPolyData on out-
put. It performs the conversion using the following rules. All input cells of topological dimension 2 or
less (e.g., polygons, lines, vertices) are passed to the output. The faces of cells of dimension 3 are sent
to the output if they are on the boundary of the dataset. (A face is on the boundary if it is used by only
one cell.) 
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The principal use of vtkGeometryFilter is as a conversion filter. The following example from
VTK/Examples/DataManipulation/Tcl/pointToCellData.tcl uses vtkGeometryFilter to
convert a 2D unstructured grid into polygonal data for later processing by filters that accept vtkPoly-
Data as input. Here, the vtkConnectivityFilter extracts data as vtkUnstructuredGrid which is then
converted into polygons using vtkGeometryFilter.

vtkConnectivityFilter connect2
  connect2 SetInputConnection [thresh GetOutputPort]
vtkGeometryFilter parison
  parison SetInputConnection [connect2 GetOutputPort]
vtkPolyDataNormals normals2
  normals2 SetInputConnection [parison GetOutputPort]
  normals2 SetFeatureAngle 60
vtkLookupTable lut
  lut SetHueRange 0.0 0.66667
vtkPolyDataMapper parisonMapper
  parisonMapper SetInputConnection [normals2 GetOutputPort]
  parisonMapper SetLookupTable lut
  parisonMapper SetScalarRange 0.12 1.0
vtkActor parisonActor
  parisonActor SetMapper parisonMapper

In fact, the vtkDataSetMapper mapper uses vtkGeometryFilter internally to convert datasets of any
type into polygonal data. (The filter is smart enough to pass input vtkPolyData straight to its output
without processing.)

In addition, vtkGeometryFilter has methods that allows you to extract cells based on a range of
point ids, cell ids, or whether the cells lie in a particular rectangular region in space. vtkGeometryFil-
ter extracts pieces of datasets based on point and cell ids using the methods PointClippingOn(),
SetPointMinimum(), SetPointMaximum() and CellClippingOn(), SetCellMinimum(),
SetCellMaximum(). The minimum and maximum values specify a range of ids which are extracted.
Also, you can use a rectangular region in space to limit what’s extracted. Use the ExtentClippingOn()
and SetExtent() methods to enable extent clipping and specify the extent. The extent consists of six
values defining a bounding box in space—(xmin,xmax, ymin,ymax, zmin,zmax). You can use point, cell,
and extent clipping in any combination. This is a useful feature when debugging data, or when you
only want to look at a portion of it.

5.2 Visualizing Polygonal Data
Polygonal data (vtkPolyData) is an important form of visualization data. Its importance is due to its
use as the geometry interface into the graphics hardware/rendering engine. Other data types must be
converted into polygonal data in order to be rendered with the exception of vtkImageData (images
and volumes) which uses special imaging or volume rendering technique). You may wish to refer to
“Extract Cells as Polygonal Data” on page 104 to see how this conversion is performed.

Polygonal data (vtkPolyData) consists of combinations of vertices and polyvertices; lines and
polylines; triangles, quadrilaterals, and polygons; and triangle strips. Most filters (that input vtkPoly-
Data) will process any combination of this data; however, some filters (like vtkDecimatePro and vtk-
TubeFilter) will only process portions of the data (triangle meshes and lines).
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Manually Create vtkPolyData
Polygonal data can be constructed several different ways. Typically, you’ll create a vtkPoints to repre-
sent the points, and then one to four vtkCellArrays to represent vertex, line, polygon, and triangle
strip connectivity. Here’s an example taken from VTK/Examples/DataManipulation/Tcl/
CreateStrip.tcl. It creates a vtkPolyData with a single triangle strip.

vtkPoints points
  points InsertPoint 0 0.0 0.0 0.0
  points InsertPoint 1 0.0 1.0 0.0
  points InsertPoint 2 1.0 0.0 0.0
  points InsertPoint 3 1.0 1.0 0.0
  points InsertPoint 4 2.0 0.0 0.0
  points InsertPoint 5 2.0 1.0 0.0
  points InsertPoint 6 3.0 0.0 0.0
  points InsertPoint 7 3.0 1.0 0.0
vtkCellArray strips
  strips InsertNextCell 8;#number of points
  strips InsertCellPoint 0
  strips InsertCellPoint 1
  strips InsertCellPoint 2
  strips InsertCellPoint 3
  strips InsertCellPoint 4
  strips InsertCellPoint 5
  strips InsertCellPoint 6
  strips InsertCellPoint 7
vtkPolyData profile
  profile SetPoints points
  profile SetStrips strips
vtkPolyDataMapper map
  map SetInput profile
vtkActor strip
  strip SetMapper map
  [strip GetProperty] SetColor 0.3800 0.7000 0.1600

In C++, here’s another example showing how to create a cube (VTK/Examples/DataManipula-
tion/Cxx/Cube.cxx). This time we create six quadrilateral polygons, as well as scalar values at the
vertices of the cube.

int i;
 static double x[8][3]={{0,0,0}, {1,0,0}, {1,1,0}, {0,1,0},
            {0,0,1}, {1,0,1}, {1,1,1}, {0,1,1}};
 static vtkIdType pts[6][4]={{0,1,2,3}, {4,5,6,7}, {0,1,5,4},
            {1,2,6,5}, {2,3,7,6}, {3,0,4,7}};
 
 // Create the building blocks of polydata including data attributes.
 vtkPolyData *cube = vtkPolyData::New();
 vtkPoints *points = vtkPoints::New();
 vtkCellArray *polys = vtkCellArray::New();
 vtkFloatArray *scalars = vtkFloatArray::New();
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 // Load the point, cell, and data attributes.
 for (i=0; i<8; i++) points->InsertPoint(i,x[i]);
 for (i=0; i<6; i++) polys->InsertNextCell(4,pts[i]);
 for (i=0; i<8; i++) scalars->InsertTuple1(i,i);

 // We now assign the pieces to the vtkPolyData.
 cube->SetPoints(points);
 points->Delete();
 cube->SetPolys(polys);
 polys->Delete();
 cube->GetPointData()->SetScalars(scalars);
 scalars->Delete();

vtkPolyData can be constructed with any combination of vertices, lines, polygons, and triangle strips.
Also, vtkPolyData supports an extensive set of operators that allows you to edit and modify the
underlying structure. Refer to “Polygonal Data” on page 345 for more information.

Generate Surface Normals 
When you render a polygonal mesh, you may find that the image clearly shows the faceted nature of
the mesh (Figure 5–10). The image can be improved by using Gouraud shading (see “Actor Proper-
ties” on page 53). However, Gouraud shading depends on the existence of normals at each point in
the mesh.The vtkPolyDataNormals filter can be used to generate normals on the mesh. The scripts in
“Extrusion” on page 217, “Glyphing” on page 94, and “Color An Isosurface With Another Scalar” on
page 102 all use vtkPolyDataNormals.

Two important instance variables are Splitting and FeatureAngle. If splitting is on, feature
edges (defined as edges where the polygonal normals on either side of the edge make an angle greater
than or equal to the feature angle) are “split,” that is, points are duplicated along the edge, and the
mesh is separated on either side of the feature edge (see The Visualization Toolkit text). This creates
new points, but allows sharp corners to be rendered crisply. Another important instance variable is
FlipNormals. Invoking FlipNormalsOn() causes the filter to reverse the direction of the normals (and
the ordering of the polygon connectivity list).

Decimation
Polygonal data, especially triangle meshes, are a common form of graphics data. Filters such as
vtkContourFilter generate triangle meshes. Often, these meshes are quite large and cannot be ren-

Figure 5–10  Comparing
a mesh with and without
surface normals.
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dered or processed quickly enough for interactive application. Decimation techniques have been
developed to address this problem. Decimation, also referred to as polygonal reduction, mesh simpli-
fication, or multiresolution modeling, is a process to reduce the number of triangles in a triangle
mesh, while maintaining a faithful approximation to the original mesh.

VTK supports three decimation methods: vtkDecimatePro, vtkQuadricClustering, and
vtkQuadricDecimation. All are similar in usage and application, although they each offer advantages
and disadvantages as follows:

• vtkDecimatePro is relatively fast and has the ability to modify topology during the reduction
process. It uses an edge collapse process to eliminate vertices and triangles. Its error metric is
based on distance to plane/distance to edge. A nice feature of vtkDecimatePro is that you can
achieve any level of reduction requested, since the algorithm will begin tearing the mesh into
pieces to achieve this (if topology modification is allowed).

• vtkQuadricDecimation uses the quadric error measure proposed by Garland and Heckbert in
Siggraph ‘97 Surface Simplification Using Quadric Error Metrics. It uses an edge collapse to
eliminate vertices and triangles. The quadric error metric is generally accepted as one of the
better error metrics.

• vtkQuadricClustering is the fastest algorithm. It is based on the algorithm presented by Peter
Lindstrom in his Siggraph 2000 paper Out-of-Core Simplification of Large Polygonal Models.
It is capable of quickly reducing huge meshes, and the class supports the ability to process
pieces of a mesh (using the StartAppend(), Append(), and EndAppend() methods). This enables
the user to avoid reading an entire mesh into memory. This algorithm works well with large
meshes; the triangulation process does not work well as meshes become smaller. (Combining
this algorithm with one of the other algorithms is a good approach.)

Here’s an example using vtkDecimatePro. It’s been adapted from the Tcl script VTK/Examples/
VisualizationAlgorithms/Tcl/deciFran.tcl (Figure 5–11). 

vtkDecimatePro deci
  deci SetInputConnection [fran GetOutputPort]
  deci SetTargetReduction 0.9
  deci PreserveTopologyOn
vtkPolyDataNormals normals
  normals SetInputConnection [fran GetOutputPort]
  normals FlipNormalsOn
vtkPolyDataMapper franMapper

Figure 5–11  Triangle
mesh before (left) and after
(right) 90% decimation.
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  franMapper SetInputConnection [normals GetOutputPort]
vtkActor franActor
  franActor SetMapper franMapper
  eval [franActor GetProperty] SetColor 1.0 0.49 0.25

Two important instance variables of vtkDecimatePro are TargetReduction and PreserveTopology. The
TargetReduction is the requested amount of reduction (e.g., a value of 0.9 means that we wish to
reduce the number of triangles in the mesh by 90%). Depending on whether you allow topology to
change or not (PreserveTopologyOn/Off()), you may or may not achieve the requested reduction. If
PreserveTopology is off, then vtkDecimatePro will give you the requested reduction.

A final note: the decimation filters take triangle data as input. If you have a polygonal mesh you
can convert the polygons to triangles with vtkTriangleFilter.

Smooth Mesh
Polygonal meshes often contain noise or excessive roughness that affect the quality of the rendered
image. For example, isosurfacing low resolution data can show aliasing, or stepping effects. One way
to treat this problem is to use smoothing. Smoothing is a process that adjusts the positions of points to
reduce the noise content in the surface.

VTK offers two smoothing objects: vtkSmoothPolyDataFilter and vtkWindowedSincPoly-
DataFilter. Of the two, the vtkWindowedSincPolyDataFilter gives the best results and is slightly
faster. The following example (taken from VTK/Examples/VisualizationAlgorithms/Tcl/
smoothFran.tcl) shows how to use the smoothing filter. The example is the same as the one in the
previous section, except that a smoothing filter has been added. Figure 5–12 shows the effects of
smoothing on the decimated mesh.

# decimate and smooth data
vtkDecimatePro deci
  deci SetInputConnection [fran GetOutputPort]
  deci SetTargetReduction 0.9
  deci PreserveTopologyOn
vtkSmoothPolyDataFilter smoother
  smoother SetInputConnection [deci GetOutputPort]
  smoother SetNumberOfIterations 50
vtkPolyDataNormals normals
  normals SetInputConnection [smoother GetOutputPort]
  normals FlipNormalsOn

Figure 5–12  Smoothing a
polygonal mesh. Right image
shows the effect of smoothing.
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vtkPolyDataMapper franMapper
  franMapper SetInputConnection [normals GetOutputPort]
vtkActor franActor
  franActor SetMapper franMapper
  eval [franActor GetProperty] SetColor 1.0 0.49 0.25

Both smoothing filters are used similarly. There are optional methods for controlling the effects of
smoothing along feature edges and on boundaries. Check the online documentation and/or .h files for
more information.

Clip Data 

Clipping, like cutting (see “Cutting” on page 98), uses an
implicit function to define a surface with which to clip.
Clipping separates a polygonal mesh into pieces, as shown
in Figure 5–13. Clipping will break polygonal primitives
into separate parts on either side of the clipping surface.
Like cutting, clipping allows you to set a clip value defin-
ing the value of the implicit clipping function.

The following example uses a plane to clip a polygo-
nal model of a cow. The clip value is used to move the
plane along its normal so that the model can be clipped at
different locations. The example Tcl script shown below is
taken from VTK/Examples/VisualizationAlgo-
rithms/Tcl/ClipCow.tcl. 

# Read the polygonal data and generate vertex normals
vtkBYUReader cow
 cow SetGeometryFileName "$VTK_DATA_ROOT/Data/Viewpoint/cow.g"
vtkPolyDataNormals cowNormals
 cowNormals SetInputConnection [cow GetOutputPort]

# Define a clip plane to clip the cow in half
vtkPlane plane
  plane SetOrigin 0.25 0 0
  plane SetNormal -1 -1 0
vtkClipPolyData clipper
  clipper SetInputConnection [cowNormals GetOutputPort]
  clipper SetClipFunction plane

clipper GenerateClippedOutputOn
  clipper SetValue 0.5
vtkPolyDataMapper clipMapper
  clipMapper SetInputConnection [clipper GetOutputPort]
vtkActor clipActor
  clipActor SetMapper clipMapper
  eval [clipActor GetProperty] SetColor $peacock

# Create the rest of the cow in wireframe
vtkPolyDataMapper restMapper
 restMapper SetInputConnection [clipper GetClippedOutputPort]

Figure 5–13  Clipping a model.
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vtkActor restActor
 restActor SetMapper restMapper
 [restActor GetProperty] SetRepresentationToWireframe

The GenerateClippedOutputOn() method causes the filter to create a second output: the data that was
clipped away. This output is shown in wireframe in the figure. If the SetValue() method is used to
change the clip value, the implicit function will cut at a point parallel to the original plane, but above
or below it. (You could also change the definition of vtkPlane to achieve the same result.)

Generate Texture Coordinates

Several filters are available to generate texture coordinates: vtkTextureMapToPlane,
vtkTextureMapToCylinder, and vtkTextureMapToSphere. These objects generated texture coordi-
nates based on a planar, cylindrical, and spherical coordinate system, respectively. Also, the class
vtkTransformTextureCoordinates allows you to position the texture map on the surface by translating
and scaling the texture coordinates. The following example shows using vtkTextureMapToCylinder
to create texture coordinates for an unstructured grid generated from the vtkDelaunay3D object (see
“Delaunay Triangulation” on page 218 for more information). The full example can be found at VTK/
Examples/VisualizationAlgorithms/Tcl/GenerateTextureCoords.tcl.

vtkPointSource sphere
 sphere SetNumberOfPoints 25

vtkDelaunay3D del
 del SetInputConnection [sphere GetOutputPort]
 del SetTolerance 0.01

vtkTextureMapToCylinder tmapper
 tmapper SetInputConnection [del GetOutputPort]
 tmapper PreventSeamOn

vtkTransformTextureCoords xform
 xform SetInputConnection [tmapper GetOutputPort]
 xform SetScale 4 4 1

vtkDataSetMapper mapper
 mapper SetInputConnection [xform GetOutputPort]

vtkBMPReader bmpReader
 bmpReader SetFileName "$VTK_DATA_ROOT/Data/masonry.bmp"
vtkTexture atext
 atext SetInputConnection [bmpReader GetOutputPort]
 atext InterpolateOn
vtkActor triangulation
 triangulation SetMapper mapper
 triangulation SetTexture atext

In this example a random set of points in the unit sphere is triangulated. The triangulation then has
texture coordinates generated over it. These texture coordinates are then scaled in the i-j texture coor-
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dinate directions in order to cause texture repeats. Finally, a texture map is read in and assigned to the
actor.

(As a side note: instances of vtkDataSetMapper are mappers
that accept any type of data as input. They use an internal instance
of vtkGeometryFilter followed by vtkPolyDataMapper to convert
the data into polygonal primitives that can then be passed to the ren-
dering engine. See “Extract Cells as Polygonal Data” on page 104
for further information.)

To learn more about texture coordinates, you may wish to run
the example found in VTK/Examples/Visualization-
Algorithms/Tcl/TransformTextureCoords.tcl. This GUI
allows you to select the polygonal model, the texture map, select
different texture generation techniques, and provides methods for
you to transform the texture using vtkTransformTexture-
Coords.

5.3 Visualizing Structured Grids
Structured grids are regular in topology, and irregular in geometry (see Figure 3–2(c)). Structured
grids are often used in numerical analysis (e.g., computational fluid dynamics). The vtkStruc-
turedGrid dataset is composed of hexahedral (vtkHexahedron) or quadrilateral (vtkQuad) cells.

Manually Create vtkStructuredGrid
Structured grids are created by specifying grid dimensions (to define topology) along with a vtkPoints
object defining the x-y-z point coordinates (to define geometry). This code was derived from VTK/
Examples/DataManipulation/Cxx/SGrid.cxx.

vtkPoints points
points InsertPoint 0 0.0 0.0 0.0
...etc...

vtkStructuredGrid sgrid
sgrid SetDimensions 13 11 11
sgrid SetPoints points

Make sure that the number of points in the vtkPoints object is consistent with the number of points
defined by the product of the three dimension values in the i, j, and k topological directions.

Extract Computational Plane
In most cases, structured grids are processed by filters that accept vtkDataSet as input (see “Visualiza-
tion Techniques” on page 89). One filter that directly accepts vtkStructuredGrid as input is the vtk-
StructuredGridGeometryFilter. This filter is used to extract pieces of the grid as points, lines, or
polygonal “planes”, depending on the specification of the Extent instance variable. (Extent is a 6-vec-
tor that describes a (imin,imax, jmin,jmax, kmin,kmax) topological region.)

Figure 5–14  Transforming
and applying different textures.
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In the following example, we read a structured grid, extract three planes, and warp the planes
with the associated vector data (from VTK/Examples/VisualizationAlgorithms/Tcl/warp-
Comb.tcl).

vtkPLOT3DReader pl3d
  pl3d SetXYZFileName "$VTK_DATA_ROOT/Data/combxyz.bin"
  pl3d SetQFileName "$VTK_DATA_ROOT/Data/combq.bin"
  pl3d SetScalarFunctionNumber 100
  pl3d SetVectorFunctionNumber 202
  pl3d Update
vtkStructuredGridGeometryFilter plane
  plane SetInputConnection [pl3d GetOutputPort]
  plane SetExtent 10 10 1 100 1 100
vtkStructuredGridGeometryFilter plane2
  plane2 SetInputConnection [pl3d GetOutputPort]
  plane2 SetExtent 30 30 1 100 1 100
vtkStructuredGridGeometryFilter plane3
  plane3 SetInputConnection [pl3d GetOutputPort]
  plane3 SetExtent 45 45 1 100 1 100
vtkAppendPolyData appendF
  appendF AddInputConnection [plane GetOutputPort]
  appendF AddInputConnection [plane2 GetOutputPort]
  appendF AddInputConnection [plane3 GetOutputPort]
vtkWarpScalar warp
  warp SetInputConnection [appendF GetOutputPort]
  warp UseNormalOn
  warp SetNormal 1.0 0.0 0.0
  warp SetScaleFactor 2.5
vtkPolyDataNormals normals
  normals SetInputConnection [warp GetOutputPort]
  normals SetFeatureAngle 60
vtkPolyDataMapper planeMapper
  planeMapper SetInputConnection [normals GetOutputPort]
  eval planeMapper SetScalarRange [[pl3d GetOutput] GetScalarRange]
vtkActor planeActor
  planeActor SetMapper planeMapper

Subsampling Structured Grids
Structured grids can be subsampled like image data can be (see “Subsampling Image Data” on
page 105). The vtkExtractGrid performs the subsampling and data extraction.

vtkPLOT3DReader pl3d
  pl3d SetXYZFileName "$VTK_DATA_ROOT/Data/combxyz.bin"
  pl3d SetQFileName "$VTK_DATA_ROOT/Data/combq.bin"
  pl3d SetScalarFunctionNumber 100
  pl3d SetVectorFunctionNumber 202
  pl3d Update
vtkExtractGrid extract
  extract SetInputConnection [pl3d GetOutputPort]
  extract SetVOI 30 30 -1000 1000 -1000 1000
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  extract SetSampleRate 1 2 3
  extract IncludeBoundaryOn

In this example, a subset of the original structured grid (which has dimensions 57x33x25) is extracted
with a sampling rate of (1,2,3) resulting in a structured grid with dimensions (1,17,9). The Include-
BoundaryOn method makes sure that the boundary is extracted even if the sampling rate does not
pick up the boundary.

5.4 Visualizing Rectilinear Grids
Rectilinear grids are regular in topology, and semi-regular in geometry (see Figure 3–2(b)). Rectilin-
ear grids are often used in numerical analysis. The vtkRectilinearGrid dataset is composed of voxel
(vtkVoxel) or pixel (vtkPixel) cells.

Manually Create vtkRectilinearGrid
Rectilinear grids are created by specifying grid dimensions (to define topology) along with three sca-
lar arrays to define point coordinates along the x-y-z axes (to define geometry). This code was modi-
fied from VTK/Examples/DataManipulation/Cxx/RGrid.cxx.

vtkFloatArray *xCoords = vtkFloatArray::New();

for (i=0; i<47; i++) xCoords->InsertNextValue(x[i]);

vtkFloatArray *yCoords = vtkFloatArray::New();
for (i=0; i<33; i++) yCoords->InsertNextValue(y[i]);

vtkFloatArray *zCoords = vtkFloatArray::New();
for (i=0; i<44; i++) zCoords->InsertNextValue(z[i]);

vtkRectilinearGrid *rgrid = vtkRectilinearGrid::New();
rgrid->SetDimensions(47,33,44);
rgrid->SetXCoordinates(xCoords);
rgrid->SetYCoordinates(yCoords);
rgrid->SetZCoordinates(zCoords);

Make sure that the number of scalars in the x, y, and z directions equals the three dimension values in
the i, j, and k topological directions.

Extract Computational Plane
In most cases, rectilinear grids are processed by filters that accept vtkDataSet as input (see “Visual-
ization Techniques” on page 89). One filter that directly accepts vtkRectilinearGrid as input is the
vtkRectilinearGridGeometryFilter. This filter is used to extract pieces of the grid as points, lines, or
polygonal “planes”, depending on the specification of the Extent instance variable. (Extent is a 6-vec-
tor that describes a (imin,imax, jmin,jmax, kmin,kmax) topological region.)

The following example, which we continue from the previous found in VTK/Examples/Data-
Manipulation/Cxx/RGrid.cxx, we extract a plane as follows
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vtkRectilinearGridGeometryFilter *plane = 
vtkRectilinearGridGeometryFilter::New();

plane->SetInput(rgrid);
plane->SetExtent(0,46, 16,16, 0,43);

5.5 Visualizing Unstructured Grids
Unstructured grids are irregular in both topology and geometry (see Figure 3–2(f)). Unstructured
grids are often used in numerical analysis (e.g., finite element analysis). Any and all cell types can be
represented in an unstructured grid.

Manually Create vtkUnstructuredGrid
Unstructured grids are created by defining geometry via a vtkPoints instance, and defining topology
by inserting cells. (This script was derived from the example VTK/Examples/DataManipulation/
Tcl/BuildUGrid.tcl.)

vtkPoints tetraPoints
 tetraPoints SetNumberOfPoints 4
 tetraPoints InsertPoint 0 0 0 0
 tetraPoints InsertPoint 1 1 0 0
 tetraPoints InsertPoint 2 .5 1 0
 tetraPoints InsertPoint 3 .5 .5 1
vtkTetra aTetra
 [aTetra GetPointIds] SetId 0 0
 [aTetra GetPointIds] SetId 1 1
 [aTetra GetPointIds] SetId 2 2
 [aTetra GetPointIds] SetId 3 3
vtkUnstructuredGrid aTetraGrid
 aTetraGrid Allocate 1 1
 aTetraGrid InsertNextCell [aTetra GetCellType] [aTetra GetPointIds]
 aTetraGrid SetPoints tetraPoints

...insert other cells if any...

It is mandatory that you invoke the Allocate() method prior to inserting cells into an instance of
vtkUnstructuredGrid. The values supplied to this method are the initial size of the data, and the size to
extend the allocation by when additional memory is required. Larger values generally give better per-
formance (since fewer memory reallocations are required).

Extract Portions of the Mesh
In most cases, unstructured grids are processed by filters that accept vtkDataSet as input (see “Visual-
ization Techniques” on page 89). One filter that directly accepts vtkUnstructuredGrid as input is the
vtkExtractUnstructuredGrid. This filter is used to extract portions of the grid using a range of point
ids, cell ids, or geometric bounds (the Extent instance variable which defines a bounding box). This
script was derived from the Tcl script VTK/Examples/VisualizationAlgorithms/Tcl/
ExtractUGrid.tcl.
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vtkDataSetReader reader
  reader SetFileName "$VTK_DATA_ROOT/Data/blow.vtk"
  reader SetScalarsName "thickness9"
  reader SetVectorsName "displacement9"
vtkCastToConcrete castToUnstructuredGrid
  castToUnstructuredGrid SetInputConnection [reader GetOutputPort]
vtkWarpVector warp
  warp SetInput [castToUnstructuredGrid GetUnstructuredGridOutput]

vtkConnectivityFilter connect
  connect SetInputConnection [warp GetOutputPort]
  connect SetExtractionModeToSpecifiedRegions
  connect AddSpecifiedRegion 0
  connect AddSpecifiedRegion 1
vtkDataSetMapper moldMapper
  moldMapper SetInputConnection [reader GetOutputPort]
  moldMapper ScalarVisibilityOff
vtkActor moldActor
  moldActor SetMapper moldMapper
  [moldActor GetProperty] SetColor .2 .2 .2
  [moldActor GetProperty] SetRepresentationToWireframe

vtkConnectivityFilter connect2
  connect2 SetInputConnection [warp GetOutputPort]
  connect2 SetExtractionModeToSpecifiedRegions
  connect2 AddSpecifiedRegion 2
vtkExtractUnstructuredGrid extractGrid
  extractGrid SetInputConnection [connect2 GetOutputPort]
  extractGrid CellClippingOn
  extractGrid SetCellMinimum 0
  extractGrid SetCellMaximum 23
vtkGeometryFilter parison
  parison SetInputConnection [extractGrid GetOutputPort]
vtkPolyDataNormals normals2
  normals2 SetInputConnection [parison GetOutputPort]
  normals2 SetFeatureAngle 60
vtkLookupTable lut
  lut SetHueRange 0.0 0.66667
vtkPolyDataMapper parisonMapper
  parisonMapper SetInputConnection [normals2 GetOutputPort]
  parisonMapper SetLookupTable lut
  parisonMapper SetScalarRange 0.12 1.0
vtkActor parisonActor
  parisonActor SetMapper parisonMapper

In this example, we are using cell clipping (i.e., using cell ids) in combination with a connectivity fil-
ter to extract portions of the mesh. Similarly, we could use point ids and a geometric extent to extract
portions of the mesh. The vtkConnectivityFilter (and a related class vtkPolyDataConnectivityFilter)
are used to extract connected portions of a dataset. (Cells are connected when they share points.) The
SetExtractionModeToSpecifiedRegions() method indicates to the filter which connected region to
extract. By default, the connectivity filters extract the largest connected regions encountered. How-
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ever, it is also possible to specify a particular region as this example does, which of course requires
some experimentation to determine which region is which.

Contour Unstructured Grids
A special contouring class is available to generate isocontours for unstructured grids. The class
vtkContourGrid is a higher-performing version than the generic vtkContourFilter isocontouring filter.
Normally you do not need to instantiate this class directly since vtkContourFilter will automatically
create an internal instance of vtkContourGrid if it senses that its input is of type vtkUnstructuredGrid.

This concludes our overview of visualization techniques. You may also wish to refer to the next
chapter which describes image processing and volume rendering. Also, see “Summary Of Filters” on
page 444 for a summary of the filters in VTK.
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Image Processing & Visualization 6

Image datasets, represented by the class vtkImageData,
are regular in topology and geometry as shown in Figure 6–1. This data type is structured, meaning
that the locations of the data points are implicitly defined using just the few parameters origin, spac-
ing and dimensions. Medical and scientific scanning devices such as CT, MRI, ultrasound scanners,
and confocal microscopes often produce data of this type. Conceptually, the vtkImageData dataset is
composed of voxel (vtkVoxel) or pixel (vtkPixel) cells. However, the structured nature of this dataset
allows us to store the data values in a simple array rather than explicitly creating the vtkVoxel or
vtkPixel cells.

In VTK, image data is a special data type that can be processed and rendered in several ways.
Although not an exhaustive classification, most of the operations performed on image data in VTK
fall into one of the three categories—image processing, geometry extraction, or direct rendering.
Dozens of image processing filters exist that can operate on image datasets. These filters take vtkIm-
ageData as input and produce vtkImageData as output. Geometry extraction filters exist that convert
vtkImageData into vtkPolyData. For example, the vtkContourFilter can extract iso-valued contours in

Figure 6–1  The vtkImageData structure
is defined by dimensions, spacing, and ori-
gin. The dimensions are the number of
voxels or pixels along each of the major
axes. The origin is the world coordinate
position of the lower left corner of the first
slice of the data. The spacing is the dis-
tance between pixels along each of the
three major axes.
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triangular patches from the image dataset. Finally, there are various mappers and specialized actors to
render vtkImageData, including techniques ranging from simple 2D image display to volume render-
ing.

In this chapter we examine some important image processing techniques. We will discuss basic
image display, image processing, and geometry extraction as elevation maps. Other geometry extrac-
tion techniques such as contouring are covered in Chapter 5. Volume rendering of both vtkImageData
and vtkUnstructuredGrid is covered in Chapter 7. 

6.1 Manually Creating vtkImageData
Creating image data is straightforward: you need only define the dimensions, origin, and spacing of
the dataset. The origin is the world coordinate position of the lower left hand corner of the dataset.
The dimensions are the number of voxels or pixels along each of the three major axes. The spacing is
the height, length, and width of a voxel or the distance between neighboring pixels, depending on
whether you view your data as homogeneous boxes or sample points in a continuous function.

In this first example we will assume that we have an array of unsigned character values pointed
to by the variable data, and containing size[0] by size[1] by size[2] samples. We generated this data
outside of VTK, and now we want to get this data into a vtkImageData so that we can use the VTK
filtering and rendering operations. We will give VTK a pointer into the memory, but we will manage
the deletion of the memory ourselves.

The first thing we need to do is create an array of unsigned chars to store the data. We use the
SetArray() method to specify the pointer to the data and its size, with the final argument indicating
that VTK should not free this memory.

vtkUnsignedCharArray *array = vtkUnsignedCharArray::New(); 
array->SetArray( data, size[0]*size[1]*size[2], 1);

The second step is to create the image data. We must take care that all values match—the scalar type
of the image data must be unsigned char, and the dimensions of the image data must match the size of
the data.

imageData = vtkImageData::New(); 
imageData->GetPointData()->SetScalars(array); 
imageData->SetDimensions(size); 
imageData->SetScalarType(VTK_UNSIGNED_CHAR); 
imageData->SetSpacing(1.0, 1.0, 1.0 ); 
imageData->SetOrigin(0.0, 0.0, 0.0 );

What’s important about image datasets is that because the geometry and topology are implicitly
defined by the dimensions, origin, and spacing, the storage required to represent the dataset structure
is tiny. Also, computation on the structure is fast because of its regular arrangement. What does
require storage is the attribute data that goes along with the dataset. 

In this next example, we will use C++ to create the image data. Instead of manually creating the
data array and associating it with the image data, we will have the vtkImageData object create the sca-
lar data for us. This eliminates the possibility of mismatching the size of the scalars with the dimen-
sions of the image data.
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// Create the image data
 vtkImageData *id = vtkImageData::New();
  id->SetDimensions(10,25,100);
  id->SetScalarTypeToUnsignedShort();
  id->SetNumberOfScalarComponents(1);
  id->AllocateScalars();
 
 // Fill in scalar values
 unsigned short *ptr = (unsigned short *) id->GetScalarPointer();
 for (int i=0; i<10*25*100; i++)
  {
  *ptr++ = i;
  }

In this example, the convenience method AllocateScalars() is used to allocate storage for the
image data. Notice that this call is made after the scalar type and number of scalar components have
been set (up to four scalar components can be set). Then the method GetScalarPointer(), which
returns a void*, is invoked and the result is cast to unsigned short. We can do this knowing that the
type is unsigned short because we specified this earlier. Imaging filters in VTK work on images of
any scalar type. Their RequestData() methods query the scalar type and then switch on the type to a
templated function in their implementation. VTK has by design chosen to avoid exposing the scalar
type as a template parameter, in its public interface. This makes it easy to provide an interface to
wrapped languages, such as Tcl, Java and Python which lack templates.

6.2 Subsampling Image Data
As we saw in “Extract Subset of Cells” on page 103, extracting parts of a dataset is often desirable.
The filter vtkExtractVOI extracts pieces of the input image dataset. The filter can also subsample the
data, although vtkImageReslice (covered later) provides more flexibility with resampling data. The
output of the filter is also of type vtkImageData.

There are actually two similar filters that perform this clipping functionality in VTK:
vtkExtractVOI and vtkImageClip. The reason for two separate versions is historical—the imaging
pipeline used to be separate from the graphics pipeline, with vtkImageClip working only on vtkIm-
ageData in the imaging pipeline and vtkExtractVOI working only on vtkStructuredPoints in the
graphics pipeline. These distinctions are gone now, but there are still some differences between these
filters. vtkExtractVOI will extract a subregion of the volume and produce a vtkImageData that con-
tains exactly this information. In addition, vtkExtractVOI can be used to resample the volume within
the VOI. On the other hand, vtkImageClip by default will pass the input data through to the output
unchanged except for the extent information. A flag may be set on this filter to force it to produce the
exact amount of data only, in which case the region will be copied into the output vtkImageData. The
vtkImageClip filter cannot resample the volume.

The following Tcl example (taken from VTK/Examples/ImageProcessing/Tcl/
Contours2D.tcl) demonstrates how to use vtkExtractVOI. It extracts a piece of the input volume,
and then subsamples it. The output is passed to a vtkContourFilter. (You may want to try removing
vtkExtractVOI and compare the results.)
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# Quadric definition
vtkQuadric quadric

quadric SetCoefficients .5 1 .2 0 .1 0 0 .2 0 0
vtkSampleFunction sample

sample SetSampleDimensions 30 30 30
sample SetImplicitFunction quadric
sample ComputeNormalsOff

vtkExtractVOI extract
extract SetInputConnection [sample GetOutputPort]
extract SetVOI 0 29 0 29 15 15
extract SetSampleRate 1 2 3

vtkContourFilter contours
contours SetInputConnection [extract GetOutputPort]
contours GenerateValues 13 0.0 1.2

vtkPolyDataMapper contMapper
contMapper SetInputConnection [contours GetOutputPort]
contMapper SetScalarRange 0.0 1.2

vtkActor contActor
contActor SetMapper contMapper

Note that this script extracts a plane from the original data by specifying the volume of interest (VOI)
as (0,29,0,29,15,15) (imin,imax, jmin,jmax, kmin,kmax) and that the sample rate is set differently along
each of the i-j-k topological axes. You could also extract a subvolume or even a line or point by mod-
ifying the VOI specification. (The volume of interest is specified using 0-offset values.)

6.3 Warp Based On Scalar Values
One common use of image data is to store elevation values as an image. These images are frequently
called range maps or elevation maps. The scalar value for each pixel in the image represents an eleva-
tion, or range value. A common task in visualization is to take such an image and warp it to produce
an accurate 3D representation of the elevation or range data. Consider Figure 6–2 which shows an
image that has been warped based on its scalar value. The left image shows the original image while
the right view shows the image after warping to produce a 3D surface.

Figure 6–2  Image
warped by scalar values.
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The pipeline to perform this visualization is fairly simple, but there is an important concept to
understand. The original data is an image which has implicit geometry and topology. Warping the
image will result in a 3D surface where geometry is no longer implicit. To support this we first con-
vert the image to a vtkPolyData representation using vtkImageDataGeometryFilter. Then we perform
the warp and connect to a mapper. In the script below you’ll note that we also make use of
vtkWindowLevelLookupTable to provide a greyscale lookup-table instead of the default red to blue
lookup table.

vtkImageReader reader
reader SetDataByteOrderToLittleEndian
reader SetDataExtent 0 63 0 63 40 40
reader SetFilePrefix "$VTK_DATA_ROOT/Data/headsq/quarter"
reader SetDataMask 0x7fff

vtkImageDataGeometryFilter geometry
 geometry SetInputConnection [reader GetOutputPort]

vtkWarpScalar warp
 warp SetInputConnection [geometry GetOutputPort]
 warp SetScaleFactor 0.005

vtkWindowLevelLookupTable wl

vtkPolyDataMapper mapper
 mapper SetInputConnection [warp GetOutputPort]
 mapper SetScalarRange 0 2000
 mapper ImmediateModeRenderingOff
 mapper SetLookupTable wl

vtkActor actor
 actor SetMapper mapper

This example is often combined with other techniques. If you want to warp the image with its scalar
value and then color it with a different scalar field you would use the vtkMergeFilter. Another com-
mon operation is to reduce the number of polygons in the warped surface. Because these surfaces
were generated from images they tend to have a large number of polygons. You can use
vtkDecimatePro to reduce the number. You should also consider using vtkTriangleFilter followed by
vtkStripper to convert the polygons (squares) into triangle strips which tend to render faster and con-
sume less memory.

6.4 Image Display
There are several ways to directly display image data. Two methods that are generally applicable for
displaying 2D images are described in this section. Volume rendering is the method for directly dis-
playing 3D images (volumes) and is described in detail in Chapter 7.

Image Viewer
vtkImageViewer2 is a convenient class for displaying images. It replaces an earlier version of the
class vtkImageViewer. vtkImageViewer2 internally encapsulates several objects - vtkRenderWindow,
vtkRenderer, vtkImageActor and vtkImageMapToWindowLevelColors providing an easy to use class
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that can be dropped into your application. This class also creates an interactor style (vtkInteractor-
StyleImage) customized for images, that allows zooming and panning of images, and supports inter-
active window/level operations on the image. (See “Interactor Styles” on page 43 and
“vtkRenderWindow Interaction Style” on page 283 for more information about interactor styles.)
vtkImageViewer2 (unlike vtkImageViewer) uses the 3D rendering and texture mapping engine to
draw an image on a plane. This allows for rapid rendering, zooming, and panning. The image is
placed in the 3D scene at a depth based on the depth-coordinate of the particular image slice. Each
call to SetSlice() changes the image data (slice) displayed and changes the depth of the displayed slice
in the 3D scene. This can be controlled by the AutoAdjustCameraClippingRange option on the Inter-
actorStyle. You may also set the orientation to display an XY, YZ or an XZ slice.

An example of using an image viewer to browse through the slices in a volume can be found in
Widgets/Testing/Cxx/TestImageActorContourWidget.cxx. The following excerpt illustrates a typical
usage of this class.

vtkImageViewer2 *ImageViewer = vtkImageViewer2::New();
ImageViewer->SetInput(shifter->GetOutput());
ImageViewer->SetColorLevel(127);
ImageViewer->SetColorWindow(255);
ImageViewer->SetupInteractor(iren);
ImageViewer->SetSlice(40);
ImageViewer->SetOrientationToXY();
ImageViewer->Render();

It is possible to mix images and geometry, for instance :

viewer->SetInput( myImage );
viewer->GetRenderer()->AddActor( myActor );

This can be used to annotate an image with a PolyData of "edges" or highlight sections of an image or
display a 3D isosurface with a slice from the volume, etc. Any portions of your geometry that are in
front of the displayed slice will be visible; any portions of your geometry that are behind the dis-
played slice will be obscured. 

The window-level transfer function is defined
as shown in Figure 6–3. The level is the data value
that centers the window. The width (i.e., window)
defines the range of data values that are mapped to
the display. The slope of the resulting transfer func-
tion determines the amount of contrast in the final
image. All data values outside of the window are
clamped to the data values at the boundaries of the
window.. 

Image Actor
Using a vtkImageViewer is convenient when you would simply like to display the image in a window
by itself or accompanied by some simple 2D annotation. The vtkImageActor actor class is useful

Figure 6–3  Window-level transfer function.

level

window



6.5  Image Sources 125

when you want to display your image in a 3D rendering window. The image is displayed by creating
a polygon representing the bounds of the image and using hardware texture mapping to paste the
image onto the polygon. On most platforms this enables you to rotate, pan, and zoom your image with
bilinear interpolation in real-time. By changing the interactor to a vtkInteractorStyleImage you can
limit rotations so that the 3D render window operates as a 2D image viewer. The advantage to using
the 3D render window for image display is that you can easily embed multiple images and complex
3D annotation into one window.

The vtkImageActor object is a composite class that encapsulates both an actor and a mapper
into one class. It is simple to use, as can be seen in this example.

vtkBMPReader bmpReader
bmpReader SetFileName "$VTK_DATA_ROOT/Data/masonry.bmp"

vtkImageActor imageActor
imageActor SetInput [bmpReader GetOutput]

This image actor can then be added to the renderer using the AddProp() method. The vtkImageActor
class expects that its input will have a length of 1 along one of the three dimensions, with the image
extending along the other two dimensions. This allows the vtkImageActor to be connected to a vol-
ume through the use of a clipping filter without the need to reorganize the data if the clip is performed
along the X or Y axis. (Note: the input image to vtkImageActor must be of type unsigned char. If your
image type is different, you can use vtkImageCast or vtkImageShiftScale to convert to unsigned
char.)

vtkImagePlaneWidget
Widgets are covered in “Interaction, Widgets and Selections” on page 255. Suffice it to mention that
this widget defines a plane that can be interactively placed in an image volume, with the plane dis-
playing resliced data through the volume. Interpolation options to reslice the data include nearest
neighbor, linear and cubic. The plane position and orientation can be interactively manipulated. One
can also window level interactively on the resliced plane and optionally display window level and
position annotations.

vtkImagePlaneWidget* planeWidgetX = vtkImagePlaneWidget::New();
planeWidgetX->SetInteractor( iren);
planeWidgetX->RestrictPlaneToVolumeOn();
planeWidgetX->SetResliceInterpolateToNearestNeighbour();
planeWidgetX->SetInput(v16->GetOutput());
planeWidgetX->SetPlaneOrientationToXAxes();
planeWidgetX->SetSliceIndex(32);
planeWidgetX->DisplayTextOn();
planeWidgetX->On();

6.5 Image Sources
There are some image processing objects that produce output but do not take any data objects as
input. These are known as image sources, and some of the VTK image sources are described here.
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Refer to “Source Objects” on page 444 or to the Doxygen documentation for a more complete list of
available image sources.

ImageCanvasSource2D
The vtkImageCanvasSource2D class creates a blank two-dimensional image of a specified size and
type and provides methods for drawing various primitives into this blank image. Primitives include
boxes, lines, and circles; a flood fill operation is also provided. The following example illustrates the
use of this source by creating a 512x512 pixel image and drawing several primitives into it. The
resulting image is shown in Figure 6–4.

#set up the size and type of the image canvas
vtkImageCanvasSource2D imCan

imCan SetScalarTypeToUnsignedChar
imCan SetExtent 0 511 0 511 0 0

# Draw various primitives
imCan SetDrawColor 86
imCan FillBox 0 511 0 511
imCan SetDrawColor 0
imCan FillTube 500 20 30 400 5
imCan SetDrawColor 255
imCan DrawSegment 10 20 500 510
imCan SetDrawColor 0
imCan DrawCircle 400 350 80.0
imCan SetDrawColor 255
imCan FillPixel 450 350
imCan SetDrawColor 170
imCan FillTriangle 100 100 300 150 150 300

#Show the resulting image
vtkImageViewer viewer
viewer SetInputConnection [imCan GetOutputPort]
viewer SetColorWindow 256
viewer SetColorLevel 127.5

ImageEllipsoidSource
If you would like to write your own image source using a templated execute function,
vtkImageEllipsoidSource is a good starting point. This object produces a binary image of an ellipsoid
as output based on a center position, a radius along each axis, and the inside and outside values. The
output scalar type can also be specified, and this is why the execute function is templated. This source
is used internally by some of the imaging filters such as vtkImageDilateErode3D.

If you want to create a vtkImageBoxSource, for example, to produce a binary image of a box,
you could start by copying the vtkImageEllipsoidSource source and header files and doing a global
search and replace. You would probably change the instance variable Radius to be Length since this is
a more appropriate description for a box source. Finally, you would replace the code within the tem-
plated function vtkImageBoxSourceExecute to create the box image rather than the ellipsoid image.
(For more information on creating image processing filters see “A Threaded Imaging Filter” on
page 401.)

Figure 6–4  The results from a
vtkImageCanvasSource2D source
after drawing various primitives.
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ImageGaussianSource
The vtkImageGaussianSource object produces an image with pixel values determined according to a
Gaussian distribution using a center location, a maximum value, and a standard deviation. The data
type of the output of this image source is always floating point (i.e., double).

If you would like to write your own source that produces just one type of output image, for
example float, then this might be a good class to use as a starting point. Comparing the source code
for vtkImageGaussianSource with that for vtkImageEllipsoidSource, you will notice that the filter
implementation is in the RequestData() method for vtkImageGaussianSource, whereas in
vtkImageEllipsoidSource the RequestData() method calls a templated function that contains the
implementation.

ImageGridSource 
If you would like to annotate your image with a 2D grid,
vtkImageGridSource can be used to create an image with the
grid pattern (Figure 6–5). The following example illustrates
this use by blending a grid pattern with a slice from a CT data-
set. The reader is a vtkImageReader that produces a 64 by 64
image. 

vtkImageGridSource imageGrid
imageGrid SetGridSpacing 16 16 0
imageGrid SetGridOrigin 0 0 0
imageGrid SetDataExtent 0 63 0 63 0 0
imageGrid SetLineValue 4095
imageGrid SetFillValue 0
imageGrid SetDataScalarTypeToShort

vtkImageBlend blend
blend SetOpacity 0 0.5
blend SetOpacity 1 0.5
blend AddInputConnection [reader GetOutputPort]
blend AddInputConnection [imageGrid GetOutputPort]
vtkImageViewer viewer
viewer SetInputConnection [blend GetOutputPort]
viewer SetColorWindow 1000
viewer SetColorLevel 500
viewer Render

ImageNoiseSource
The vtkImageNoiseSource image source can be used to generate an image filled with random num-
bers between some specified minimum and maximum values. The type of the output image is floating
point. 

One thing to note about vtkImageNoiseSource is that it will produce a different image every
time it executes. Normally, this is the desired behavior of a noise source, but this has negative impli-
cations in a streaming pipeline with overlap in that the overlapping region will not have the same val-
ues across the two requests. For example, assume you set up a pipeline with a vtkImageNoiseSource

Figure 6–5  A grid pattern created by
a vtkImageGridSource is overlayed on a
slice of a CT dataset.
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connected to an ImageMedianFilter which is in turn connected to a vtkImageDataStreamer. If you
specify a memory limit in the streamer such that the image will be computed in two halves, the first
request the streamer makes would be for half the image. The median filter would need slightly more
than half of the input image (based on the extent of the kernel) to produce the requested output image.
When the median filter executes the second time to produce the second half of the output image, it
will again request the overlap region, but this region will contain different values, causing any values
computed using the overlap region to be inconsistent.

ImageSinusoidSource
The vtkImageSinusoidSource object can
be used to create an image of a specified
size where the pixel values are determined
by a sinusoid function given direction,
period, phase, and amplitude values. The
output of the sinusoid source is floating
point. In the image shown in Figure 6–6,
the output of the sinusoid source has been
converted to unsigned char values and vol-
ume rendered. This same output was
passed through an outline filter to create
the bounding box seen in the image.

vtkImageSinusoidSource ss 
ss SetWholeExtent 0 99 0 99 0 99
ss SetAmplitude 63
ss SetDirection 1 0 0
ss SetPeriod 25

6.6 Image Processing
Now we will consider a few examples that process image data. This is not an exhaustive description
of all filters, but it will get you started using VTK’s image processing filters. You may wish to refer to
the Doxygen documentation for more information. In addition, a more complete description can be
found in “Imaging Filters” on page 450.

Convert Scalar Type
It is sometimes necessary to convert an input image of one scalar type to an output image of another
scalar type. For example, certain filters only operate on input of a specific scalar type such as float or
integer. Alternatively, you may wish to use an image directly as color values without using a lookup
table to map the scalars into color. To do this the image scalar type must be unsigned char.

There are two classes in VTK that can be used to convert the scalar type of an image. The
vtkImageCast filter allows you to specify the output scalar type. This filter works well when, for
example, you know that your image contains only values between 0 and 255, but is currently stored as
unsigned integers. You can then use vtkImageCast to convert the image to unsigned char. If you set
the ClampOverflow instance variable to on, then values outside the range of the output scalar type

Figure 6–6  The output
of the sinusoid source
shown on the left has been
converted to unsigned char
and volume rendered.
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will be clamped before assignment. For example, if your input image contained a 257, it would be
stored in the output image as 255 if ClampOverflow is on; it will be stored as 1 if ClampOverflow is
not on.

If you need to convert a floating point image containing intensities in the [-1,1] range to an
unsigned char image, vtkImageCast would not work. In this situation, vtkImageShiftScale would be
the correct filter to perform the conversion. This filter allows you to specify a shift and scale opera-
tion to be performed on the input image pixel values before they are stored in the output image. To
perform this conversion, the shift would be set to +1 and the scale would be set to 127.5. This would
map the value -1 to (-1+1)*127.5 = 0, and it would map the value +1 to (+1+1)*127.5 = 255.

Change Spacing, Origin, or Extent

A frequent source of confusion in VTK occurs when users needs to change the origin, spacing, or
extent of their data. It is tempting to get the output of some filter, and adjust these parameters to the
desired values. However, as users quickly note this is only a temporary solution – the next time the
pipeline updates, these changes are lost and the data will revert back to its previous shape and loca-
tion. To change these parameters, it is necessary to introduce a filter into the pipeline to make the
change. The vtkImageChangeInformation filter can be used to adjust the origin, spacing, and extent
of a vtkImageData. The origin and spacing values can be set explicitly, as can the start of the output
whole extent. Since the dimensions of the data do not change, the start of the whole extent fully
defines the output whole extent. The vtkImageChangeInformation filter also contains several conve-
nience methods to center the image, translate the extent, or translate and scale the origin and spacing
values.

In the following example we use a vtkImageReader to read in the raw medical data for a CT
scan. We then pass this data through a 3D vtkImageGradient and display the result as a color image.

vtkImageReader reader
reader SetDataByteOrderToLittleEndian
reader SetDataExtent 0 63 0 63 1 93
reader SetFilePrefix "$VTK_DATA_ROOT/Data/headsq/quarter"
reader SetDataMask 0x7fff

vtkImageGradient gradient
gradient SetInputConnection [reader GetOutputPort]
gradient SetDimensionality 3

vtkImageViewer viewer
viewer SetInputConnection [gradient GetOutputPort]
viewer SetZSlice 22
viewer SetColorWindow 400
viewer SetColorLevel 0

Append Images

There are two different classes for appending images in VTK allowing images to be combined either
spatially or by concatenating the components. Images may be combined spatially to form a larger
image using vtkImageAppend, while vtkImageAppendComponents can be used, for example, to
combine independent red, green, and blue images to form a single RGB image.
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Recall that an image may be 1-, 2-, or 3-dimensional. When combined spatially, the output image
may increase dimensionality. For example, you can combine multiple independent one-dimensional
rows to form a two-dimensional image, or you may combine a stack of 2D images to form a volume.
The vtkImageAppend filter combines a set of images spatially using one of two methods. If the Pre-
serveExtents instance variable is turned off, then the images are appended along the axis defined by
the AppendAxis instance variable. Except along the AppendAxis, the input images must all have the
same dimensions, and they must all have the same scalar type and number of scalar components. The
origin and spacing of the output image will be the same as the origin and spacing of the first input
image. An example of combining three 2D images along AppendAxis 0 (the X axis) to form a wider
2D image is shown in Figure 6–7. In Figure 6–8 we see an example where a set of 2D XY images are
combined along AppendAxis 2 (the Z axis) to form a volume.

If the PreserveExtents instance variable is on, the vtkImageAppend filter will create an output that
contains the set of input images based on the union of their whole extents. The origin and spacing are
copied from the first input image, and the output image is initialized to 0. Each input image is then
copied into the output image. No blending is performed when two input images both define the same
pixel in the output image. Instead, the order of the input images determines the value in the output
image, with the highest numbered (last added) input image value stored in the output pixel. An exam-
ple of appending images with PreserveExtents on with three co-planar non-overlapping 2D input
images is shown in Figure 6–9.

Note that vtkImageAppend considers the pixel or voxel extents of the data rather than world
coordinates. This filter functions as if all input images have the same origin and spacing, and there-
fore the location of each image relative to the other input images is defined solely by the extent of that
image.

Input 1 Input 2 Input 2 Output

Figure 6–7  Appending three 2D images along the X axis with Pre-
serveExtents off.

Figure 6–8  Appending 2D (XY) images along
the Z axis to form a 3D volume.
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The vtkImageAppendComponents filter can be used to combine the components of multiple inputs
that all have the same scalar type and dimensions. The origin and spacing of the output image will be
obtained from the first input image. The output image will have a number of components equal to the
sum of the number of components of all the input images. Frequently this filter is used to combine
independent red, green, and blue images into a single color image. An example of this can be seen in
Figure 6–10.

Map Image to Color

vtkImageMapToColors is used for transforming a grayscale image into a color one. (See Figure 6–
11.) The input’s scalar values may be of any data type. A user-selected component (chosen using the
SetActiveComponent() method of vtkImageMapToColors) of the input’s scalar values is mapped
through an instance of vtkScalarsToColors, and the color values from the lookup table are stored in
the output image. vtkImageMapToWindowLevelColors, a subclass of vtkImageMapToColors, addi-
tionally modulates the color values with a window-level function (see Figure 6–3) before storing
them in the output image. The scalar type of the output image of either filter is unsigned char.

Figure 6–9  Appending 2D images with PreserveExtents on.

Input 1 Input 2
(green component)

Input 3
(blue component)

Output
(3-component color image)

Figure 6–10  Using vtkImageAppendComponents to combine
three single-component images into a single color image.

(red component)

Figure 6–11  The image on the right
is the result of passing the image on
the left through a vtkImageMapTo-
Colors filter. The color map used is
shown in the scalar bar at the bottom
of the right-hand image.



132 Image Processing & Visualization

Image Luminance

The vtkImageLuminance filter is basically the opposite of vtkImageMapToColors. (See Figure 6–
12.) It converts an RGB image (red, green, and blue color components) to a single-component gray-
scale image using the following formula.

luminance = 0.3*R + 0.59*G + 0.11*B

In this formula, R is the first component (red) of the input image, G is the second component (green),
and B is the third component (blue). This calculation computes how bright a given color specified
using RGB components appears.

Histogram 

vtkImageAccumulate is an image filter that produces generalized histograms of up to four dimen-
sions. This is done by dividing the component space into discrete bins, then counting the number of
pixels corresponding to each bin. The input image may be of any scalar type, but the output image
will always be of integer type. If the input image has only one scalar component, then the output
image will be one-dimensional, as shown in Figure 6–13. (This example is taken from VTK/
Examples/ImageProcessing/Tcl/Histogram.tcl.)

Image Logic

vtkImageLogic is an image processing filter that takes one or two inputs and performs a boolean logic
operation on them (Figure 6–14). Most standard operations are supported including AND, OR, XOR,
NAND, NOR, and NOT. This filter has two inputs, although for unary operations such as NOT only
the first input is required. In the example provided below you will notice we use
vtkImageEllipsoidSource to generate the two input images.

Figure 6–12  The image on the right is the result of
passing the image on the left (the output of vtkImage-
MapToColors in the previous section) through a
vtkImageLuminance filter. Note the similarity of the
output image from this filter (the right-hand image)
and the input image passed to vtkImageMapToCol-
ors.

Figure 6–13  The vtkImageAccumu-
late class is used to generate a one
dimensional histogram from a one-
component input image.
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vtkImageEllipsoidSource sphere1 
sphere1 SetCenter 95 100 0
sphere1 SetRadius 70 70 70

vtkImageEllipsoidSource sphere2
sphere2 SetCenter 161 100 0
sphere2 SetRadius 70 70 70 

vtkImageLogic xor 
xor SetInputConnection 0 \

[sphere1 GetOutputPort]
xor SetInputConnection 1 [sphere2 \

GetOutputPort]
xor SetOutputTrueValue 150
xor SetOperationToXor

vtkImageViewer viewer
viewer SetInput [xor GetOutput]
viewer SetColorWindow 255
viewer SetColorLevel 127.5

Gradient
vtkImageGradient is a filter that computes the gradient of an image or volume. You can control
whether it computes a two- or three-dimensional gradient using the SetDimensionality() method. It
will produce an output with either two or three scalar components per pixel depending on the dimen-
sionality you specify. The scalar components correspond to the x, y, and optionally z components of
the gradient vector. If you only want the gradient magnitude you can use the
vtkImageGradientMagnitude filter or vtkImageGradient followed by vtkImageMagnitude.

vtkImageGradient computes the gradient by using central differences. This means that to com-
pute the gradient for a pixel we must look at its left and right neighbors. This creates a problem for the
pixels on the outside edges of the image since they will be missing one of their two neighbors. There
are two solutions to this problem and they are controlled by the HandleBoundaries instance variable.
If HandleBoundaries is on, then vtkImageGradient will use a modified gradient calculation for all of
the edge pixels. If HandleBoundaries is off, vtkImageGradient will ignore those edge pixels and pro-
duce a resulting image that is smaller than the original input image.

Gaussian Smoothing
Smoothing an image with a Gaussian kernel is similar to the gradient calculation done above. It has a
dimensionality that controls what dimension Gaussian kernel to convolve against. The class
vtkGaussianSmooth also has SetStandardDeviations() and SetRadiusFactors() methods that control
the shape of the Gaussian kernel and when to truncate it. The example provided below is very similar
to the gradient calculation. We start with a vtkImageReader connected to the
vtkImageGaussianSmooth which finally connects to the vtkImageViewer.

vtkImageReader reader
reader SetDataByteOrderToLittleEndian
reader SetDataExtent 0 63 0 63 1 93

Figure 6–14  Result of
image logic.
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reader SetFilePrefix "$VTK_DATA_ROOT/Data/headsq/quarter"
reader SetDataMask 0x7fff

vtkImageGaussianSmooth smooth
smooth SetInputConnection [reader GetOutputPort]
smooth SetDimensionality 2
smooth SetStandardDeviations 2 10

vtkImageViewer2 viewer
viewer SetInputConnection [smooth GetOutputPort]
viewer SetSlice 22
viewer SetColorWindow 2000
viewer SetColorLevel 1000

Image Flip

The vtkImageFlip filter can be used to reflect the input image data along an axis specified by the Fil-
teredAxis instance variable. By default, the FlipAboutOrigin instance variable is set to 0, and the
image will be flipped about its center along the axis specified by the FilteredAxis instance variable
(defaults to 0 – the X axis), and the origin, spacing, and extent of the output will be identical to the
input. However, if you have a coordinate system associated with the image and you want to use the
flip to convert positive coordinate values along one axis to negative coordinate values (and vice
versa), then you actually want to flip the image about the coordinate (0,0,0) instead of about the cen-
ter of the image. If the FlipAboutOrigin instance variable is set to 1, the origin of the output will be
adjusted such that the flip occurs about (0,0,0) instead of the center of the image. In Figure 6–15 we
see an input image on the left; the center image shows the results of flipping this image along the Y
axis with FlipAboutOrigin off; in the right image, FlipAboutOrigin is on, and all other variables are
unchanged from those used to generate the center image.

Image Permute

vtkImagePermute allows you to reorder the axes of the input image or volume. (See Figure 6–
16.) The FilteredAxes instance variable indicates which indicates how the axes should be reordered –
which of the input axes will be labelled X, which Y, and which Z in the output.

X

Y

(20, 10)
X

Y

(20, 10)

X

Y

(20, -30)

FilteredAxis = 1 (Y axis)
FlipAboutOrigin = 0

FilteredAxis = 1 (Y axis)
FlipAboutOrigin = 1

Figure 6–15  Using vtkImageFlip to flip the Y axis of the input image with
dimensions (40, 20, 1). The origin of each image (the input and the two out-
puts) is labelled.

Input image
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Image Mathematics

The vtkImageMathematics filter provides basic unary and binary mathematical operations. Depend-
ing on the operation set, this filter expects either one or two input images. When two input images are
required, they must have the same scalar type and the same number of components, but do not need to
have the same dimensions. The output image will have an extent that is the union of the extents of the
input images. Origin and spacing of the output image will match the origin and spacing of the first
input image.

The unary operations are described below. Note that IPn is the input pixel value for component
n, OPn is the output pixel value for component n, and C and K are constant values that can be speci-
fied as instance variables. DivideByZeroToC is an instance variable that specifies what happens when
a divide by zero is encountered. When DivideByZeroToC is on, then the C constant value is the result
of a divide by zero; otherwise the maximum value in the range of the output scalar type is used when
a divide by zero occurs.

VTK_INVERT: Invert the input. Use C or the maximum output scalar value when a divide by
zero is encountered, depending on the value of the DivideByZeroToC instance variable.

 if IPn != 0; OPn = 1.0 / IPn
 if IPn == 0 and DivideByZeroToC; then OPn = C
 if IPn == 0 and !DivideByZeroToC; then OPn = maximum scalar value

VTK_SIN: Take the sine of the input image.
OPn = sin( IPn )

VTK_COS: Calculate the cosine of the input image.
OPn = cos( IPn )

VTK_EXP: Calculate the exponential of the input image. This is e raised to the power of the
input image, where e is the base of a natural log, approximately 2.71828.

OPn = exp( IPn )

X: 114

Y: 100

Z: 74

Y: 74

X: 100

Z: 114

Figure 6–16  Using vtkImagePermute to reorder the axes of a volume dataset. The
dimensions of the input volume, shown on the left, are (114, 100, 74). The Filtere-
dAxes instance variable was set to (1, 2, 0), indicating that the Y axis be relabelled as
X, Z be relabelled as Y, and X be relabelled as Z. As shown on the right, the dimen-
sions of the output volume are (100, 74, 114).
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VTK_LOG: Calculate the natural log of the input image (the logarithm base e). 
OPn = log ( IPn )

VTK_ABS: Compute the absolute value of the input image.
OPn = fabs( IPn )

VTK_SQR: Square the input image values.
OPn = IPc * IPn

VTK_SQRT: Take the square root of the input image values.
OPn = sqrt( IPn )

VTK_ATAN: Compute the arctangent of the input image values.
OPn = atan( IPn )

VTK_MULTIPLYBYK: Multiple each input image value by the constant K.
OPn = IPn * K

VTK_ADDC: Add the constant C to each input image value.
OPn = IPn + C

VTK_REPLACECBYK: Replace all input image values that are exactly equal to the constant
C, with the constant K.

if IPn == C; OPn = K
if IPn != C; OPn = IPn

VTK_CONJUGATE: To use this operation, the input image must have two-component sca-
lars. Convert the two-component scalars into a complex conjugate pair.

OP0 = IP0
OP1 = -IP1

The binary operations follow. The notation used is similar to that for the unary operations, except that
IP1n is the first input’s pixel value for component n, and IP2n is the second input’s pixel value for
component n.

VTK_ADD: Add the second input image to the first one.
OPn = IP1n + IP2n
VTK_SUBTRACT: Subtract the second input image’s values from those of the first input.
OPn = IP1n - IP2n
VTK_MULTIPLY: Multiply the first input image’s values by those of the second input.
OPn = IP1n * IP2n
VTK_DIVIDE: Divide the first input image’s values by those of the second input. Use C or the

maximum output scalar value when a divide by zero is encountered, depending on the
value of the DivideByZeroToC instance variable.

if IP2n != 0; OPn = IP1n / IP2n
 if IP2n == 0 and DivideByZeroToC; then OPn = C
 if IP2n == 0 and !DivideByZeroToC; then OPn = maximum scalar value

VTK_COMPLEX_MULTIPLY: This operation requires that both input images have two-
component scalars. The first component is real-valued, and the second component is
imaginary. Multiply the first input image’s values by those of the second input using
complex multiplication.

OP0 = IP10 * IP20 - IP11 * IP21
OP1 = IP11 * IP20 + IP10 * IP21
VTK_MIN: Compare corresponding values in the two images, and return the smaller value.
if IP1n < IP2n; OPn = IP1n
if IP2n < IP1n; OPn = IP2n
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VTK_MAX: Compare corresponding values in the two images, and return the larger value.
if IP1n > IP2n; OPn = IP1n
if IP2n > IP1n; OPn = IP2n
VTK_ATAN2: For each pair of values from the two inputs, divide the first value by the second

value, and compute the arctangent of the result. If the second input’s value is zero, or
both inputs’ values are zero, the output value is set to 0.

if IP2n = 0; OPn = 0
if IP1n = 0 and IP2n = 0; OPn = 0

IP2n != 0; OPn = atan( IP1n / IP2n )

Image Reslice
vtkImageReslice is a contributed class that offers high-per-
formance image resampling along an arbitrarily-oriented
volume (or image). The extent, origin, and sampling density
of the output data can also be set. This class provides sev-
eral other imaging filters: it can permute, flip, rotate, scale,
resample, and pad image data in any combination. It can
also extract oblique slices from image volumes, which no
other VTK imaging filter can do. The following script dem-
onstrates how to use vtkImage-Reslice.

vtkBMPReader reader
 reader SetFileName "$VTK_DATA_ROOT/
Data/masonry.bmp"
 reader SetDataExtent 0 255 0 255 0 0
 reader SetDataSpacing 1 1 1
 reader SetDataOrigin 0 0 0
 reader UpdateWholeExtent

vtkTransform transform
 transform RotateZ 45
 transform Scale 1.414 1.414 1.414

vtkImageReslice reslice
 reslice SetInputConnection [reader GetOutputPort]
 reslice SetResliceTransform transform
 reslice SetInterpolationModeToCubic
 reslice WrapOn
 reslice AutoCropOutputOn

vtkImageViewer2 viewer
 viewer SetInputConnection [reslice \

GetOutputPort]
 viewer SetSlice 0

 viewer SetColorWindow 256.0
 viewer SetColorLevel 127.5
 viewer Render

Figure 6–17  Output of vtkImage-
Reslice with a gray background level
set.
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In this example (Figure 6–17) a volume of size 642 x 93 is read. A transform is used to position a vol-
ume on which to resample (or reslice) the data, and cubic interpolation between voxels is used. The
wrap-pad feature is turned on, and (by setting the variable AutoCropOutput) the output extent will be
resized large enough that none of the resliced data will be cropped. By default, the spacing of the out-
put volume is set at 1.0, and the output origin and extent are adjusted to enclose the input volume. A
viewer is used to display one z-slice of the resulting volume.

Iterating through an image
VTK also provides STL like iterators to make it convenient to iterate and retrieve / set pixel values in
an image. The class vtkImageIterator can be used to accomplish this. It is templated over the datatype
of the image. Its constructor takes as argument the subregion over which to iterate over.

   int subRegion[6] = { 10, 20, 10, 20, 10, 20 };
   vtkImageIterator< unsigned char > it( image, subRegion );
   while( !it.IsAtEnd() )
    { 
    unsigned char *inSI = it.BeginSpan(); 
    unsigned char *inSIEnd = it.EndSpan();
    while (inSI != inSIEnd) 
     {
     *inSI = (255 - *inSI);
     ++inSI;
     }   
    it.NextSpan();
    }
   }



Chapter 7

Volume Rendering 7

Volume rendering is a term used to describe a rendering
process applied to 3D data where information exists throughout a 3D space instead of simply on 2D
surfaces defined in 3D space. There is not a clear dividing line between volume rendering and geo-
metric rendering techniques. Often two different approaches can produce similar results, and in some
cases one approach may be considered both a volume rendering and a geometric rendering technique.
For example, you can use a contouring technique to extract triangles representing an isosurface in an
image dataset (see “Contouring” on page 93) and then use geometric rendering techniques to display
these triangles, or you can use a volumetric ray casting technique on the image dataset and terminate
the ray traversal at a particular isovalue. These two different approaches produce similar (although
not necessarily identical) results. Another example is the technique of employing texture mapping
hardware in order to perform composite volume rendering. This one method may be considered a
volume rendering technique since it works on image data, or a geometric technique since it uses geo-
metric primitives and standard graphics hardware. 

In VTK a distinction is made between volume rendering techniques and geometric rendering
techniques in order to customize the properties of the data being rendered. As you have seen through-
out the many example shown thus far, rendering data typically involves creating a vtkActor, a vtk-
Property, and some subclass of a vtkMapper. The vtkActor is used to hold position, orientation and
scaling information about the data, as well as a pointer to both the property and the mapper. The vtk-
Property object captures various parameters that control the appearance of the data such as the ambi-
ent lighting coefficient and whether the object is flat, Gouraud, or Phong shaded. Finally, the
vtkMapper subclass is responsible for actually rendering the data. For volume rendering, a different
set of classes with very similar functionality are utilized. A vtkVolume is used in place of a vtkActor
to represent the data in the scene. Just like the vtkActor, the vtkVolume represents the position, orien-
tation and scaling of the data within the scene. However, a vtkVolume contains references to a
vtkVolumeProperty and a vtkAbstractVolumeMapper. The vtkVolumeProperty represents those
parameters that affect the appearance of the data in a volume rendering process, which is a different
set of parameters than those used during geometric rendering. A vtkAbstractVolumeMapper subclass
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is responsible for the volume rendering process and ensures that the input data is of the correct type
for the mapper’s specific algorithm.

In VTK, volume rendering techniques have been implemented for both regular rectilinear grids
(vtkImageData) and unstructured data (vtkUnstructuredGrid). The SetInput() method of the specific
subclass of vtkAbstractVolumeMapper that you utilize will accept a pointer to only the correct type of
data (vtkImageData or vtkUnstructuredGrid) as appropriate for that mapper. Note that you can resam-
ple irregular data into a regular image data format in order to take advantage of the vtkImageData ren-
dering techniques described in this chapter (see “Probing” on page 100). Alternatively, you can
tetrahedralize your data to produce an unstructured mesh to use the vtkUnstructuredGrid rendering
techniques described in this chapter.

There are several different volume rendering techniques available for each supported data type.
We will begin this chapter will some simple examples written using several different rendering tech-
niques. Then we will cover the objects / parameters common to all of these techniques. Next, each of
the volume rendering techniques will be discussed in more detail, including information on parame-
ters specific to that rendering method. This will be followed by a discussion on achieving interactive
rendering rates that is applicable to all volume rendering methods.

7.1 Historical Note on Supported Data Types
The first volume rendering methods incorporated into VTK were designed solely for vtkImageData.
The superclass vtkVolumeMapper was developed to define the API for all vtkImageData volume ren-
dering methods. Later, volume rendering of vtkUnstructuredGrid datasets was added to VTK. In
order to preserve backwards compatibility, a new abstract superclass was introduced as the superclass
for all types of volume rendering. Hence vtkAbstractVolumeMapper is the superclass of both vtkVol-
umeMapper (whose subclasses render only vtkImageData datasets) and vtkUnstructuredGridVolume-
Mapper (whose subclasses render only vtkUnstructuredGrid datasets). 

7.2 A Simple Example
Consider the simple volume rendering example shown below
and illustrated in Figure 7–1 (refer to VTK/Examples/
VolumeRendering/Tcl/SimpleRayCast.tcl). This
example is written for volumetric ray casting of vtkImage-
Data, but only the portion of the Tcl script highlighted with
bold text is specific to this rendering technique. Following this
example you will find the alternate versions of the bold por-
tion of the script that would instead perform the volume ren-
dering task with other mappers, including a texture mapping
approach to rendering vtkImageData and a projection-based
method for volume rendering vtkUnstructuredGrid datasets.
You will notice that switching volume rendering techniques, at
least in this simple case, requires only a few minor changes to
the script, since most of the functionality is defined in the
superclass API and is therefore common to all volume map-
pers.

Figure 7–1  Volume rendering.
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# Create the reader for the data
vtkStructuredPointsReader reader
  reader SetFileName "$VTK_DATA_ROOT/Data/ironProt.vtk"

# Create transfer mapping scalar value to opacity
vtkPiecewiseFunction opacityTransferFunction
  opacityTransferFunction AddPoint 20  0.0
  opacityTransferFunction AddPoint 255 0.2

# Create transfer mapping scalar value to color
vtkColorTransferFunction colorTransferFunction
  colorTransferFunction AddRGBPoint   0.0 0.0 0.0 0.0
  colorTransferFunction AddRGBPoint   64.0 1.0 0.0 0.0
  colorTransferFunction AddRGBPoint  128.0 0.0 0.0 1.0
  colorTransferFunction AddRGBPoint  192.0 0.0 1.0 0.0
  colorTransferFunction AddRGBPoint  255.0 0.0 0.2 0.0

# The property describes how the data will look
vtkVolumeProperty volumeProperty
  volumeProperty SetColor colorTransferFunction
  volumeProperty SetScalarOpacity opacityTransferFunction

# The mapper / ray cast functions know how to render the data
vtkVolumeRayCastCompositeFunction compositeFunction
vtkVolumeRayCastMapper volumeMapper
  volumeMapper SetVolumeRayCastFunction compositeFunction
  volumeMapper SetInputConnection [reader GetOutputPort]

# The volume holds the mapper and the property and
# can be used to position/orient the volume
vtkVolume volume
  volume SetMapper volumeMapper
  volume SetProperty volumeProperty

ren1 AddProp volume
renWin Render

In this example we start by reading in a data file from disk. We then define the functions that map sca-
lar value into opacity and color which are used in the vtkVolumeProperty. Next we create the objects
specific to volumetric ray casting—a vtkVolumeRayCastCompositeFunction that performs the com-
positing of samples along the ray, and a vtkVolumeRayCastMapper that performs some of the basic
ray casting operations such as transformations and clipping. We set the input of the mapper to the data
we read off the disk, and we create a vtkVolume (a subclass of vtkProp3D similar to vtkActor) to hold
the mapper and property. Finally, we add the volume to the renderer and render the scene.

If you decided to implement the above script with a 2D texture mapping approach instead of
volumetric ray casting, the bold portion of the script would instead be:

# Create the objects specific to 2D texture mapping approach
vtkVolumeTextureMapper2D volumeMapper
volumeMapper SetInputConnection [reader GetOutputPort]
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If your graphics card has the required support for 3D texture mapping (nearly all recent cards do have
this support), then you may decide to implement the above script with a 3D texture mapping
approach. The bolded portion of the script would instead be:

# Create the objects specific to 3D texture mapping approach
vtkVolumeTextureMapper3D volumeMapper
volumeMapper SetInputConnection [reader GetOutputPort]

The vtkFixedPointVolumeRayCastMapper is an alternative to the vtkVolumeRayCastMapper, and is
for most situations the recommended software mapper. The vtkFixedPointVolumeRayCastMapper
handles all data types as well as multicomponent data, and uses fixed pointed computations and space
leaping for high performance. However, it is not extensible since the blending operations are hard-
coded for performance, rather than customizable by writing new ray cast functions. To change this
example over to using the vtkFixedPointVolumeRayCastMapper, the bold portion of the script would
instead be:

# Create the fixed point ray cast mapper 
vtkFixedPointVolumeRayCastMapper volumeMapper volumeMapper 
SetInputConnection [reader GetOutputPort]

If you would like to use an unstructured grid volume rendering technique instead, the replacement
code becomes slightly more complex in order to perform the conversion from vtkImageData to
vtkUnstructuredGrid before passing the data as input to the mapper. In this case we will use the
unstructured grid rendering method that projects a tetrahedral representation of the grid using the
graphics hardware. The replacement code would be:

# Convert data to unstructured grid
vtkDataSetTriangleFilter tetraFilter
tetraFilter SetInputConnection [reader GetOutputPort]

# Create the objects specific to the Projected Tetrahedra method
vtkProjectedTetrahedraMapper volumeMapper
volumeMapper SetInputConnection [tetraFilter GetOutputPort]

Note that it is not recommended to convert from vtkImageData to vtkUnstructuredGrid for rendering
since the mappers that work directly on vtkImageData are typically more efficient, both in memory
consumption and rendering performance, than the mappers for vtkUnstructuredGrid data.

7.3 Why Multiple Volume Rendering Techniques?
As you can see, in this simple example the main thing that changes between rendering strategies is the
type of volume mapper that is instantiated, and perhaps some rendering-method-specific parameters
such as the ray cast function used in the ray casting technique. This may lead you to the following
questions: why are there different volume rendering strategies in VTK? Why can’t VTK simply pick
the “best” strategy? First, it is not always easy to predict which strategy will work best—ray casting
may out-perform texture mapping if the image size is reduced, more processors become available, or
the graphics hardware is the bottleneck to the rendering rate. These are parameters that differ from
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platform to platform, and in fact may change continuously at run time. Second, due to its computa-
tional complexity, most volume rendering techniques only produce an approximation of the desired
rendering equation. For example, techniques that take samples through the volume and composite
them with an alpha blending function are only approximating the true integral through the volume.
Under different circumstances, different techniques perform better or worse than others in terms of
both quality and speed. In addition, some techniques work only under certain special conditions. For
example, some techniques support data with only a single scalar component of unsigned char or
unsigned short type, while other techniques support any scalar type and multi-component data. The
“best” technique will depend on your specific data, your performance and image quality require-
ments, and the hardware configuration of the system on which the code is run. In fact, the “best” tech-
nique may actually be a combination of techniques. A section of this chapter is dedicated to
describing the multi-technique level-of-detail strategies that may be employed to achieve interactive
volume rendering in a cross-platform manner.

7.4 Creating a vtkVolume

A vtkVolume is a subclass of vtkProp3D intended for use in volume rendering. Similar to a vtkActor
(that is intended for geometric rendering), a vtkVolume holds the transformation information such as
position, orientation, and scale, and pointers to a mapper and property. Additional information on
how to control the transformation of a vtkVolume is covered in “Controlling 3D Props” on page 52.

The vtkVolume class accepts objects that are subclasses of vtkAbstractVolumeMapper as input
to SetMapper(), and accepts a vtkVolumeProperty object as input to SetProperty(). vtkActor and
vtkVolume are two separate objects in order to enforce the different types of the mappers and proper-
ties. These different types are necessary due to the fact that some parameters of geometric rendering
do not make sense in volume rendering and vice versa. For example, the
SetRepresentationToWireframe() method of vtkProperty is meaningless in volume rendering, while
the SetInterpolationTypeToNearest() method of vtkVolumeProperty has no value in geometric render-
ing.

7.5 Using vtkPiecewiseFunction

In order to control the appearance of a 3D volume of scalar values, several mappings or transfer func-
tions must be defined. Generally, two transfer functions are required for all volume rendering tech-
niques. The first required transfer function, known as the scalar opacity transfer function, maps the
scalar value into an opacity or an opacity per unit length value. The second transfer function, referred
to simply as the color transfer function, maps the scalar value into a color. An optional transfer func-
tion employed in some of the structured volume rendering methods is known as the gradient opacity
transfer function, which maps the magnitude of the gradient of the scalar value into an opacity multi-
plier. Any of these mappings can be defined as a single value to single value mapping, which can be
represented with a vtkPiecewiseFunction. For the scalar value to color mapping, a
vtkColorTransferFunction can also be used to define RGB rather than grayscale colors.

From a user’s point of view, vtkPiecewiseFunction has two types of methods—those that add
information to the mapping, and those that clear out information from the mapping. When informa-
tion is added to a mapping, it is considered to be a point sample of the mapping with interpolation
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used to determine values between the specified ones. For example, consider the following section of a
script on the left that produces the transfer function draw on the right:

vtkPiecewiseFunction tfun
tfun AddPoint 50 0.2
tfun AddPoint 200 1.0

The value of the mapping for the scalar val-
ues of 50 and 200 are given as 0.2 and 1.0
respectively, and all other mapping values can
be obtained by linearly interpolating between
these two values. If Clamping is on (it is by default) then the mapping of any value below 50 will be
0.2, and the mapping of any value above 200 will be 1.0. If Clamping is turned off, then out-of-range
values map to 0.0.

Points can be added to the mapping at any time. If a mapping is redefined it replaces the exist-
ing mapping. In addition to adding a single point, a segment can be added which will define two map-
ping points and clear any existing points between the two. As an example, consider the following two
modification steps and the corresponding pictorial representations of the transfer functions:

tfun RemovePoint 50
tfun AddPoint 50 0.0
tfun AddSegment

100 0.8 150 0.2

tfun AddPoint 50 0.2
tfun AddSegment

60 0.4 190 0.8
tfun ClampingOff

In the first step, we change the mapping of scalar value 50 by removing the point and then adding it
again, and we add a segment. In the second step, we change the mapping of scalar value 50 by simply
adding a new mapping without first removing the old one. We also add a new segment which elimi-
nates the mappings for 100 and 150 since they lie within the new segment, and we turn clamping off.

7.6 Using vtkColorTransferFunction
A vtkColorTransferFunction can be used to specify a mapping of scalar value to color using either an
RGB or HSV color space. The methods available are similar to those provided by
vtkPiecewiseFunction, but tend to come in two flavors. For example, AddRGBPoint() and
AddHSVPoint() both add a point into the transfer function with one accepting an RGB value as input
and the other accepting an HSV value as input.

The following Tcl example shows how to specify a transfer function from red to green to blue
with RGB interpolation performed for values in between those specified:
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vtkColorTransferFunction ctfun 
ctfun SetColorSpaceToRGB 
ctfun AddRGBPoint 0 1 0 0 
ctfun AddRGBPoint 127 0 1 0 
ctfun AddRGBPoint 255 0 0 1

7.7 Controlling Color / Opacity with a vtkVolumeProperty
In the previous two sections we have discussed the basics of creating transfer functions, but we have
not yet discussed how these control the appearance of the volume. Typically, defining the transfer
functions is the hardest part of achieving an effective volume visualization since you are essentially
performing a classification operation that requires you to understand the meaning of the underlying
data values.

For rendering techniques that map a pixel to a single location in the volume (such as an isosur-
face rendering or a maximum intensity projection) the ScalarOpacity transfer function maps the sca-
lar value to an opacity. When a compositing technique is used, the ScalarOpacity function maps
scalar value to an opacity that is accumulated per unit length for a homogenous region of that value.
The specific mapper then utilizes a form of compositing to accumulate the continuously changing
color and opacity values through the volume to form a final color and opacity that is stored in the cor-
responding pixel. 

The ScalarOpacity and Color transfer functions
are typically used to perform a simple classification of
the data. Scalar values that are part of the background,
or that are considered noise, are mapped to an opacity
of 0.0, eliminating them from contributing to the
image. The remaining scalar values can be divided into
different “materials” which have different opacities
and colors. For example, data acquired from a CT
scanner can often be categorized as air, soft tissue, or
bone based on the density value contained in the data
(Figure 7–2). The scalar values defined as air would be
given an opacity of 0.0, the soft tissue scalar values
might be given a light red-brown color and the bone
values might be given a white color. By varying the
opacity of these last two materials, you can visualize
the skin surface or the bone surface, or potentially see
the bone through the translucent skin. This process of
determining the dividing line between materials in the data can be tedious, and in some cases not pos-
sible based on the raw input data values. For example, liver and kidney sample locations may have
overlapping CT density values. In this case, a segmentation filter may need to be applied to the vol-
ume to either alter the data values so that materials can be classified solely on the basis of the scalar
value, or to extract out one specific material type. These segmentation operations can be based on
additional information such as location or a comparison to a reference volume. 

Two examples of segmenting CT data using only the transfer functions defined in the vtkVol-
umeProperty are shown here, one for a torso (Figure 7–2) and the other for a head study (Figure 7–
3). In both of these examples, the third transfer function maps the magnitude of the gradient of the

Figure 7–3  CT head data classified using
the ScalarOpacity, Color, and GradientOpac-
ity transfer functions.
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scalar value to an opacity multiplier, and is used to enhance the contribution of transition regions of
the volume. For example, a large gradient magnitude can be found where the scalar value transitions
from air to soft tissue, or soft tissue to bone, while within the soft tissue and bone regions the magni-
tude remains relatively small. Below is a code fragment that defines a typical gradient opacity transfer
function for 8-bit unsigned data.

vtkPiecewiseFunction gtfun 
gtfun AddPoint 0 0.0
gtfun AddPoint 3 0.0
gtfun AddPoint 6 1.0
gtfun AddPoint 255 1.0

This function eliminates nearly homogeneous regions by defining an opacity multiplier of 0.0 for any
gradient magnitude less than 3. This multiplier follows a linear ramp from 0.0 to 1.0 on gradient mag-
nitudes between 3 and 6, and no change in the opacity value is performed on samples with magni-
tudes above 6. Noisier data may require a more aggressive edge detection (so the 3 and the 6 would be
higher values). Note that the gradient magnitude transfer function is currently only supported in vol-
ume mappers that rendering vtkImageData. For volume mappers that render vtkUnstructuredGrid
datasets, gradients are not computed and therefore neither the gradient magnitude transfer function
nor shading are available in these mappers.

There are a few methods in vtkVolumeProperty that relate to the color and opacity transfer
functions. The SetColor() method accepts either a vtkPiecewiseFunction (if your color function
defines only grayscale values) or a vtkColorTransferFunction. You can query the number of color
channels with GetColorChannels() which will return 1 if a vtkPiecewiseFunction was set as the color,
or 3 if a vtkColorTransferFunction was used to specify color. Once you know how many color chan-
nels are in use, you can call either GetGrayTransferFunction() or GetRGBTransferFunction() to get
the appropriate function.

The SetScalarOpacity() method accepts a vtkPiecewiseFunction to define the scalar opacity
transfer function, and there is a corresponding GetScalarOpacity() method that returns this function.
Similarly, there are two methods for the gradient opacity transfer function: SetGradientOpacity() and
GetGradientOpacity().

Figure 7–2  CT torso data classi-
fied using the ScalarOpacity, Color,
and GradientOpacity transfer func-
tions.
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The discussion thus far has considered only single component scalar data where one set of
transfer functions define the appearance of the data. Alternatively, multi-component data may be ren-
dered in one of two ways. If the components are independent, then one set of transfer functions can be
defined per component. An example of independent data may be an unstructured grid produced
through a simulation process that produces both temperature and density values on the grid. Another
example of independent components is the data produced by confocal microscopy where the speci-
men is scanned multiple times with different fluorescent dyes used to highlight different structures
within the specimen. When rendering multi-component data where the components are independent,
you must define the appearance parameters per component. The SetColor(), SetScalarOpacity(), and
SetGradientOpacity() methods accept an optional index value as the first argument to set the transfer
function for a specific component. 

Multi-component data may also represent not independent properties, but instead a set of values
that define one property. For example, when utilizing a physical sectioning technique, you may have
three or four component data representing RGB or RGBA. Or perhaps you have two components rep-
resenting luminance and alpha. Volume mappers that support multiple components support two forms
of non-independent components. The first is two component data where the first component is passed
through the color transfer function in order to determine the sample color, and the second component
is passed through the scalar opacity function to define the sample alpha. The second type of non-inde-
pendent multi-component data is four component data where the first three components are taken
directly as RGB, and the fourth is passed through the scalar opacity transfer function in order to
define alpha. In both of these non-independent cases, the last component is used to compute gradi-
ents, and therefore controls the gradient magnitude opacity transfer function as well.

Note that not all mappers support multi-component data, please consult the mapper-specific
documentation provided in the remainder of this chapter for further information on supported func-
tionality. For mappers that do support multiple components, the limit is typically four components.

7.8 Controlling Shading with a vtkVolumeProperty

Controlling shading of a volume with a volume property is similar to controlling the shading of a geo-
metric actor with a property (see “Actor Properties” on page 53 and “Actor Color” on page 54). There
is a flag for shading, and four basic parameters: the ambient coefficient, the diffuse coefficient, the
specular coefficient and the specular power. Generally, the first three coefficients will sum to 1.0 but
exceeding this value is often desirable in volume rendering to increase the brightness of a rendered
volume. The exact interpretation of these parameters will depend on the illumination equation used
by the specific volume rendering technique that is being used. In general, if the ambient term domi-
nates then the volume will appear unshaded, if the diffuse term dominates then the volume will
appear rough (like concrete) and if the specular term dominates then the volume will appear smooth
(like glass). The specular power can be used to control how smooth the appearance is (such as
brushed metal versus polished metal). 

By default, shading is off. You must explicitly call ShadeOn() for the shading coefficients to
affect the scene. Setting the shading flag off is generally the same as setting the ambient coefficient to
1.0, the diffuse coefficient to 0.0 and the specular coefficient to 0.0. Note that currently volume map-
pers that render vtkUnstructuredGrid datasets do not support shading. In addition, some volume ren-
dering techniques for vtkImageData, such as volume ray casting with a maximum intensity ray
function, do not consider the shading coefficients regardless of the value of the shading flag.
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The shaded appearance of a volume (when the shading flag is on) depends not only on the val-
ues of the shading coefficients in the vtkVolumeProperty, but also on the collection of light sources
contained in the renderer, and their properties. The appearance of a rendered volume will depend on
the number, position, and color of the light sources in the scene.

If possible, the volume rendering technique attempts to reproduce the lighting equations
defined by OpenGL. Consider the following example.

#Create a geometric sphere
vtkSphereSource sphere

sphere SetRadius 20
sphere SetCenter 70 25 25
sphere SetThetaResolution 50
sphere SetPhiResolution 50

vtkPolyDataMapper mapper
mapper SetInput [sphere GetOutput]

vtkActor actor
actor SetMapper mapper
[actor GetProperty] SetColor 1 1 1
[actor GetProperty] SetAmbient 0.01
[actor GetProperty] SetDiffuse 0.7
[actor GetProperty] SetSpecular 0.5
[actor GetProperty] SetSpecularPower 70.0

#Read in a volumetric sphere
vtkSLCReader reader
  reader SetFileName "$VTK_DATA_ROOT/Data/sphere.slc"

# Use this tfun for both opacity and color
vtkPiecewiseFunction opacityTransferFunction
  opacityTransferFunction AddSegment 0 1.0 255 1.0

# Make the volume property match the geometric one
vtkVolumeProperty volumeProperty

volumeProperty SetColor opacityTransferFunction
volumeProperty SetScalarOpacity tfun 
volumeProperty ShadeOn
volumeProperty SetInterpolationTypeToLinear
volumeProperty SetDiffuse 0.7
volumeProperty SetAmbient 0.01
volumeProperty SetSpecular 0.5
volumeProperty SetSpecularPower 70.0

vtkVolumeRayCastCompositeFunction compositeFunction
vtkVolumeRayCastMapper volumeMapper

volumeMapper SetInput [reader GetOutput]
volumeMapper SetVolumeRayCastFunction compositeFunction

vtkVolume volume
volume SetMapper volumeMapper

Figure 7–4  A geometric sphere (right)
and a volumetric sphere (left) rendered
with the same lighting coefficients.
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volume SetProperty volumeProperty

# Add both the geometric and volumetric spheres to the renderer
ren1 AddProp volume
ren1 AddProp actor

# Create a red, green, and blue light
vtkLight redlight 

redlight SetColor 1 0 0
redlight SetPosition 1000 25 25
redlight SetFocalPoint 25 25 25
redlight SetIntensity 0.5

vtkLight greenlight 
greenlight SetColor 0 1 0
greenlight SetPosition 25 1000 25
greenlight SetFocalPoint 25 25 25
greenlight SetIntensity 0.5

vtkLight bluelight 
bluelight SetColor 0 0 1
bluelight SetPosition 25 25 1000
bluelight SetFocalPoint 25 25 25
bluelight SetIntensity 0.5

# Add the lights to the renderer
ren1 AddLight redlight
ren1 AddLight greenlight
ren1 AddLight bluelight

#Render it!
renWin Render

In the image shown for this example (Figure 7–4), the left sphere is rendered with volumetric ray
casting, and the right sphere is rendered with OpenGL using surface rendering. Since the vtkProperty
used for the vtkActor, and the vtkVolumeProperty used for the vtkVolume were set up with the same
ambient, diffuse, specular, and specular power values, and the color of both spheres is white, they
have similar appearances.

When rendering data with multiple independent components, you must set the shading parame-
ters per component. Each of the SetAmbient(), SetDiffuse(), SetSpecular(), and SetSpecularPower()
methods takes an optional first parameter indicating the component index. Although the vtkVol-
umeProperty API allows shading to be enable / disabled independently per component, currently no
volume mapper in VTK supports this. Therefore all Shade instance variables should be set On or Off.

7.9 Creating a Volume Mapper
vtkAbstractVolumeMapper is an abstract superclass and is never created directly. Instead, you would
create a mapper subclass of the specific type desired. In VTK 5.4, the choices for vtkImageData are
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vtkVolumeRayCastMapper, vtkVolumeTextureMapper2D, vtkFixedPointVolumeRayCastMapper,
vtkVolumeTextureMapper3D, or VTKVolumeProVP1000Mapper. For vtkUnstructuredGrid datasets,
the available mappers are vtkUnstructuredGridVolumeRayCastMapper, vtkUnstructuredGrid-
ZSweepMapper, vtkProjectedTetrahedraMapper, or VTKHAVSVolumeMapper.

All volume mappers support the SetInput() method with an argument of a pointer to a vtkIm-
ageData object or a vtkUnstructuredGrid object as appropriate. For vtkImageData volume mappers,
each of the rendering techniques support only certain types of vtkImageData. For example, the
vtkVolumeRayCastMapper and the vtkVolumeTextureMapper2D both support only
VTK_UNSIGNED_CHAR and VTK_UNSIGNED_SHORT data with a single component. The
vtkVolumeTextureMapper3D supports any scalar type, but only one component, or multiple non-
independent components. The vtkFixedPointVolumeRayCastMapper is the most flexible, supporting
all data types and up to four components.

7.10 Cropping a Volume
Since volume rendered images of large, complex volumes can produce images that are difficult to
interpret, it is often useful to view only a portion of the volume. The two techniques that can be used
to limit the amount of data rendered are known as cropping and clipping.

Cropping is a method of defining visible regions of the
structured volume using six planes—two along each of the
major axes. Cropping is applicable only to volume mappers that
operate on vtkImageData. Clipping is applicable to both vtkIm-
ageData and vtkUnstructuredGrid volume mappers. The six
axis-aligned cropping planes are defined in data coordinates and
are therefore dependent on the origin and spacing of the data,
but are independent of any transformation applied to the vol-
ume. The most common way to use these six planes is to define a subvolume of interest as shown in
the figure to the right.

To crop a subvolume, you must turn cropping on, set the cropping region flags, and set the crop-
ping region planes in the volume mapper as shown below.

set xmin 10.0
set xmax 50.0
set ymin 0.0
set ymax 33.0
set zmin 21.0
set zmax 47.0

vtkVolumeRayCastMapper mapper
mapper CroppingOn
mapper SetCroppingRegionPlanes $xmin $xmax $ymin $ymax $zmin $zmax
mapper SetCroppingRegionFlagsToSubVolume

Note that the above example is shown for a vtkVolumeRayCastMapper, but it could have instead used
any concrete subclass of vtkVolumeMapper since the cropping methods are all defined in the super-
class.

xmin xmax

ymin
ymaxzmin

zmax
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The six planes that are defined by the xmin,
xmax, ymin, ymax, zmin, and zmax values break the vol-
ume into 27 regions (a 3x3 grid). The
CroppingRegionFlags is a 27 bit number with one
bit representing each of these regions, where a value
of 1 indicates that data within that region is visible,
and a value of 0 indicating that data within that
region will be cropped. The region of the volume
that is less than xmin, ymin, and zmin is represented by
the first bit, with regions ordered along the x axis
first, then the y axis and finally the z axis. 

The SetCroppingRegionFlagsToSubVolume()
method is a convenience method that sets the flags
to 0x0002000—just the center region is visible.
Although any 27 bit number can be used to define
the cropping operation, in practice there are only a
few that are used. Four additional convenience
methods are provided for setting these flags:
SetCroppingRegionFlagsToFence(),
SetCroppingResgionFlagsToInvertedFence(), SetCroppingRegionFlagsToCross(), and
SetCroppingRegionFlagsToInvertedCross(), as depicted in Figure 7–5.

7.11 Clipping a Volume
In addition to the cropping functionality supplied by the
vtkVolumeMapper, arbitrary clipping planes are provided in
the vtkAbstractMapper3D. For subclasses of
vtkAbstractMapper3D that use OpenGL to perform the clip-
ping in hardware such as vtkPolyDataMapper,
vtkVolumeTextureMapper2D, and vtkProjectedTetrahedra-
Mapper, an error message may be displayed if you attempt to
use more than the maximum number of clipping planes sup-
ported by OpenGL, which is typically 6. Software rendering
techniques such as vtkVolumeRayCastMapper can support
an arbitrary number of clipping planes. The
vtkVolumeProMapper does not support these clipping planes
directly, although the class does contain methods for specify-
ing one clipping box using a plane and a thickness value. 

The clipping planes are specified by creating a vtk-
Plane, defining the plane parameters, then adding this plane to the mapper using the
AddClippingPlane() method. One common use of these arbitrary clipping planes in volume rendering
is to specify two planes parallel to each other in order to perform a thick reformatting operation. An
example of this applied to CT data is shown in Figure 7–6. For unstructured data, clipping planes can
be used essentially as cropping planes to view only a subregion of the data, which is often necessary
when trying to visualize internal details in a complex structure.

Fence Inverted Fence

Cross Inverted Cross

Figure 7–5  Cropping operations.

Figure 7–6  Clipping planes are
used to define a thick slab.
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7.12 Controlling the Normal Encoding
The standard illumination equation relies on a surface normal in order to calculate the diffuse and
specular components of shading. In volume rendering of vtkImageData, the gradient at a location in
the volumetric data is considered to point in the opposite direction of the “surface normal” at that
location. A finite differences technique is typically used to estimate the gradient, but this tends to be
an expensive calculation, and would make shaded volume rendering prohibitively slow if it had to be
performed at every sample along every ray.

One way to avoid these expensive computations is to precompute the normals at the grid loca-
tions, and to use some form of interpolation in between. If done naively, this would require three
floating point numbers per location, and we would still need to take a square root to determine the
magnitude. Alternatively, we could store the magnitude so that each normal would require four float-
ing point values. Since volumes tend to be quite large, this technique requires too much memory, so
we must somehow quantize the normals into a smaller number of bytes.

In some of the VTKImageData volume mappers we have chosen to quantize the normal direc-
tion into two byes, and the magnitude into one. The calculation of the normal is performed by a sub-
class of vtkEncodedGradientEstimator (currently only vtkFiniteDifferenceGradientEstimator) and the
encoding of the direction into two bytes is performed by a subclass of vtkDirectionEncoder (currently
vtkRecursiveSphere-DirectionEncoder and VTKSphericalDirectionEncoder). For mappers that use
normal encoding (vtkVolumeRayCastMapper and vtkVolumeTextureMapper2D), these objects are
created automatically so the typical user need not be concerned with these objects. In the case where
one volume dataset is to be rendered by multiple mappers into the same image, it is often useful to
create one gradient estimator for use by all the mappers. This will conserve space and computational
time since otherwise there would be one copy of the normal volume per mapper. An example frag-
ment of code is shown below:

# Create the gradient estimator
vtkFiniteDifferenceGradientEstimator gradientEstimator

# Create the first mapper
vtkVolumeRayCastMapper volumeMapper1

volumeMapper1 SetGradientEstimator gradientEstimator
volumeMapper1 SetInput [reader GetOutput]

# Create the second mapper
vtkVolumeRayCastMapper volumeMapper2

volumeMapper2 SetGradientEstimator gradientEstimator
volumeMapper2 SetInput [reader GetOutput]

If you set the gradient estimator to the same object in two different mappers, then it is important that
these mappers have the same input. Otherwise, the gradient estimator will be out-of-date each time
the mapper asks for the normals, and will regenerate them for each volume during every frame ren-
dered. In the above example, the direction encoding objects were not explicitly created, therefore
each gradient estimator created its own encoding object. Since this object does not have any signifi-
cant storage requirements, this is generally an acceptable situation. Alternatively, one
vtkRecursiveSphereDirectionEncoder could be created, and the SetDirectionEncoder() method would
be used on each estimator.
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The vtkFixedPointVolumeRayCastMapper class does support shading and does use these same
gradient estimators and normal encoders, but these classes are not exposed at the API level and there-
fore encoded normals cannot be shared between mappers. The vtkVolumeTextureMapper3D class
also supports shading, but does so by storing a 3 byte representation of the normal directly in texture
memory. 

7.13 Volumetric Ray Casting for vtkImageData
The vtkVolumeRayCastMapper is a volume mapper that employs a software ray casting technique to
perform volume rendering. It is generally the most accurate mapper, and also the slowest on most
platforms. The ray caster is threaded to make use of multiple processors when available.

There are a few parameters that are specific to volume ray casting that have not yet been dis-
cussed. First, there is the ray cast function that must be set in the mapper. This is the object that does
the actual work of considering the data values along the ray and determining a final RGBA value to
return. Currently, there are three supported subclasses of vtkVolumeRayCastFunction: the
vtkVolumeRayCastIsosurfaceFunction that can be used to render isosurfaces within the volumetric
data, the vtkVolumeRayCastMIPFunction that can be used to generate maximum intensity projections
of the volume, and vtkVolumeRayCastCompositeFunction that can be used to render the volume with
an alpha compositing technique. An example of the images that can be generated using these different
methods is Figure 7–7. The upper left image was generated using a maximum intensity projection.
The other two upper images were generated using compositing, while the lower two images were
generated using an isosurface function. Note that it is not always easy to distinguish an image gener-
ated using a compositing technique from one generated using an isosurface technique, especially
when a sharp opacity ramp is used.

There are some parameters that can be set in each of the ray cast functions that impact the ren-
dering process. In vtkVolumeRayCastIsosurfaceFunction, there is a SetIsoValue() method that can be
used to set the value of the rendered isosurface. In vtkVolumeRayCastMIPFunction, you can call

Figure 7–7  Volume rendering via ray casting.
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SetMaximizeMethodToScalarValue() (the default) or SetMaximizeMethodToOpacity() to change the
behavior of the maximize operation. In the first case, the scalar value is considered at each sample
point along the ray. The sample point with the largest scalar value is selected, then this scalar value is
passed through the color and opacity transfer functions to produce a final ray value. If the second
method is called, the opacity of the sample is computed at each step along the ray, and the sample
with the highest opacity value is selected. 

In vtkVolumeRayCastCompositeFunction, you can call
SetCompositeMethodToInterpolateFirst() (the default) or
SetCompositeMethodToClassifyFirst() to change the order of
interpolation and classification (Figure 7–8). This setting will
only have an impact when trilinear interpolation is being used.
In the first case, interpolation will be performed to determine
the scalar value at the sample point, then this value will be used
for classification (the application of the color and opacity trans-
fer functions). In the second case, classification is done at the
eight vertices of the cell containing the sample location, then
the final RGBA value is interpolated from the computed RGBA
values at the vertex locations. Interpolating first generally pro-
duces “prettier” images as can be seen on the left where a geo-
metric sphere is contained within a volumetric “distance to
point” field, with the transfer functions defined to highlight
three concentric spherical shells in the volume. The interpolate
first method makes the underlying assumption that if two neigh-
boring data points have values of 10 and 100, then a value of 50
exists somewhere between the two data points. In the case
where material is being classified by scalar value, this may not
be the case. For example, consider CT data where values below
20 are air (transparent), values from 20 to 80 are soft tissue, and
values above 80 are bone. If interpolation is performed first,
then bone can never be adjacent to air - there must always be
soft tissue between the bone and air. This is not true inside the
mouth where teeth meet air. If you render an image with interpolation performed first and a high
enough sample rate, it will look like the teeth have a layer of skin on top of them. 

The value of the interpolation type instance variable in the vtkVolumeProperty is important to
ray casting. There are two options: SetInterpolationTypeToNearest() (the default) which will use a
nearest neighbor approximation when sampling along the ray, and SetInterpolationTypeToLinear()
which will use trilinear interpolation during sampling. Using the trilinear interpolation produces
smoother images with less artifacts, but generally takes a bit longer. The difference in image quality
obtained with these two methods is shown in Figure 7–9. A sphere is voxelized into a 50x50x50
voxel volume, and rendered using alpha compositing with nearest neighbor interpolation on the left
and trilinear interpolation on the right. In the image of the full sphere it may be difficult to distinguish
between the two interpolation methods, but by zooming up on just a portion of the sphere it is easy to
see the individual voxels in the left image. 

Another parameter of vtkVolumeRayCastMapper that affects the image is the SampleDistance.
This is the distance in world coordinates between sample points for ray functions that take samples.
For example, the alpha compositing ray function performs a discrete approximation of the continuous
volume rendering integral by sampling along the ray. The accuracy of the approximation increases

Classify First

Interpolate First

Figure 7–8  The effect of interpo-
lation order in composite ray cast-
ing.
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with the number of samples taken, but unfortunately so does the rendering time. The maximum inten-
sity ray function also takes samples to locate the maximum value. The isosurface ray function does
not take samples but instead computes the exact location of the intersection according to the current
interpolation function.

By default samples are taken 1 unit apart in world coordinates. In practice you should adjust
this spacing based on the sample spacing of the 3D data being rendered, and the rate of change of not
only the scalar values but also the color and opacity assigned to the scalar values through the transfer
functions. An example is shown below of a voxelized vase with a 1x1x1 spacing between samples in
the dataset. The scalar values vary smoothly in the data, but a sharp change has been introduced in the
transfer functions by having the color change rapidly from black to white. You can clearly see arti-
facts of the “undersampling” of ray casting in the image created with a step size of 2.0. Even with a
step size of 1.0 there are some artifacts since the color of the vase changes significantly within a
world space distance of 1.0. If the sample distance is set to 0.1 the image appears smooth. Of course,
this smooth image on the left takes nearly 20 times as long to generate as the one on the right. 

Figure 7–9  Different methods for interpolation. On the left, nearest neighbor interpola-
tion. On the right, trilinear interpolation.

Step Size = 0.1 Step Size = 1.0 Step Size = 2.0

Figure 7–10  The effects or varying
sample distance along the ray. As the
sample distance increases, sampling arti-
facts create the dramatic black and white
banding. However, the cost of volume
rendering increases inversely propor-
tional to the sample size, i.e., the differ-
ence in rendering time for sample
distance 0.1 is 20x faster than for 2.0.
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7.14 Fixed Point Ray Casting
The vtkFixedPointVolumeRayCastMapper is a volume mapper for vtkImageData that employs fixed
point arithmetic in order to improve performance. The vtkFixedPointVolumeRayCastMapper sup-
ports all scalar types from unsigned char through double, and supports up to four independent compo-
nents, each with their own transfer functions and shading parameters. In addition, this mapper
supports two varieties of non-independent multi-component data. The first variety is two component
data where the first component is used to look up a color, while the second component is used to
derive a normal value and to look up opacity. This is useful when some property such as density is
stored in the second component, while the first is used as perhaps an index to indicate different mate-
rial types that can each have their own color, opacity, and shading style. The second variety is four
component unsigned char data where the first three components directly represent RGB, with the
fourth passed through the scalar opacity transfer function to obtain alpha.

The vtkFixedPointVolumeRayCastMapper employs a form of space leaping to avoid processing
in “empty” (entirely transparent) regions of the volume. Early ray termination is also employed to ter-
minate processing once full opacity is reached. Therefore, significant performance improvements can
be obtained when rendering data with a sharp “surface” appearance.

7.15 2D Texture Mapping
As an alternative to ray casting, volume rendering of vtkImageData can be performed by texture map-
ping the volume onto polygons, and projecting these with the graphics hardware. If your graphic
board provides reasonable texture mapping acceleration, this method will be significantly faster than
ray casting, but at the expense of accuracy since partial accumulation results are stored at the resolu-
tion of the framebuffer (usually 8 or less bits per component) rather than in floating point. To use 2D
texture mapping, quads are generated along the axis of the volume which is most closely aligned with
the viewing direction. As the viewing direction changes, the sample distance between quads will
change, and at some point the set of quads will jump to a new axis which may cause temporal arti-
facts. Generally these artifacts will be most noticeable on small volumes. 

The current implementation of vtkVolumeTextureMapper2D supports only alpha compositing.
Bilinear interpolation on the slice is used for texture mapping but since quads are only created on the
data planes, there is no notion of interpolation between slices. Therefore, the value of the
InterpolationType instance variable in the vtkVolumeProperty is ignored by this mapper.

Shading is supported in software for the texture mapping approach. If shading is turned off in
the vtkVolumeProperty, then software shading calculations do not need to be performed, and there-
fore the performance of this mapper will be better than if shading is turned on.

7.16 3D Texture Mapping
Most current graphics cards now support 3D texture mapping where a three-dimensional buffer is
stored on the graphics boards and accessed using 3D texture coordinates. A vtkImageData volume
may then be rendered by storing this volume as a texture and projecting a set of polygons parallel to
the view plane. This removes the “popping” artifacts inherent in the 2D texture mapping approach
since there is no longer a sudden change in underlying geometry based on major viewing direction.
However, the 3D texture mapping approach currently available in VTK uses the frame buffer for
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compositing, which is still generally limited to 8 bits. Therefore with large volumes that are fairly
translucent, banding artifacts will occur and small features may be lost in the image. 

The 3D texture mapper is a single-pass mapper that requires the entire volume to be in memory.
Therefore a limit is placed on the size of the data transferred to the texture memory. This limit is
based on the type of the data, the number of components, the texture memory available on the graph-
ics board, and some hard-coded limits used to avoid problems in buggy OpenGL drivers that report
the ability to utilize more texture memory than truly available. This is a silent limit - the input data set
will be downsampled to fit within the available texture memory with no warning or error messages
produced. This mapper supports single component data or any scalar type, and four component
dependent data (RGBA) that is unsigned char. For single component data, the hard-coded limit is
256x256x128 voxels, with any aspect ratio provided that each dimension is a power of two. With four
component data, the limit is 256x128x128 voxels.

The 3D volume texture mapper supports two main families of graphics hardware: nVidia and
ATI. There are two different implementations of 3D texture mapping used - one based on the
GL_NV_texture_shader2 and GL_NV_register_combiners2 extensions (supported on some older
nVidia cards), and one based on the GL_ARB_fragment_shader extension (supported by most current
nVidia and ATI boards). To use this class in an application that will run on various hardware configu-
rations, you should have a back-up volume rendering method. You should create a
vtkVolumeTextureMapper3D, assign its input, make sure you have a current OpenGL context (you've
rendered at least once), then call IsRenderSupported() with a vtkVolumeProperty as an argument.
This method will return 0 if the input has more than one independent component, or if the graphics
hardware does not support the set of required extensions for using at least one of the two implemented
methods.

7.17 Volumetric Ray Casting for vtkUnstructuredGrid
The vtkUnstructuredGridVolumeRayCastMapper is a volume mapper that employs a software ray
casting technique to perform volume rendering on unstructured grids. Using the default ray cast func-
tion and integration methods, this mapper is more accurate than the vtkProjectedTetrahedra method,
but is also significantly slower. This mapper is generally faster than the vtkUnstructuredGridZSweep-
Mapper, but obtains this speed at the cost of memory consumption and is therefore best used with
small unstructured grids. The ray caster is threaded to make use of multiple processors when avail-
able. As with all mappers that render vtkUnstructuredGrid data, this mapper requires that the input
dataset is composed entirely of tetrahedral elements, and may employ a filter to tetrahedralize the
input data if necessary.

This ray cast mapper is customizable in two ways. First, you may specify the method used to
traverse the ray through the unstructured grid using the SetRayCastFunction() method. The specified
function must be a subclass of vtkUnstructuredGridVolumeRayCastFunction. Currently one such
subclass exists within VTK: vtkUnstructuredGridBunykRayCastFunction. This class is based on the
method described in "Simple, Fast, Robust Ray Casting of Irregular Grids" by Paul Bunyk, Arie
Kaufman, and Claudio Silva. This method is quite memory intensive (with extra explicit copies of the
data) and therefore should not be used for very large data.

You may also specify a method for integrating along the ray between the front entry point and
back exit point for the length of ray intersecting a tetrahedra using the SetRayIntegrator() method.
The specified method must be a subclass of vtkUnstructuredGridVolumeRayIntegrator. Several avail-
able subclasses exist in VTK, and when left unspecified the mapper will select an appropriate sub-
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class for you. The vtkUnstructuredGridHomogeneousRayIntegrator class is applicable when
rendering cell scalars. The vtkUnstructuredGridLinearRayIntegrator performs piecewise linear ray
integration. Considering that transfer functions in VTK 5.4 are piecewise linear, this class should give
the "correct" integration under most circumstances. However, the computations performed are fairly
hefty and should, for the most part, only be used as a benchmark for other, faster methods. The
vtkUnstructuredGridPartialPreIntegration also performs piecewise linear ray integration, and will
give the same results as vtkUnstructuredGridLinearRayIntegration (with potentially an error due to
table lookup quantization), but should be notably faster. The algorithm used is given by Moreland and
Angel, "A Fast High Accuracy Volume Renderer for Unstructured Data." The vtkUnstructuredGrid-
PreIntegration performs ray integration by looking into a precomputed table. The result should be
equivalent to that computed by vtkUnstructuredGridLinearRayIntegrator and vtkUnstructuredGrid-
PartialPreIntegration, but faster than either one. The pre-integration algorithm was first introduced by
Roettger, Kraus, and Ertl in "Hardware-Accelerated Volume And Isosurface Rendering Based On
Cell-Projection."

Similar to the structured ray cast mapper, the unstructured grid ray cast mapper will automati-
cally adjust the number of rays cast in order to achieve a desired update rate. Since this is a software-
only technique, this method utilizes multiple processors when available to improve performance.

7.18 ZSweep
The vtkUnstructuredGridVolumeZSweepMapper rendering method is based on an algorithm
described in “ZSWEEP: An Efficient and Exact Projection Algorithm for Unstructured Volume Ren-
dering” by Ricardo Farias, Joseph S. B. Mitchell and Claudio T. Silva. This is a software projection
technique that will work on any platform, but is generally the slowest of the unstructured grid volume
rendering methods available in VTK. It is less memory intensive than the ray cast mapper (using the
Bunyk function) and is therefore able to render larger volumes. Similar to the ray cast mapper, the
specific ray integrator may be specified using the SetRayIntegrator() method. Again, leaving this as
NULL will allow the mapper to select an appropriate integrator for you.

Figure 7–11  Comparison of three volume rendering techniques for vtkUnstructuredGrid datasets

Projected Tetrahedra ZSweep Ray Cast
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7.19 Projected Tetrahedra
The vtkProjectedTetrahedraMapper rendering method is an implementation of the classic Projected
Tetrahedra algorithm presented by Shirley and Tuchman in "A Polygonal Approximation to Direct
Scalar Volume Rendering". This method utilizes OpenGL to improve rendering performance by con-
verting tetrahedra into triangles for a given view point, then rendering these triangles with hardware
acceleration. However, the OpenGL methods utilized in this class are not necessarily supported by all
driver implementations, and may produce artifacts. Typically this mapper will be used in conjunction
with either the ray caster or the ZSweep mapper to form a level-of-detail approach that provides fast
rendering during interactivity followed by a more accurate technique to produce the final image. 

In Figure 7–11 you can see a comparison of images generated with the three techniques for vol-
ume rendering unstructured grids. The projected tetrahedra technique is interactive, while the other
two technique require a few seconds per image on a standard desktop system.

The vtkHAVSVolumeMapper is an implementation of the algorithm presented in "Hardware-
Assisted Visibility Sorting for Unstructured Volume Rendering" by S. P. Callahan, M. Ikits, J. L. D.
Comba, and C. T. Silva. 

The code was written and contributed by Steven P. Callahan. The Hardware-Assisted Visibility
Sorting (HAVS) algorithm works by first sorting the triangles of the tetrahedral mesh in object space,
then they are sorted in image space using a fixed size A-buffer implemented on the GPU called the k-
buffer. The HAVS algorithm excels at rendering large datasets quickly. The trade-off is that the algo-
rithm may produce some rendering artifacts due to an insufficient k size (currently 2 or 6 is sup-
ported) or read/write race conditions.

A built in level-of-detail (LOD) approach samples the geometry using one of two heuristics
(field or area). If LOD is enabled, the amount of geometry that is sampled and rendered changes
dynamically to stay within the target frame rate. The field sampling method generally works best for
datasets with cell sizes that don't vary much in size. On the contrary, the area sampling approach gives
better approximations when the volume has a lot of variation in cell size. For more information on the
level-of-detail method, please see "Interactive Rendering of Large Unstructured Grids Using
Dynamic Level-of-Detail" by S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva.

The HAVS algorithm uses several advanced features on graphics hardware. The k-buffer sort-
ing network is implemented using framebuffer objects (FBOs) with multiple render targets (MRTs).
Therefore, only cards that support these features can run the algorithm (at least an ATI 9500 or an
NVidia NV40 (6600)).

7.20 Speed vs. Accuracy Trade-offs
If you do not have a VolumePro volume rendering board, many fast CPUs, or high-end graphics hard-
ware, you will probably not be satisfied with the rendering rates achieved when one or more volumes
are rendered in a scene. It is often necessary to achieve a certain frame rate in order to effectively
interact with the data, and it may be necessary to trade off accuracy in order to achieve speed. Fortu-
nately, there are ways to do this for many of the volume rendering approach. In fact, several of them
will provide this functionality for you automatically by determining an appropriate accuracy level in
order to obtain the desired update rate specified in the vtkRenderWindow.

The support for achieving a desired frame rate for vtkVolumeRayCastMapper, vtkFixedPoint-
VolumeRayCastMapper, vtkUnstructuredGridVolumeRayCastMapper, and vtkUnstructuredGridVol-
umeZSweepMapper is available by default in VTK. You can set the desired update rate in the
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vtkRenderWindow, or the StillUpdateRate and the DesiredUpdateRate in the interactor if you are
using one. Due to the fact that the time required for these rendering techniques is mostly dependent on
the size of the image, the mapper will automatically attempt to achieve the desired rendering rate by
reducing the number of rays that arecast, or the size of the image is generated. By default, the auto-
matic adjustment is on. In order to maintain interactivity, an abort check procedure should be speci-
fied in the render window so that the user will be able to interrupt the higher resolution image in order
to interact with the data again.

There are limits on how blocky the image will become in order to achieve the desired update
rate. By default, the adjustment will allow the image to become quite blocky - for example, casting
only 1 ray for every 10x10 neighborhood of pixels if necessary to achieve the desired update rate.
Also by default these mappers will not generate an image larger than necessary to fill the window on
the screen. These limits can be adjusted in the mapper by setting the MinimumImageSampleDistance
and MaximumImageSampleDistance. In addition AutoAdjustSampleDistances can be turned off, and
the specified ImageSampleDistance will be used to represent the spacing between adjacent pixels on
the image plane. Results for one example are shown in Figure 7–12.

This technique of reducing the number of rays in order to achieve interactive frame rates can be
quite effective. For example, consider the full resolution image shown on the left in Figure 7–12. This
image may require 4 seconds to compute, which is much too slow for data interaction such as rotating
or translating the data, or interactively adjusting the transfer function. If we instead subsample every
other ray along each axis by setting the ImageSampleDistance to 2.0, we will get an image like the
one shown in the middle in only about 1 second. Since this still may be too slow for effective interac-
tion, we could subsample every fourth ray, and achieve rendering rates of nearly 4 frames per second
with the image shown on the right. It may be blocky, but it is far easier to rotate a blocky volume at 4
frames per second than a full resolution volume at one frame every four seconds.

There are no built-in automatic techniques for trading off accuracy for speed in a texture map-
ping approach. This can be done by the user fairly easily by creating a lower resolution volume using
vtkImageResample, and rendering this new volume instead. Since the speed of the texture mapping
approach is highly dependent on the size of the volume, this will achieve similar results to reducing
the number of rays in a ray casting approach. Another option is to reduce the number of planes sam-
pled through the volume. By default, the number of textured quads rendered will be equal to the num-
ber of samples along the major axis of the volume (as determined by the viewing direction). You may
set the MaximumNumberOfPlanes instance variable to decrease the number of textured quads and

ImageSampleDistance = 1.0 ImageSampleDistance = 2.0 ImageSampleDistance = 4.0

Figure 7–12  The effect of changing image sample distance on image quality.
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therefore increase performance. The default value is 0 which implies no limit on the number of
planes.

7.21 Using a vtkLODProp3D to Improve Performance
The vtkLODProp3D is a 3D prop that allows for the collection of multiple levels-of-detail and
decides which to render for each frame based on the allocated rendering time of the prop (see
“vtkLODProp3D” on page 57). The allocated rendering time of a prop is dependent on the desired
update rate for the rendering window, the number of renderers in the render window, the number of
props in the renderer, and any possible adjustment that a culler may have made based on screen cov-
erage or other importance factors.

Using a vtkLODProp3D, it is possible to collect several rendering techniques into one prop, and
allow the prop to decide which technique to use. These techniques may span several different classes
of rendering including geometric approaches that utilize a vtkPolyDataMapper, and volumetric meth-
ods for both structured and unstructured data. 

Consider the following simple example of creating a vtkLODProp3D with three different forms
of volume rendering for vtkImageData:

vtkImageResample resampler
resampler SetAxisMagnificationFactor 0 0.5
resampler SetAxisMagnificationFactor 1 0.5
resampler SetAxisMagnificationFactor 2 0.5

vtkVolumeTextureMapper2D lowresMapper
lowresMapper SetInput [resampler GetOutput]

vtkVolumeTextureMapper2D medresMapper
medresMapper SetInput [reader GetOutput]

vtkVolumeRayCastMapper hiresMapper
hiresMapper SetInput [reader GetOutput]

vtkLODProp3D volumeLOD
volumeLOD AddLOD lowresMapper volumeProperty 0.0
volumeLOD AddLOD medresMapper volumeProperty 0.0
volumeLOD AddLOD hiresMapper volumeProperty 0.0

For clarity, many steps of reading the data and setting up visualization parameters have been left out
of this example. At render time, one of the three levels-of-detail (LOD) for this prop will be selected
based on the estimated time that it will take to render the LODs and the allocated time for this prop. In
this case, all three LODs use the same property, but they could have used different properties if
desired. Also, in this case all three mappers are subclasses of vtkVolumeMapper, but we could add a
bounding box representation as another LOD. If we are rendering a large vtkUnstructuredGrid data-
set, we could form an LOD by adding an outline representation using a vtkPolyDataMapper for the
lowest resolution, we could resample the data into a vtkImageData and add a level-of-detail that ren-
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ders this with 3D texture mapping, and we could add the full resolution unstructured data rendered
with the ZSweep mapper as the best level-of-detail. 

The last parameter of the AddLOD() method is an initial time to use for the estimated time
required to render this level-of-detail. Setting this value to 0.0 requires that the LOD be rendered once
before an estimated render time can be determined. When a vtkLODProp3D has to decide which
LOD to render, it will choose one with 0.0 estimated render time if there are any. Otherwise, it will
choose the LOD with the greatest time that does not exceed the allocated render time of the prop, if it
can find such an LOD. Otherwise, it will choose the LOD with the lowest estimated render time. The
time required to draw an LOD for the current frame replaces the estimated render time of that LOD
for future frames. 



Chapter 8

Information Visualization 8

Visualization techniques may be classified into two
broad categories: scientific visualization and information visualization. The two are mainly distin-
guished by the types of data they represent. Scientific visualization refers to the display of data hav-
ing inherent spatiotemporal attributes, such as simulations, models, or images. With these types of
data, the relative position of elements is known because each element has an inherent structure and
placement in a three dimensional space.

Information visualization, on the other hand, is the visualization of all other forms of data.
Metadata, relational databases, and general tabular data fall into this category. In these cases, the
placement of individual elements is not fixed and an embedding must be performed to place similar
or related elements closer together. Consider visualizing a group of people. One simple way to orga-
nize the people is to place them in a list or table. If accompanying information is also available, alter-
native formats may be helpful to the viewer. People could be presented in a 2D view, grouped by
similarity in age, gender, occupation, etc. If “friendship” links are known (e.g. from a social network-
ing website), they could be grouped into natural friendship groups formed by these links. If each per-
son's current location is known, they could be arranged on a map (“Geospatial Visualization” on
page 207 for VTK's capabilities in that regard).

Other examples of data suitable for information visualization are databases, spreadsheets,
XML, and any type of metadata such as demographic information of patients or parameters of simu-
lation runs. For this type of visualization, algorithms such as clustering and graph layout are used to
uncover salient relationships or determine a high-level picture of complex, heterogeneous data.

The essential data structures for information visualization are tables, graphs, and trees. A table
is simply a two-dimensional array of data, much like a spreadsheet. In VTK, a table consists of a vec-
tor of named arrays which serve as the columns of the table. Each column acts much like an attribute
in other data objects like vtkImageData. Tables are used to store the results of database queries and
contents of delimited text files.

The graph data structure consists of a collection of entities called vertices, along with links
between pairs of vertices called edges. Graphs can be used to store many kinds of data. For example,



164 Information Visualization

in a social network, each vertex may represent a person while each edge may signify a friendship
between two people. Another example is a biological pathway network where vertices may represent
compounds and edges may indicate that chemical reactions can produce one compound from another.

A tree is a type of graph that does not contain any cycles (sequences of connected edges that
form a full loop). VTK's tree data structure is a rooted tree, which can be thought of as a hierarchy,
with the root vertex on top. Trees can organize large amounts of data by grouping entities into multi-
ple levels.

Tables, graphs, and trees can represent complex data in several ways. The following sections
provide some details about how to perform some basic operations and visualizations with these data
structures.

8.1 Exploring Relationships in Tabular Data
Tables are a very common form of data. Plain text delimited files, spreadsheets, and relational data-
bases all use tables as the basic data structure. A row in the table normally represents a single entity (a
person, an event, a sample, etc.) and columns represent attributes present on those entities. Let's take
for example a table of medals from the Summer 2008 Olympics. This table will have the medal win-
ner's name and country, along with the event information. In tabular format, it is not easy to answer
questions such as: Who won the most medals? What country excelled in a certain discipline? In order
to do this, we want to extract relational information from the table in the form of a graph or tree.

Converting a Table to a Graph
The following python example demonstrates how to take this information, and with vtkTableTo-
Graph, convert it into a vtkGraph data structure and display it in a graph view. Note that the script
attempts to find the VTK data path, which may be explicitly defined in this and other examples by
adding the parameters “-D <path>” to the command line when running the script. The following
example is Python code for converting a simple table into a graph.

from vtk import *
import vtk.util.misc
import versionUtil

datapath = vtk.util.misc.vtkGetDataRoot()

reader = vtkDelimitedTextReader()
reader.SetFileName(datapath + '/Data/Infovis/medals.txt')
reader.SetFieldDelimiterCharacters('\t')
reader.SetHaveHeaders(True)

ttg = vtkTableToGraph()
ttg.SetInputConnection(reader.GetOutputPort())
ttg.AddLinkVertex('Name', 'Name', False)
ttg.AddLinkVertex('Country', 'Country', False)
ttg.AddLinkVertex('Discipline', 'Discipline', False)
ttg.AddLinkEdge('Name', 'Country')
ttg.AddLinkEdge('Name', 'Discipline')
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category = vtkStringToCategory()
category.SetInputConnection(ttg.GetOutputPort())
category.SetInputArrayToProcess(0, 0, 0, 4, 'domain')

view = vtkGraphLayoutView()
view.AddRepresentationFromInputConnection(
  category.GetOutputPort())
view.SetLayoutStrategyToSimple2D()
view.SetVertexLabelArrayName('label')
view.VertexLabelVisibilityOn()
view.SetVertexColorArrayName('category')
view.ColorVerticesOn()
view.SetVertexLabelFontSize(18)

theme = vtkViewTheme.CreateMellowTheme()
view.ApplyViewTheme(theme)

rw = versionUtil.SetupView(view)
versionUtil.ShowView(view)]

First we create a vtkDelimitedTextReader to read in the medals text file. This reader produces a vtk-
Table as its output, which is simply a list of named data arrays. The fields in this file are separated by
tabs, so we set the field delimiter characters appropriately. We specify SetHaveHeaders(True) in order
to assign column names from the first line in the file. Otherwise the columns would have generic
names “Field 0”, “Field 1”, and so on, and data in the table would be assumed to start on the first line.

You will notice the calls to versionUtil.SetupView and versionUtil.ShowView that are used to
handle code near the end of this and other examples. This reflects a code change after VTK 5.4 which
makes vtkRenderView contain a vtkRenderWindow. This eliminates the need for creating a render
window manually and calling SetupRenderWindow(). Also, instead of calling methods such as Reset-
Camera() and Render() on the render window, these methods have been added to vtkRenderView, and
should be called on the view instead. The following listing shows the contents of versionUtil.py. from
vtk import * The following code example demonstrates setting up and displaying a VTK view in ver-
sion 5.4 and later.

from vtk import *
def VersionGreaterThan(major, minor):
  v = vtkVersion()
  if v.GetVTKMajorVersion() > major:
    return True
  if v.GetVTKMajorVersion() == major and v.GetVTKMinorVersion() > minor:
    return True
  return False

def SetupView(view):
  if not VersionGreaterThan(5, 4):
    win = vtkRenderWindow()
    view.SetupRenderWindow(win)
    return win
  else:
    return view.GetRenderWindow()
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def ShowView(view):
  if VersionGreaterThan(5, 4):
    view.ResetCamera()
    view.Render()
    view.GetInteractor().Start()
  else:
    view.GetRenderer().ResetCamera()
    view.GetRenderWindow().Render()
    view.GetRenderWindow().GetInteractor().Start()

Now we wish to visualize some of the relationships in this table. The table has the following columns:
“Name” contains the name of the athlete, “Country” has the athlete’s country, and “Discipline” con-
tains the discipline. The table has the following columns: “Name” contains the name of the athlete,
“Country” has the athlete’s country, and “Discipline” contains the disciplineof the event the athlete
participated in (such as swimming, archery, etc.). One method for viewing the relationships in the
graph is to use vtkTableToGraph to produce a vtkGraph from the table. vtkTableToGraph takes a vtk-
Table as input (and optionally a second “vertex table” input described later) and produces a vtkGraph
whose structure, vertex attributes, and edge attributes are taken from the table.

The vtkTableToGraph algorithm needs to know what columns should be used to generate verti-
ces, and what pairs of columns should become edges, linking vertices together. So, in our example,
we may wish to make a graph whose vertices represent names, countries, and disciplines. To do this
we call AddLinkVertex() with the name of a column to make vertices from. All distinct values in that
column will become vertices in the graph. So, AddLinkVertex('Country', ...) will make a vertex in the
output graph for each distinct country name in the “Country” column of the table. The second argu-
ment to AddLinkVertex() provides the domain to be associated with those vertices. Domains are
important for entity resolution. If, for example, “Country” and “Name” were given the same domain
name, a country named “Chad” would be merged with a person with the name “Chad”. Giving each
column a different domain will avoid these conflicts. There are situations, however, where two col-
umns of the table should be given the same domain. For example, in a table of communications, there
may columns named “From” and “To”. These should be assigned the same domain (perhaps named
“Person”), so that a person's vertex would be merged into the same vertex regardless of whether that
person was a sender or a recipient. The third parameter of AddLinkVertex() is described in “Hidden
Vertices” on page 168.

Now that the vertices are defined, we can define the set of edges in the graph with
AddLinkEdge(). AddLinkEdge() takes two table column names, and produces an edge between two
vertices A and B every time A and B appear together in the same row in those two columns. So the
call AddLinkEdge('Name', 'Country') will add an edge in the graph between each athlete and his or
her country. Similarly, AddLinkEdge('Name', 'Discipline') will add an edge between an athlete and
each discipline he or she participates in. Figure 8–1 shows the result of converting the table of medals
into a graph. The colors of the vertices in the graph indicate the domain to which they belong.Since
you may only assign colors with a numeric array, the program uses vtkStringToCategory to convert
the domain array (which contains strings), into numeric identifiers for each distinct vertex.

Attributes. The edges in vtkTableToGraph's output have the full set of attributes defined in the table.
Namely each edge has associated with it all of the entries in the row of the table that produced the
edge.
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The vertices, however, have only three attributes associated with them by default. An attribute
named “domain” will be a string array containing the domain name of each vertex. The “ids” and
“label” attributes both contain the same quantity, but present it in different formats. The quantity that
both contain is the content of the particular cell that defines the vertex. The “ids” attribute stores it in
the original type, which may vary for vertices that belong to different domains. Hence the “ids” array
is stored in a vtkVariantArray in which the data type of each entry is variable. The “label” attribute is
a vtkStringArray containing the string equivalents of those values.

vtkTableToGraph accepts an optional second vtkTable input so that the vertices can have addi-
tional attributes assigned to them. While the first input to the filter defines connectivity of edges (and
hence is called the “edge table”), the second input defines the additional properties for the graph ver-
tices (so is called the “vertex table”). 

Therefore, to add vertex attributes, you must create a vertex table that contains columns with
identifiers matching those of the edge table's columns. The vertex table may have any number of
additional columns containing other vertex attributes. In our example, there may be other tables that
reside in separate files or in a relational database that define athlete properties (e.g. age, gender),
country properties (e.g. population, land area), and discipline properties (e.g. number of events). To
add these as vertex properties in the graph, you need to construct a single table containing all these
columns. For example, this can be done with a properly formed SQL query or by applying the vtk-
MergeTables algorithm. When this expanded table is set as the second input to vtkTableToGraph, the
domains defined in the second argument of AddLinkVertex() take on a special meaning. The domain
name must match the vertex table column name that contains the matching identifiers. So in our
example code, the vertex table would need to have arrays named “Name”, “Country”, and “Disci-
pline” containing values matching those in the edge table.

Figure 8–1  The result of performing
vtkTableToGraph to visualize a table of
2008 Olympic medals. Medal-winning
athletes (blue) are linked to their coun-
try (green) and discipline (red).
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Hidden Vertices. The third parameter of AddLinkVertex() indicates whether the vertices should be
hidden. Most frequently, it is worthwhile to show the vertices, so the default is False. However, set-
ting it to True allows the creation of advanced link effects, for example connecting athletes to other
athletes who represent the same country, but without displaying countries explicitly. To do this, you
would add “Name” as a non-hidden vertex type, and “Country” as a hidden vertex type. Then you add
the pairs (“Name”, “Country”) and (“Country”, “Name”) with AddLinkEdge(). Internally vtkTable-
ToGraph creates the graph with name and country vertices, then deletes the country vertices, creating
a new edge for each two-edge path that passes through a country vertex. Note that hiding vertices can
be prohibitively expensive since the number of edges produced can grow quickly, and can produce
large cliques (i.e. collections of vertices where every pair of vertices is connected by an edge). For
this reason, this option may be deprecated in the future.

Converting a Table to a Tree
While a graph represents an arbitrarily complex structure, a tree has a much more restricted, and
hence simpler, structure. In VTK, a vtkTree contains a rooted tree in which there is a hierarchy of ver-
tices with a single root vertex on top. Outgoing edges flow down the tree, connecting “parent” verti-
ces to “child” vertices. One example use for vtkTrees is to examine the structure of arbitrary XML
files. A tree can be generated directly from any XML file simply by using the vtkXMLTreeReader.
That reader parses the nested XML elements and creates a vtkTree. You may also create a categorical
tree from tabular data. The following python code demonstrates how to use the vtkTableToTreeFilter
and vtkGroupLeafVertices algorithms to do this.

VERTICES = 4 # Constant for SetInputArrayToProcess
datapath = vtk.util.misc.vtkGetDataRoot()

reader = vtkDelimitedTextReader()
reader.SetFileName(datapath + '/Data/Infovis/medals.txt')
reader.SetFieldDelimiterCharacters('\t')
reader.SetHaveHeaders(True)
if versionUtil.VersionGreaterThan(5,4):
  reader.OutputPedigreeIdsOn()

ttt = vtkTableToTreeFilter()
ttt.SetInputConnection(reader.GetOutputPort())

group_disc = vtkGroupLeafVertices()
group_disc.SetInputConnection(ttt.GetOutputPort())
group_disc.SetInputArrayToProcess(0, 0, 0, VERTICES, 'Discipline')
group_disc.SetInputArrayToProcess(1, 0, 0, VERTICES, 'Name')

group_country = vtkGroupLeafVertices()
group_country.SetInputConnection(group_disc.GetOutputPort())
group_country.SetInputArrayToProcess(0, 0, 0, VERTICES, 'Country')
group_country.SetInputArrayToProcess(1, 0, 0, VERTICES, 'Name')

category = vtkStringToCategory()
category.SetInputArrayToProcess(0, 0, 0, VERTICES, 'Name')
category.SetInputConnection(group_country.GetOutputPort())
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view = vtkTreeRingView()
view.AddRepresentationFromInputConnection(
  category.GetOutputPort())
view.RootAtCenterOn()
view.SetInteriorRadius(1)
view.SetAreaHoverArrayName('Name')
view.SetAreaLabelArrayName('Name')
view.AreaLabelVisibilityOn()
view.SetAreaColorArrayName('category')
if versionUtil.VersionGreaterThan(5,4):
  view.ColorAreasOn()
else:
  view.ColorVerticesOn()
view.SetAreaLabelFontSize(18)

The code begins with reading the same tab-delimited file with Olympic medal data described in the
previous sections. vtkTableToTreeFilter then performs the first basic step in converting our table into
a tree. It produces a new vertex to serve as the root of the tree, then creates a child vertex for every
row in the input table, associating the attributes in the table with the child vertices in the tree. This
tree is not yet interesting since it only contains a single level with no meaningful structure. In our
example, vtkTableToTreeFilter is followed by two instances of vtkGroupLeafVertices. Each of these
filters adds a new level to the tree, grouping existing leaf vertices (i.e. vertices with no children)
according to matching values in a particular array. The first instance of vtkGroupLeafVertices sets the
main input array to be the “Discipline” attribute. This adds a new level below the root that contains
one vertex for each unique value in the discipline array. The original leaf vertices are collected under
each discipline vertex based on their value for that attribute.

Similarly, the second vtkGroupLeafVertices adds
a level representing countries below the disciplines.
The data is already split by discipline, so each country
may appear several times, once under each discipline
where that country won a medal. This is one main dif-
ference between converting a table to a graph or a tree.
Graphs are a more complex structure, which allows
vertices representing the same entity to appear only
once. Trees, on the other hand, are simpler structures
that are often simpler to comprehend, but often require
duplication of data because of their connectivity con-
straints. The result of converting the table into a tree
and visualizing it with a vtkTreeRingView is shown in
Figure 8–2. The tree ring view and graph layout view
are described further in the “Graph Visualization Tech-
niques” on page 170. Simply reversing the two vtk-
GroupLeafVertices algorithms would produce a tree
that was organized first by country, then by discipline.

These filters are available for processing vtkTables or attribute data in other data objects:

• vtkBoostSplitTableField.cxx - Splits a string attribute into parts by a delimiter and makes dupli-
cate rows for each part, differing only by the split attribute.

Figure 8–2  A table of Olympic medals
visualized in a tree ring view.



170 Information Visualization

• vtkDataObjectToTable.cxx - Converts the point or cell attribute of a vtkDataSet subclass, or
vertex or edge data of a vtkGraph subclass into a vtkTable.

• vtkGenerateIndexArray.cxx - Generate a simple zero-based index array and append it to a data
object.

• vtkMergeColumns.cxx - Merge multiple columns into a single column.
• vtkMergeTables.cxx - Merge multiple tables into a single table containing the union of all col-

umns.
• vtkStringToCategory.cxx - Convert a string array to an integer array by assigning an integer to

each unique string in the array.
• vtkStringToNumeric.cxx - Automatically detects and converts string arrays containing values

that may be converted to integer or floating-point values.
• vtkThresholdTable.cxx - Filter out rows from a vtkTable that have attribute values outside a

given range.

Other graph transformation algorithms include:

• vtkCollapseGraph.cxx - Combine vertices with matching attribute values into a single vertex.
• vtkPruneTreeFilter.cxx - Remove a sub-tree from a vtkTree.
• vtkRemoveIsolatedVertices.cxx - Delete vertices with no edge connections from a graph.

8.2 Graph Visualization Techniques
Graph visualization is becoming increasingly important as a method for divining relationships
between entities, entity clustering, and higher level abstractions. Graphs are typically visualized in
two- or three-dimensions, with attempts to inject additional dimensional information through vertex
and edge coloring, labeling, annotations, clustering, and icons. Because of the diversity available for
displaying graphs including theoretical, heuristic, empirical and manual layout methods, graph visu-
alization has become a mixture of both art and science requiring methods that can handle both flexi-
bility and complexity while maintaining a fair amount of generality. These methods are typically
broken down into methods for vertex layout, methods for edge layout and methods which display ver-
tices and relationships with polygonal data structures (e.g., circles, rings, blocks, etc.). In addition to
the layout methods, helper functionality for displaying graph attributes is also desirable (e.g., com-
mon coloring themes, labeling mechanisms, annotations and selections, etc.). To accommodate this
flexibility while maintaining a high level of functionality, the graph visualization tools in VTK utilize
`strategy' methods for layout of vertices and edges, and 'view' objects for centralizing common helper
functionality associated with the visualization of graphs.

To demonstrate basic capability, we present a simple example uses layouts and views to create
graph displays in VTK see Figure 8–3. The remainder of this section will discuss additional flexibil-
ity available in performing graph visualization. The following code snippet creates a simple graph
view of a random graph.

from vtk import *

# create a random graph
source = vtkRandomGraphSource()
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source.SetNumberOfVertices(100)
source.SetNumberOfEdges(110)
source.StartWithTreeOn()

#create a view to display the graph
view = vtkGraphLayoutView()
view.SetLayoutStrategyToSimple2D()
view.ColorVerticesOn()
view.SetVertexColorArrayName("vertex id")
view.SetRepresentationFromInputConnection(source.GetOutputPort())
 
# Apply a theme to the views
theme = vtkViewTheme.CreateMellowTheme()
view.ApplyViewTheme(theme)
theme.FastDelete()

#view.GetRenderWindow().SetSize(500,500)
view.ResetCamera()
view.Render()

view.GetInteractor().Start()

A primary step that must take place in information visu-
alization is to embed the data into some drawable space.
Recall that vertices in a vtkGraph have no relation to
vtkPoints in the more traditional vtkDataSet classes.
Points have X, Y and Z coordinates, but vertices to not.
Depending on how these assignments are made, the
resulting picture will vary greatly, and different charac-
teristics of the underlying data will be easier to discern.
A second degree of freedom in information visualization
is the exact routing of the edges that connect the vertices.

Vertex Layout
To determine where vertices are positioned, one places a vtkGraphLayout class into the pipeline. This
class is responsible for the overall task of assigning coordinates to vertices, but it leaves the details of
coordinate assignment to a swappable helper class. The helper class is an example of a strategy. This
two part structure maximizes flexibility and minimizes complexity. Thus, in a typical graph visualiza-
tion, a graph is piped into the vtkGraphLayout class after which each vertex has a vtkPoint assigned.
The pipeline author can choose amongst a number of strategies. Strategies may vary from spring-
based layouts to clustering methods. Each strategy class is subclassed from vtkGraphLayoutStrategy,
all of which can be plugged into vtkGraphLayout. Examples of currently available layout strategies
include:

• vtkAssignCoordinatesLayoutStrategy - strategy to allow coordinate assignment from arrays
designated as the x, y, and z coordinates.

• vtkCircularLayoutStrategy - Assigns points to the vertices around a circle with unit radius.

Figure 8–3   A simple graph view
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• vtkClustering2DLayoutStrategy - strategy utilizing a density grid based force directed layout
strategy. The layout running time is O(V+E) with an extremely high constant. 

• vtkCommunity2DLayoutStrategy - similar to vtkClustering2DLayoutStrategy, but looks for a
community array on its input and strengthens edges within a community and weakens edges not
within the community.

• vtkConeLayoutStrategy - strategy that positions the nodes of a tree(forest) in 3D space based on
the cone-tree approach first described by Robertson, Mackinlay and Card in the proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI'91). This implementation
also incorporates refinements to the layout developed by Carriere and Kazman, and by Auber.

• vtkConstrained2DLayoutStrategy - similar to vtkClustering2DLayoutStrategy, but looks for a
constraint array indicating a level of impedance a node has to the force calculations during the
layout optimization.

• vtkCosmicTreeLayoutStrategy - tree layout strategy reminiscent of astronomical systems 

• vtkFast2DLayoutStrategy - a simple fast 2D graph layout.

• vtkForceDirectedLayoutStrategy - lays out a graph in 2D or 3D using a force-directed algo-
rithm. 

• vtkPassThroughLayoutStrategy - a layout strategy that does absolutely simply passes the graph
through without modifying the data.

• vtkRandomLayoutStrategy - randomly places vertices in 2 or 3 dimensions within a bounded
range.

• vtkSimple2DLayoutStrategy - an implementation of the Fruchterman & Reingold layout strat-
egy (see “Graph Drawing by Force-directed Placement” Software-Practice and Experience
21(11) 1991)). 

• vtkTreeLayoutStrategy - Assigns points to the nodes of a tree in either a standard or radial lay-
out. 

• vtkTreeOrbitLayoutStrategy - Assigns points to the nodes of a tree to an orbital layout. Each
parent is orbited by its children, recursively.

To simplify the task of visualizing different graphs, the vertex layout strategies can be supplied
directly to a view class. This is done by calling vtkGraphLayoutView::SetLayoutStrat-
egy(vtkGraphLayoutStrategy *s) as in the preceding example. Views are discussed in greater depth in
“Views and Representations” on page 176.

Edge Layout

To determine how edges are routed, one again uses a strategy abstraction. Every edge layout strategy
is subclassed from vtkEdgeLayoutStrategy, which is then plugged into the vtkEdgeLayout class.
Examples of currently available edge layout strategies include:

• vtkArcParallelEdgeStrategy - routes single edges as line segments, routes parallel edges as arcs. 

• vtkGeoEdgeStrategy - Layout graph edges on a globe as arcs.

• vtkPassThroughEdgeStrategy - a layout strategy that simply passes the graph through without
modifying the data.
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The edge layout strategies can also be supplied directly to a view class using vtkGraphLayout-
View::SetEdgeLayoutStrategy(vtkEdgeLayoutStrategy *s). 

Converting Layouts to Geometry
Once the layouts are complete, the graphs must still be converted to geometry: points, lines, poly-
lines, polygons, etc., which can be mapped into actors in order to be displayed in a render window.
Classes for helping to accomplish this final conversion include:

• vtkGraphToGlyphs - Converts a vtkGraph to a vtkPolyData containing a glyph (circle, dia-
mond, crosses, etc.) for each vertex. 

• vtkGraphMapper - Map vtkGraph and derived classes to graphics primitives.
• vtkGraphToPolyData - Converts the edges of the graph to polydata, assumes vertex data

already has associated point data and passes this data along.
• vtkEdgeCenters - generate points at center of graph edges.

The use of the preceding classes is demonstrated here in the following code example of drawing a
graph. We are using a single strategy to do the initial graph layout; however, as noted earlier, the strat-
egy classes are interchangeable, and new layout strategies can be applied by swapping out one strat-
egy for another in this example. 

from vtk import *

# create a random graph
source = vtkRandomGraphSource()
source.SetNumberOfVertices(100)
source.SetNumberOfEdges(110)
source.StartWithTreeOn()
source.Update()

# setup a strategy for laying out the graph
#  NOTE: You can set additional options for each strategy, as desired
strategy = vtkFast2DLayoutStrategy()
#strategy = vtkSimple2DLayoutStrategy()
#strategy = vtkCosmicTreeLayoutStrategy()
#strategy = vtkForceDirectedLayoutStrategy()
#strategy = vtkTreeLayoutStrategy()

# set the strategy on the layout
layout = vtkGraphLayout()
layout.SetLayoutStrategy(strategy)
layout.SetInputConnection(source.GetOutputPort())

# create the renderer to help in sizing glyphs for the vertices
ren = vtkRenderer()

# Pipeline for displaying vertices - glyph -> mapper -> actor -> display
#  mark each vertex with a circle glyph
vertex_glyphs = vtkGraphToGlyphs()
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vertex_glyphs.SetInputConnection(layout.GetOutputPort())
vertex_glyphs.SetGlyphType(7)
vertex_glyphs.FilledOn()
vertex_glyphs.SetRenderer(ren)

# create a mapper for vertex display
vertex_mapper = vtkPolyDataMapper()
vertex_mapper.SetInputConnection(vertex_glyphs.GetOutputPort())
vertex_mapper.SetScalarRange(0,100)
vertex_mapper.SetScalarModeToUsePointFieldData()
vertex_mapper.SelectColorArray("vertex id")

# create the actor for displaying vertices
vertex_actor = vtkActor()
vertex_actor.SetMapper(vertex_mapper)

# Pipeline for displaying edges of the graph - layout -> lines -> mapper 
-> actor -> display
#  NOTE: If no edge layout is performed, all edges will be rendered as 
#  line segments between vertices in the graph.
edge_strategy = vtkArcParallelEdgeStrategy()

edge_layout = vtkEdgeLayout()
edge_layout.SetLayoutStrategy(edge_strategy)
edge_layout.SetInputConnection(layout.GetOutputPort())

edge_geom = vtkGraphToPolyData()
edge_geom.SetInputConnection(edge_layout.GetOutputPort())

# create a mapper for edge display 
edge_mapper = vtkPolyDataMapper()
edge_mapper.SetInputConnection(edge_geom.GetOutputPort())

# create the actor for displaying the 
edges
edge_actor = vtkActor()
edge_actor.SetMapper(edge_mapper)
edge_actor.GetProperty().SetColor(0.,0.
,0.)
edge_actor.GetProperty().SetOpacity(0.2
5)

Despite the flexibility afforded by the above classes, visual
clutter is frequently a problem when the number of edges in
the graph is large. Especially with straight connections
between each pair of related vertices, the displayed graph
quickly becomes impossible to interpret. To overcome this
problem, VTK includes additional algorithms to reduce the
visual clutter. They essentially bend and bundle related
edges together. Filters which achieve this include:

Figure 8–4  The result of executing the
code to draw a graph
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• vtkGraphHierarchicalBundle (and the associated vtkGraphHierarchicalBundleEdges) - layout
graph edges in arced bundles, following the algorithm developed by Danny Holten in “Hierar-
chical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data.” IEEE Trans-
actions on Visualization and Computer Graphics, Vol. 12, No. 5, 2006. pp. 741-748.

• vtkSplineGraphEdges - subsample graph edges to make smooth (splined) curves.

Here is an example of performing edge bundling using
splines. The following code performs a tree layout, then
uses vtkGraphHierarchicalBundle to display bundled
edges from the graph on top of the tree (Figure 8–5).[

// Create a standard radial 
// tree layout strategy
vtkTreeLayoutStrategy* treeStrategy =
vtkTreeLayoutStrategy::New();
treeStrategy->SetAngle(360.);
treeStrategy->SetRadial(true);
treeStrategy->SetLogSpacingValue(0.8);
treeStrategy->SetLeafSpacing(0.9);

// Layout the vertices of the tree 
// using the strategy just created
vtkGraphLayout* treeLayout = 
vtkGraphLayout::New();

treeLayout->SetInput(realTree);
treeLayout->SetLayoutStrategy(treeStrategy);

// Use the tree to control the layout of the graph edges
vtkGraphHierarchicalBundle* bundle =
vtkGraphHierarchicalBundle::New();
bundle->SetInput(0, graph);
bundle->SetInputConnection(1, treeLayout->GetOutputPort(0));
bundle->SetBundlingStrength(0.9);
bundle->SetDirectMapping(true);

// Smooth the edges using with splines
vtkSplineFilter* spline = vtkSplineFilter::New();
spline->SetInputConnection(0, bundle->GetOutputPort(0));

Area Layouts
For trees or graphs with embedded hierarchical information (i.e. a graph with an embedded spanning
tree), alternative visualization methods convert the displays of the vertices into polygonal based struc-
tures (e.g. blocks, rings, circles, etc.). These methods have proven useful in divining out additional
structure from the original hierarchy. Examples of these types of graph visualizations include
treemaps, radial space-filling trees, and icicle representations (Figure 8–6). 

For these techniques, each vertex is typically assigned a set of values in a 4-tuple array repre-
senting the placement and size of a rectangular region (or circular sector in the case of the tree ring

Figure 8–5  The result of bundling graph
edges from the code.
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view). These methods also utilize a layout strategy which is plugged into vtkAreaLayout. Currently
available strategies include:

• vtkBoxLayoutStrategy (treemap) - a tree map layout that puts vertices in square-ish boxes by
recursive partitioning of the space for children vertices.

•  vtkSliceAndDiceLayoutStrategy (treemap) - lays out a tree-
map alternating between horizontal and vertical slices.

• vtkSquarifyLayoutStrategy (treemap) - use the squarified
tree map algorithm proposed in Bruls, D.M., C. Huizing, J.J.
van Wijk. Squarified Treemaps. In: W. de Leeuw, R. van
Liere (eds.), Data Visualization 2000, Proceedings of the
joint Eurographics and IEEE TCVG Symposium on Visual-
ization, 2000, Springer, Vienna, p. 33-42.

• vtkStackedTreeLayoutStrategy (tree ring and icicle) - lays
out tree in stacked boxes or rings.

Conversion to geometry for later display is accomplished through
some additional helper classes:

• vtkTreeMapToPolyData - converts a tree with an associated
data array to a polygonal data representing a tree map.

• vtkTreeRingToPolyData - converts a tree with an associated
data array to a polygonal data representing an icicle or tree
ring layout.

These classes utilize the 4-tuple array created in the layout classes
and convert this data to the standard polygonal primitives for each
vertex represented by the value in the array.

8.3 Views and Representations
Views in VTK combine rendering logic, interaction, visualization
parameters, and selection into one place. Datasets are displayed in
views by adding what are called “representations” to the view. A
representation prepares an input dataset to be displayed in a view,
and contains options for how that data should be rendered in the
view, including colors, icons, layout algorithms, and labels. All
views are subclasses of vtkView, and all view representations are
subclasses of vtkDataRepresentation. The previous sections have
already introduced views such as vtkGraphLayoutView and vtk-
TreeRingView.

You can add data objects to a view in two ways. One way is to create the appropriate represen-
tation, set the inputs on the representation by calling SetInputConnection() or SetInput(), then call
AddRepresentation() on the view. The other way that is normally more convenient is to have the view
automatically create the default representation for you through calling AddRepresentationFromIn-
put() or AddRepresentationFromInputConnection(). These methods accept a data object or algorithm

Figure 8–6  Treemap, tree ring,
and icicle views displaying the
partitioning of classes into librar-
ies, along with links connecting
each class to its superclass
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output port, create a representation appropriate for the view, add the representation to the view, and
return a pointer to the new representation.

The following Python code generates a simple vtkRenderView with a sphere source displayed
with a vtkSurfaceRepresentation.

from vtk import *
import versionUtil

if versionUtil.VersionGreaterThan(5, 4):
  rep = vtkRenderedSurfaceRepresentation()
else:
  rep = vtkSurfaceRepresentation()

sphere = vtkSphereSource()
sphere.SetPhiResolution(100)
sphere.SetThetaResolution(100)
rep.SetInputConnection(sphere.GetOutputPort())

view = vtkRenderView()
view.AddRepresentation(rep)

rw = versionUtil.SetupView(view)
versionUtil.ShowView(view)

Note that the example code reflects the name change from vtkSurfaceRepresentation to vtkRendered-
SurfaceRepresentation after VTK 5.4.

An example of using the vtkTreeRingView
class for graph visualization is shown below. Note
that this view takes two inputs, one for the graph and
one for the tree. This code generates the center image
in Figure 8-6. The tree ring contains the VTK classes
organized by library, while the internal edges show
subclass to superclass relationships.

# Import a grapRush with an embedded 
hierarchy (tree).
from vtk import *
import vtk.util.misc
import versionUtil

datapath = 
vtk.util.misc.vtkGetDataRoot()

reader1 = vtkXMLTreeReader()
reader1.SetFileName(datapath + "/
Data/Infovis/XML/vtkclasses.xml")
reader1.SetEdgePedigreeIdArrayName("tree edge")
reader1.GenerateVertexPedigreeIdsOff();
reader1.SetVertexPedigreeIdArrayName("id");

Figure 8–7  A vtkSurfaceRepresentation of a
sphere rendered in a vtkRenderView. A rectan-
gular region has been selected and highlighted
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reader2 = vtkXMLTreeReader()
reader2.SetFileName(datapath + "/Data/Infovis/XML/vtklibrary.xml")
reader2.SetEdgePedigreeIdArrayName("graph edge")
reader2.GenerateVertexPedigreeIdsOff();
reader2.SetVertexPedigreeIdArrayName("id");

# Setup the view parameters for displaying the graph
view = vtkTreeRingView()
view.SetTreeFromInputConnection(reader2.GetOutputPort())
view.SetGraphFromInputConnection(reader1.GetOutputPort())
view.SetAreaColorArrayName("VertexDegree")
view.SetEdgeColorToSplineFraction()
view.SetAreaHoverArrayName("id")
view.SetColorEdges(True)
view.SetAreaLabelArrayName("id")
view.SetAreaLabelVisibility(True)
view.SetShrinkPercentage(0.02)
view.SetBundlingStrength(.8)

# Apply a theme to the views
theme = vtkViewTheme.CreateMellowTheme()
view.ApplyViewTheme(theme)

rw = versionUtil.SetupView(view)
versionUtil.ShowView(view)

These are the render view subclasses currently implemented in VTK:

• vtkGraphLayoutView - view window for visualizing graphs
• vtkHierarchicalGraphView - view window for visualizing graphs with associated, or derived,

hierarchical data.
• vtkIcicleView - view for visualizing trees, or graphs with associated or derived hierarchical

data, using an icicle layout.
• vtkTreeMapView - view for visualizing trees, or graphs with associated or derived hierarchical

data, using a tree map layout.
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• vtkTreeRingView - view for visualizing trees,
or graphs with associated or derived hierarchi-
cal data, using a radial space filling layout.

Selections in Views
Selections are an important component of the VTK
view architecture. Refer to “Interaction, Widgets and
Selections” on page 255 for a general description of
selections in VTK. Most views have the ability to
interactively create a selection (e.g. through mouse
clicks or rubber-band selections), and also have the
capacity to display the current selection through high-
lighting or some other mechanism.

Views automatically generate selections of the
corresponding type when the user performs a selection interaction (e.g. by clicking or dragging a
selection box). Selections may be shared across views simply by setting a common vtkSelectionLink
object on multiple representations. (In VTK versions after 5.4, vtkSelectionLink has been replaced
with the more flexible vtkAnnotationLink. This works in the same way as vtkSelectionLink, but can
share annotations on the data between views in addition to a shared selection.)

The following example generates a graph view and table view with linked selection. The table
view displays the vertex data of the graph in a Qt widget. Similarly vtkQtTreeView can display the
contents of a vtkTree in a Qt tree widget. When rows are selected in the table view, the graph view
updates to reflect this, and vice versa.

QApplication app(argc, argv);

// Create the graph source and table conversion
vtkRandomGraphSource* src = vtkRandomGraphSource::New();
vtkDataObjectToTable* o2t = vtkDataObjectToTable::New();
o2t->SetInputConnection(src->GetOutputPort());
o2t->SetFieldType(vtkDataObjectToTable::VERTEX_DATA);

// Create Qt table view and add a representation
vtkQtTableView* tv = vtkQtTableView::New();
vtkDataRepresentation* tr;
tr = tv->AddRepresentationFromInputConnection(o2t->GetOutputPort());

// Create graph layout view
vtkGraphLayoutView* gv = vtkGraphLayoutView::New();
gv->SetVertexLabelArrayName("vertex id");
gv->VertexLabelVisibilityOn();
gv->SetLayoutStrategyToSimple2D();

// Add representation to graph view
vtkDataRepresentation* gr;
gr = gv->AddRepresentationFromInputConnection(src->GetOutputPort());
gr->SetSelectionLink(tr->GetSelectionLink());

Figure 8–8  A simple application showing
linked selection between a graph layout view
and a Qt table view.
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// Ensure both views update when selection changes
vtkViewUpdater* vu = vtkViewUpdater::New();
vu->AddView(gv);
vu->AddView(tv);

// Start application
#if VTK_5_4_OR_EARLIER
vtkRenderWindow* win = vtkRenderWindow::New();
gv->SetupRenderWindow(win);
#endif
tv->GetItemView()->show();
app.exec();
}

8.4 Graph Algorithms
Graph data structures are an essential part of any informatics application. Many informatics problems
consist of a myriad of data sources (people, phone calls, emails, publications) and the relationships
between those datatypes. In general, graphs are well suited for the storage, manipulation, and analysis
of different entities and the connections between those entities. In semantic graphs entities are repre-
sented by the graph vertices and the relationships between entities are represented by the graph edges.
The vtkGraph data structure can store arbitrary attributes on both the vertices and edges so properties
and types (“semantics”) are easily expressed (See Siek, Jeremy, Lie-Quan Lee, and Andrew Lums-
daine. 2001. “The Boost Graph Library: User Guide and Reference Manual”. Addison-Wesley Pro-
fessional).

The effective processing and analysis of graphs require a large set of graph algorithms. The
VTK toolkit leverages third party libraries to provide them. These libraries include, the Boost Graph
Library (BGL), the Parallel Boost Graph Library (PBGL) and the Multithreaded Graph Library
(MTGL)

One of these libraries is the Boost Graph Library (BGL) which provides a generic C++ template
interface to many common graph algorithm implementations. VTK provides a 'data-less' adapter
which implements the required BGL concepts and allows BGL algorithms to process vtkGraphs
directly.

The usage of any graph algorithm follows the VTK pipeline model. The code example shown in
Listing <BFS> demonstrates the usage of a graph algorithm. The code includes the header file of the
algorithm, creates the VTK filter for the algorithm (in this case vtkBoostBreadthFirstSearch) and puts
the algorithm in the pipeline. After the pipeline is updated, the results of that algorithm are available
as attributes on the nodes and/or edges of the graph. This example simply labels each vertex with its
distance from the starting vertex (labeled “0”). 

#include "vtkBoostBreadthFirstSearch.h"
#include "vtkGraphLayoutView.h"
#include "vtkRandomGraphSource.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
int main(int argc, char* argv[])
{
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  // Create a random graph
  vtkRandomGraphSource* source = vtkRandomGraphSource::New();

  // Create BGL algorithm and put it in the pipeline
  vtkBoostBreadthFirstSearch* bfs = vtkBoostBreadthFirstSearch::New();
  bfs->SetInputConnection(source->GetOutputPort());
 
  // Create a view and add the BFS output
  vtkGraphLayoutView* view = vtkGraphLayoutView::New();
  view->AddRepresentationFromInputConnection(bfs->GetOutputPort());

  // Color vertices based on BFS search
  view->SetVertexColorArrayName("BFS");
  view->ColorVerticesOn();
  view->SetVertexLabelArrayName("BFS");
  view->VertexLabelVisibilityOn();
  
  // See the start of the Information Visualization chapter
  // for information on how this has changed after VTK 5.4.
  vtkRenderWindow* window = vtkRenderWindow::New();
  view->SetupRenderWindow(window);
  window->GetInteractor()->Start();

  source->Delete();
  bfs->Delete();
  view->Delete();
  window->Delete();

  return 0;
}

As pipeline components the graph algorithms can also be
combined in unique ways. For instance the following
python snippet (extracted from VTK\Examples\Info-
vis\Python\boost_mst.py) shows two graph algorithms
working together. 

# Create a random graph
randomGraph = vtkRandomGraphSource()

# Connect to the centrality filter.
centrality = vtkBoostBrandesCentrality ()
centrality.SetInputConnection(randomGraph.GetOutputPort())

# Find the minimal spanning tree
mstTreeSelection = vtkBoostKruskalMinimumSpanningTree()
mstTreeSelection.SetInputConnection(centrality.GetOutputPort())
mstTreeSelection.SetEdgeWeightArrayName("centrality")
mstTreeSelection.NegateEdgeWeightsOn()

# Create a graph layout view

Figure 8–9  The result of computing
the breadth-first distance from a start-
ing vertex (labeled “0”)
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view = vtkGraphLayoutView()
view.AddRepresentationFromInputConnection(centrality.GetOutputPort())

Here both vertex and edge centrality are computed by the vtkBoostBrandesCentrality filter, the results
of that algorithm are feed into the vtkBoostKruskalMinimumSpanningTree filter which computes a
'maximal' spanning tree of the highest centrality edges in the graph (given that the ‘NegateEdge-
Weights’ parameter is set).

Boost Graph Library Algorithms

• vtkBoostBreadthFirstSearch - Performs a breadth first search (BFS) of a graph from some ori-
gin node and returns a vtkGraph with new attributes.

• vtkBoostBreadthFirstSearchTree - Performs a BFS of a graph and returns a tree rooted at the
origin node.

• vtkBoostBiconnectedComponents - Computes the biconnected components of a vtkGraph.
• vtkBoostBrandesCentrality - Computes graph

centrality using the Brandes algorithm.
• vtkBoostConnectedComponents - Discovers

the connected components of a vtkGraph. If the
graph is undirected this computes the natural
connected components, if directed then strongly
connected components are computed. 

• vtkBoostKruskalMinimumSpanningTree - Uses
the Boost Kruskal Minimum Spanning Tree
(MST) algorithm to compute the MST on a
weighted graph.

• vtkBoostPrimMinimumSpanningTree - Uses
the Boost Prim MST algorithm to compute the
MST on a positively-weighted vtkGraph.

Many of these algorithms are discussed in this section
are demonstrated in the python examples under
VTK\Examples\Infovis\Python.

vtkBoostBreadthFirstSearch. This filter implements a vtkGraphAlgorithm that computes the BFS
of a vtkGraph which is rooted at some starting node. The starting node can be either a selection or can
be specified via its index into the graph. The time complexity of the Boost BFS implementation is
O(E+V).

SetOriginSelection(vtkSelection* s) 
Sets the origin node for this search through a selection cointaining a node in the graph.

SetOriginSelectionConnection(vtkAlgorithmOutput *) 
Sets the origin node using the output from another VTK filter.

SetOriginVertex(vtkIdType index) 
Set the index (into the vertex array) of the BFS 'origin' vertex.

Figure 8–10  Graph showing a minimum
spanning tree (purple) based on centrality
computed on the graph edges 
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SetOriginVertex(arrayName,value) 
Set the BFS origin vertex. This method allows the application to simply specify an array
name and value, instead of having to know the specific index of the vertex.

SetOriginVertexString(arrayName,value) 
Set the BFS 'origin' vertex given an array name and a string value.

SetOutputArrayName(string)
Set the name of the vertex attribute array in the output graph. Default is "BFS".

SetOriginFromSelection(bool)
If true/on, use the vtkSelection from input port 1 as the origin vertex. The selection
should be an IDs selection with field type POINTS. The first ID in the selection will be
used as the 'origin' vertex. Default is OFF.

SetOutputSelection(bool)
If true/on, creates an output selection containing the ID of a vertex based on the output
selection type. The default is to use the maximum distance from the starting vertex.
Default is OFF.

SetOutputSelectionType(string) 
Set the output selection type. The default is to use the maximum distance from the start-
ing vertex "MAX_DIST_FROM_ROOT". Additional options such as "ROOT",
"2D_MAX", etc. may be used.

vtkBoostBreadthFirstSearchTree
This VTK class uses the Boost BFS generic algorithm to perform a BFS of a vtkGraph
from a given source vertex. The result of this filter is a vtkTree with root node corre-
sponding to the starting node of the search.

SetOriginVertex(index) 
Sets the index into the vertex array of the origin vertex.

SetOriginVertex(arrayName,value) 
Set the origin vertex given a value within a named vertex array.

SetCreateGraphVertexIdArray(bool)
Stores the graph vertex ids for the tree vertices in an array named "GraphVertexId".
Default is OFF.

vtkBoostBiconnectedComponents. This VTK class searches a vtkGraph for biconnected compo-
nents. The biconnected components of a graph are maximal regions of the graph where the removal of
any single vertex from the region will not disconnect the graph. This algorithm returns a vertex attri-
bute array and an edge attribute array containing their biconnected component ids. 

Every edge will belong to exactly one biconnected component and will be given in the edge
array named “biconnected component” by default. Likewise, the biconnected component id of each
vertex is also given in the vertex array named “biconnected component” by default.

Cut vertices (or articulation points) are vertices that belong to multiple biconnected compo-
nents, and break the graph apart if removed. These are indicated by assigning a component value of -
1. To determine the biconnected components that a cut vertex belongs to, traverse its edge list and
collect the distinct component ids for its incident edges.
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The time complexity of the Boost biconnected components algorithms is O(V+E)

SetOutputArrayName(string) 
Set the output array name for the vertex and edge arrays. If no output array name is spec-
ified, "biconnected component" will be used.

vtkBoostBrandesCentrality. This class uses the Boost brandes_betweenness_centrality algorithm to
compute betweenness centrality on a vtkGraph. This filter adds a vertex array and an edge array to the
vtkGraph with the name “centrality” and are typed as vtkFloatArray.

The time complexity of Boost Brandes’ betweenness centrality is reported as O(VE) for
unweighted graphs and O(VE+V(V+E) log V) for weighted graphs. The space complexity is O(VE).

vtkBoostConnectedComponents. Discovers the connected regions of a vtkGraph, assigning to each
vertex a component ID in the vertex array “components”. If the input graph is an undirected graph the
output contains the natural connected components of the graph. Conversely, if the input graph is a
directed graph, this filter will discover the strongly connected components of the graph (i.e., the max-
imal sets of vertices where there is a directed path between any pair of vertices within each set).

For undirected graphs, the time complexity for this algorithm is O(V+E alpha(E,V)) where
alpha is the inverse of Ackermann’s function. For most practical purposes, the time complexity is
only slightly larger than O(V+E). The time complexity of the algorithm used for directed graphs is
O(V+E).

vtkBoostKruskalMinimumSpanningTree. This filter finds the Minimum Spanning Tree (MST) of
a vtkGraph using the Boost Kruskal MST generic algorithm given a weighting value for each of the
edges in the input graph. This algorithm also allows edge weights to be negated to create a maximal
spanning tree if desired. This filter produces a vtkSelection containing the edges of the graph that
define the MST.

The time complexity for the Boost Kruskal MST algorithm is O(E log E).

SetEdgeWeightArrayName(string) 
Sets the name of the edge-weight input array, which must be an array that is part of the
edge data of the input graph and contains numeric data. If the edge-weight array is not of
type vtkDoubleArray it will be copied into a temporary vtkDoubleArray.

SetOutputSelectionType(string) 
Sets the output selection type. The default is to use the set of minimum spanning tree
edges “MINIMUM_SPANNING_TREE_EDGES”’. No other options are currently
defined.

SetNegateEdgeWeights(bool)
Toggles whether or not the filter should negate edge weights. By negating edge weights
this algorithm will attempt to create the 'maximal' spanning tree. A 'maximal' spanning
tree is a spanning tree with the highest-weighted edges). Default is OFF.

vtkBoostPrimMinimumSpanningTree. This filter uses the Boost Prim Minimum Spanning Tree
generic algorithm to create a MST on an edge-weighted vtkGraph given an origin vertex. This filter
differs from Kruskal MST mainly in the following ways:

• An origin vertex must be specified.
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• The negate edge weights method cannot be utilized to obtain a 'maximal' spanning tree, and will
throw an exception if any negative edge weights exist.

• The boost implementation of the Prim algorithm returns a vertex predecessor map which results
in some ambiguity about which edge from the original graph should be utilized if parallel edges
exist; for this reason the current VTK implementation does not copy edge data from the graph
to the new tree.

• The edge-weight array must be a vtkDataArray type or a child of vtkDataArray giving more
generality over the Kruskal variant.
The time complexity of the Boost Prim MST algorithm is O(E log V).

SetEdgeWeightArrayName(string) 
Sets the name of the edge-weight input array. The edge-weight array must be a vtkData-
Array.

SetOriginVertex(index) 
Sets the 'origin' vertex by way of its index into the graph.

SetCreateGraphVertexIdArray(bool)
If enabled, stores the graph vertex ids for the tree vertices in an array named “GraphVer-
texId”. Default is OFF.

SetNegateEdgeWeights(bool)
If on, edge weights are negated. See note in description, this filter will throw an exception
if negative edge weights exist. Default is OFF.

Creating Graph Algorithms
n practice anyone can add a graph algorithm to VTK. There are several approaches a developer can
take. The first and easiest for a python programmer is to use the vtkProgrammableFilter. The python
code in Figure 8–11 demonstrates the use of the programmable python filter to compute vertex
degree (taken from VTK\Examples\Infovis\Python\vertex_degree_programmable.py).
def computeVertexDegree():

input = vertexDegree.GetInput()
    output = vertexDegree.GetOutput()

    output.ShallowCopy(input)

    # Create output array
    vertexArray = vtkIntArray()
    vertexArray.SetName("VertexDegree")
    vertexArray.SetNumberOfTuples(output.GetNumberOfVertices())
  
    # Loop through all the vertices setting the degree for the new

# attribute array
    for i in range(output.GetNumberOfVertices()):
        vertexArray.SetValue(i, output.GetDegree(i))
    
    # Add the new attribute array to the output graph
    output.GetEdgeData().AddArray(vertexArray)
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vertexDegree = vtkProgrammableFilter()
vertexDegree.SetExecuteMethod(computeVertexDegree)

# VTK Pipeline
randomGraph = vtkRandomGraphSource()
vertexDegree.AddInputConnection(randomGraph.GetOutputPort())

view = vtkGraphLayoutView()
view.AddRepresentationFromInputConnection(vertexDegree.GetOutputPort()
)
view.SetVertexLabelArrayName("VertexDegree")
view.SetVertexLabelVisibility(True)

Another straightforward approach is to create a regular
VTK C++ filter as a graph algorithm. The easiest filter to
use as a reference would be vtkVertexDegree (VTK\Info-
vis\vtkVertexDegree.cxx). The C++ code in vtkVertexDe-
gree.cxx looks remarkably similar to the python example
above in Figure X and contains the same functionality. The
documentation for vtkGraph and the API for the various
ways to access the data structure will also be helpful in the
creation of your new filter.

Perhaps the most interesting (and advanced) way to
create a new graph algorithm in VTK is to contribute an
algorithm to the Boost Graph Library and then 'wrap' that
algorithm into a VTK class. A good reference is the vtk-
BoostBreadthFirstSearch filter (VTK\Infovis\vtkBoost-
BreadthFirstSearch.cxx) and the vtkBoostGraphAdapter.h
file. Detailed documentation on the Boost Graph Library
can be found at http://www.boost.org/doc/ as well as in the
book The Boost Graph Library: User Guide and Reference Manual. Although significantly more
work, this approach benefits both VTK users and the members of the Boost community as well.

The Parallel Boost Graph Library
As a distributed memory toolkit, VTK currently provides a myriad of functionality around parallel
scientific data processing and visualization. The Parallel Boost Graph Library (PBGL) is a generic
C++ library for high-performance parallel and distributed graph algorithms. The vtkGraph data struc-
ture, along with some distributed helper classes, enables the PBGL functionality to work in the same
way as the BGL classes. The integration of PBGL functionality into VTK is currently in the early
stages. We would also like to note that PBGL is part of the Boost library with the Boost 1.40 release.
VTK has begun including some PBGL based filters which can be found in the Parallel subdirectory.

Multithreaded Graph Library
The MultiThreaded Graph Library (MTGL) targets shared memory platforms such as the massively
multi-threaded Cray MTA/XMT and when used in tandem with the Qthreads library chip multipro-
cessors such as the Sun Niagara and multi-core workstations. MTGL is based on the serial Boost

Figure 8–11  A graph labeled by the
computed degree of each vertex
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Graph Library, as data distribution is not an issue on the platforms in question. Shared memory pro-
gramming is a challenge, and algorithm objects in the MTGL can encapsulate much, but not all, of
this challenge. As in the BGL, the visitor pattern enables users to apply methods at key points of algo-
rithm execution. MTGL users write adapters over their graph data structures as BGL users do, but
there is no assumption that Boost and STL are available. MTGL codes for connected components on
unstructured graphs, a difficult problem for distributed memory architectures, have scaled almost per-
fectly on the Cray MTA-2.

8.5 Databases
As part of its information visualization capability, VTK 5.4 provides classes for access to SQL data-
bases. Infovis datasets are often a good match for a relational database model. These often contain
several smaller datasets linked by common attributes that fit well into tables. Also, a database allows
an application to offload the task of managing large data by issuing queries for precisely the subset of
interest.

Low-level database access is separated into two abstract classes. The first, vtkSQLDatabase, is
responsible for opening and closing databases, reporting whether features such as transactions, pre-
pared statements and triggers are supported, and creating tables using schema objects. The second,
vtkSQLQuery, is responsible for sending an SQL statement to the database for execution, checking
for errors, and providing access to the results.

The details of connecting to a particular database (MySQL, SQLite, Oracle, etc.) are imple-
mented in concrete subclasses of vtkSQLDatabase. Similarly, the details of executing a query and
retrieving results for a particular database are implemented in concrete subclasses of vtkSQLQuery.
These concrete subclasses are respectively called “database drivers” and “query drivers”.

VTK 5.4 includes drivers for the following databases:

• SQLite 3.4.1

• MySQL 5.0 (and higher)

• PostgreSQL 7.1 (and higher)

• ODBC

A copy of SQLite is included with the VTK source code. In order to interact with other database
implementations you must build VTK from source and link against vendor-provided client libraries.
If you compiled the database yourself, these libraries were probably built automatically. If you
installed a pre-compiled package you may need to download them separately (typically in a “develop-
ment” package).

Connecting to a Database

In order to connect to a database you must first obtain an instance of an appropriate database driver.
There are two ways to do this.

1. Create the driver automatically from a URL:

2. vtkSQLDatabase *db = vtkSQLDatabase::CreateFromURL(“sqlite://mydata.db”);

3. Instantiate the driver directly:
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4. vtkSQLiteDatabase *db = vtkSQLiteDatabase::New();

The CreateFromURL() method will attempt to set all of the supplied parameters (username, server
address, server port, database name) on the driver object. If you instantiate the driver directly you
must set all of these parameters yourself. If the database requires a password you must supply it in the
call to Open(). You may close a connection by calling Close() or by deleting the database driver. If the
database connection could not be opened then Open() will return false. You may retrieve information
about the reason for the failure using the GetLastErrorText() method. The C++ code for opening a
database will generally look like the following:

 
vtkSQLDatabase *db = vtkSQLDatabase::CreateFromURL("sqlite://
mydata.db");
  bool status = db->Open("");
  if (!status)
    {
    cout << "Couldn't open database. Error message: " 
         << db->GetLastErrorText() << endl;
    }

Once a connection has been established you may call GetTables() to obtain a list of the tables in the
database. The GetRecord() function, called with the name of one of those tables, will return a list of
the columns in that table. These functions are useful for applications that connect to databases without
any foreknowledge of their schemata.

Executing Queries

To actually execute a query you must use an instance of one of the query drivers. Query drivers are
never instantiated directly. To obtain one, call GetQueryInstance() on the database driver once the
connection has been opened successfully. Set up your query by calling SetQuery() with a string con-
taining the entire SQL statement. It is not necessary to terminate the statement with a semicolon. You
must embed all of the query parameters within the string. The query will be sent to the database and
executed when you call the Execute() method. Execute() will return true or false depending on
whether the query ran successfully or whether it encountered an error. As with the database driver,
you may retrieve any error message by calling GetLastErrorText() on the query driver.

 
vtkSQLQuery* query = db->GetQueryInstance();
  const char *queryText = "SELECT name, age, weight "
    "FROM people WHERE age <= 20";
  query->SetQuery(queryText);
  if (!query->Execute())
    {
    cout << "Query failed. Error message: "
         << query->GetLastErrorText() << endl;
    }

You may re-use a single query driver for multiple queries. There is no notion of “closing” a currently
active query: you may simply set the new query string with SetQuery() and call Execute(). If the
driver was in the middle of reading a set of query results they will be cleaned up automatically.
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Queries and Threads
Neither vtkSQLQuery nor vtkSQLDatabase are thread-safe. This is more a limitation of the underly-
ing native database APIs, which are themselves rarely thread-safe, than of VTK itself. If your applica-
tion needs to access a database concurrently from multiple threads you must create a new database
connection (via vtkSQLDatabase) for each thread. Each thread may maintain as many vtkSQLQuery
objects as necessary. In some installations the database administrator may impose limits on how many
concurrent sessions and queries may be open simultaneously. Check with your system administrator
to see if this is a concern.

Reading Results
Once a query has been executed successfully, indicated by Execute() returning a value of true, your
program may read the query results. There are two kinds of data that may be retrieved here. The query
metadata comprises the number of columns, their names, and their data types. These can be retrieved
with GetNumberOfColumns(), GetColumnName(int) and GetColumnType(int). VTK will do its best
to convert from the database back-end's native data type to standard data types supported in C++,
Python and Java.

The result data is read one row at a time. You must call vtkSQLQuery::NextRow() to advance
to the next available row. This method will return true if there is another row available to read and
false when no more data can be retrieved. Data values within a row may be retrieved either one at a
time or all at once. To retrieve the value for a single column, call vtkSQLQuery::DataValue(int) with
the index of the column you want to retrieve. The entire process looks like the following.

while (query->NextRow())
    {
    for (int field = 0; field < query->GetNumberOfFields(); field++)
      {
      vtkVariant v = query->DataValue(field);
      // Process it
      }
    }

To retrieve an entire row at once, call vtkSQLQuery::NextRow(vtkVariantArray *) instead of Nex-
tRow(). The values for that row will be stored in the array you supply. 

vtkVariantArray* va = vtkVariantArray::New();
  while (query->NextRow(va))
    {
    // Process it
    }

When processing query results we often wish to store the entire result set in a vtkTable to be passed
through the pipeline. The vtkRowQueryToTable filter does exactly this. Use it by obtaining and set-
ting up a query driver, then passing the query to the filter as the argument to SetQuery(). The query
will be executed when the filter is updated either manually (by calling Update()) or through a request
from further down the pipeline.

vtkRowQueryToTable* reader = vtkRowQueryToTable::New();
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  reader->SetQuery(query);
  reader->Update();
  vtkTable* table = reader->GetOutput();

Writing Data
Since vtkSQLQuery requires only that the query string be valid SQL it can be used for more opera-
tions than just reading from tables. For example, CREATE, UPDATE, INSERT, DROP and TRUN-
CATE (and others) are all available for use. The only requirement is that if the query returns any
output aside from a status code it must be in row format. This excludes commands such as EXPLAIN
that return unformatted text.

You may use the SQL INSERT command to write data back to the database. Since each row
must be inserted with a separate INSERT statement this is likely to be slow for large amounts of data.
Support for prepared statements and bound parameters in the next version of VTK will help eliminate
this bottleneck. Meanwhile, if you need to write large datasets back to the database, consider using
the database's native interface or bulk loader instead of the VTK access classes. The following exam-
ple creates a table called PEOPLE and populates it. Error checking is omitted for brevity.

 
vtkStdString createQuery("CREATE TABLE IF NOT EXISTS people "
    "(name TEXT, age INTEGER, weight FLOAT)");
  query->SetQuery( createQuery.c_str() );
  query->Execute();
  for (int i = 0; i < 20; i++)
    {
    char insertQuery[200];
    sprintf( insertQuery,
      "INSERT INTO people (name, age, weight) "
      "VALUES('John Doe %d', %d, %f)",
      i, i, 10.1*i );
    query->SetQuery(insertQuery);
    query->Execute()
    }

Table Schemata
VTK provides a class, vtkSQLDatabaseSchema, for representing a relational database schema. This
is useful if your program needs to create databases rather than simply accessing existing databases.
This class is capable of representing tables, their columns, and their indices in a cross-platform set-
ting. The goal of this class is to make working with multiple database backends simple, not to repre-
sent every schema possible with any given database type. For instance, a limited set of column types
is supported; extended types such as those available in PostgreSQL are not supported. However, it
can store triggers (for databases that support triggers) and preamble statements with an indication of
what database backend each trigger or preamble statement was written for, to accommodate backend-
specific SQL statements.

Programmatic access to the schema is present so that tables, columns, or indices may be
dynamically generated based on some options present in your application. A schema object can con-
tain multiple tables. Each table has a unique integer handle returned by the AddTable method. To add
columns, indices, or triggers to a table, you must pass this integer as the first argument to Add-
ColumnToTable(), AddIndexToTable(), or AddTriggerToTable(), respectively.
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The AddColumnToTable() function takes a column type (using the enums provided by vtkSQL-
DatabaseSchema), a column name, an integer field width, and a text string specifying column options
such as default values. The field width specifies the storage size for VARCHAR or other variable-size
column types and specifies the default column width of printouts for numeric types in MySQL.

The AddIndexToTable() function creates a primary key, unique-value index, or a plain index for
a table. Because an index may have multiple columns, you must call AddIndexToTable and then pass
the integer index to AddColumnToIndex for each column you would like in the index.

Finally, AddTriggerToTable() allows you to add SQL statements that get executed each time a
table's records are modified. Because the syntax for triggers varies from backend to backend, the
AddTriggerToTable() method's final argument lets you specify which database backend a trigger is
for. The trigger will only be added to databases of the same backend. Because multiple triggers may
be added to the schema for each table, you can create different versions of the same trigger for each
backend you wish your application to support. Also, some backends such as PostgreSQL require you
to specify a trigger as named function. In order to allow you to define functions before triggers are
added, the schema class provides AddPreamble(). Statements passed to AddPreamble() are executed
before any tables are created. As with AddTriggerToTable(), the final argument of AddPreamble()
allows you to specify which backend the statement applies to.

Once you have created a vtkSQLDatabaseSchema object and populated it using the functions
above, you may call vtkSQLDatabase::EffectSchema() to translate the schema into a set of tables.
The following is an example of how to use the vtkSQLDatabaseSchema class from Python.

from vtk import *
schema = vtkSQLDatabaseSchema()
schema.SetName('TestSchema')
url = 'psql://vtk@localhost/vtk_test'

## Values of enums
VTK_SQL_SCHEMA_SERIAL = 0
VTK_SQL_SCHEMA_BIGINT = 3
VTK_SQL_SCHEMA_PRIMARY_KEY = 2

btab = schema.AddTable('btable')
col0 = schema.AddColumnToTable(btab,
  VTK_SQL_SCHEMA_SERIAL, 'tablekey', 0, '')
col1 = schema.AddColumnToTable(btab,
  VTK_SQL_SCHEMA_BIGINT, 'somevalue', 12, 'DEFAULT 0')
idx0 = schema.AddIndexToTable(btab,
  VTK_SQL_SCHEMA_PRIMARY_KEY, '')
i0c0 = schema.AddColumnToIndex(btab, idx0, col0)

# Create a dummy database instance
# so we can call CreateFromURL,
# then replace instance with real thing
db = vtkSQLiteDatabase()
db = db.CreateFromURL(url);

# Try opening the database without a password
if not db.Open(''):
  # Ask the user for a password and try it.
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  from getpass import getpass
  db.Open(getpass('Password for %s' % url))
if db.IsOpen():
  # If we were able to open the database, effect the schema
  db.EffectSchema(schema, True);

A convenience routine, named AddTableMultipleArguments, is available in C++ (but not wrapped
languages) to aid in the declaration of a static schema. It uses the cstdarg package so that you may
pass an arbitrary number of arguments specifying many table columns, indices, and triggers. The first
argument to the function is the name of a table to create. It is followed by any number of tokens, each
of which may require additional arguments after it and before the next token. The last argument must
be the special vtkSQLDatabaseSchema::END_TABLE_TOKEN. Tokens exist for adding columns,
indices, and triggers. Use of AddTableMultipleArguments is shown in Listing 2, which is the exam-
ple from Listing 1 converted into C++ to illustrate AddTableMultipleArguments.

vtkSQLDatabaseSchema* schema = vtkSQLDatabaseSchema::New();
schema->SetName("TestSchema");

tblHandle = schema->AddTableMultipleArguments("btable",
  vtkSQLDatabaseSchema::COLUMN_TOKEN,
  vtkSQLDatabaseSchema::SERIAL, "tablekey",  0, "",
  vtkSQLDatabaseSchema::COLUMN_TOKEN,
  vtkSQLDatabaseSchema::BIGINT, "somevalue", 12, "DEFAULT 0",
  vtkSQLDatabaseSchema::INDEX_TOKEN,
  vtkSQLDatabaseSchema::PRIMARY_KEY, "",
  vtkSQLDatabaseSchema::INDEX_COLUMN_TOKEN, "tablekey",
  vtkSQLDatabaseSchema::END_INDEX_TOKEN,
  vtkSQLDatabaseSchema::END_TABLE_TOKEN
);

vtkSQLDatabase* db = vtkSQLDatabase::CreateFromURL(url);
db->EffectSchema(schema);

8.6 Statistics
Statistical characterizations are useful because they can provide not only information on trends in data
but also information on the significance of these trends. Also, because datasets continue to increase in
both size and complexity, it is important to have tools for characterizing high-dimensional data so that
lower-dimensional features can be discovered and visualized with traditional techniques. A number
of statistical tools have been implemented in VTK for examining the behavior of individual fields,
relationships between pairs of fields, and relationships among any arbitrary number of fields. Each
tool acts upon data stored in one or more vtkTable objects; the first table serves as observations and
further tables serves as model data. Each row of the first table is an observation, while the form of fur-
ther tables depends on the type of statistical analysis. Each column of the first table is a variable.

Specifying columns of interest
A univariate statistics algorithm only uses information from a single column and, similarly, a bivari-
ate algorithm from 2 columns. Because an input table may have many more columns than an algo-



8.6  Statistics 193

rithm can make use of, VTK must provide a way for users to denote columns of interest. Because it
may be more efficient to perform multiple analyses of the same type on different sets of columns at
once as opposed to one after another, VTK provides a way for users to make multiple analysis
requests in a single filter.

As an example, consider Figure 8–12. It has 6 observations of 5 variables. If the linear correla-
tions between A, B, and C, and also between B, C and D are desired, two requests, R1 and R2 must be
made: The first request R1 would have columns of interest {A,B,C} while R2 would have columns of
interest {B,C,D}. Calculating linear correlations for R1 and R2 in one pass is more efficient than
computing each separately since the covariances cov(B,B), cov(C,C), and cov(B,C) are required for
both requests but need only be computed once.

Phases

Each statistics algorithm performs its computations in a sequence of common phases, regardless of
the particular analysis being performed. The VTK statistics algorithms may be configured to perform
various subsets of these three operations as desired. These phases can be described as:

• Learn: Calculate a “raw” statistical model from an input data set. By “raw”, we mean the min-
imal representation of the desired model, that contains only primary statistics. For example, in
the case of descriptive statistics: sample size, minimum, maximum, mean, and centered M2,
M3 and M4 aggregates (cf. P. Pébay, Formulas for Robust, One-Pass Parallel Computation of
Covariances and Arbitrary-Order Statistical Moments, Sandia Report SAND2008-6212, Sep-
tember 2008, http://infoserve.sandia.gov/sand_doc/2008/086212.pdf). For Table 1 with a
request R1={B}, these values are 6, 1, 11, 4.83..., 68.83..., 159.4..., and 1759.8194..., respec-
tively.

• Derive: Calculate a “full” statistical model from a raw model. By “full”, we mean the complete
representation of the desired model, that contains both primary and derived statistics. For exam-
ple, in the case of descriptive statistics, the following derived statistics are calculated from the
raw model: unbiased variance estimator, standard deviation, and two estimators (g and G) for
both skewness and kurtosis. For Table 1 with a request R1={B}, these additional values are
13.76..., 3.7103, 0.520253, 0.936456, -1.4524, and -1.73616 respectively.

• Assess: Given a statistical model -- from the same or another data set -- mark each datum of a
given data set. For example, in the case of descriptive statistics, each datum is marked with its

Row A B C D E

1 0 1 0 1 1.03315

2 1 2 2 2 0.76363

3 0 3 4 6 0.49411

4 1 5 6 24 0.04492

5 0 7 8 120 0.58935

6 1 11 10 720 1.66202

Figure 8–12  A table of observations that might serve as input to a statistics algorithm
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relative deviation with respect to the model mean and standard deviation (this amounts to the
one-dimensional Mahalanobis distance). Table 1 shows this distance for R1 = {B} in column E.

An example of the utilization of VTK's statistical tools with the Qt application client <description -
paraview application tailored to infovis> is illustrated in Figure 8–13; specifically, the descriptive,
correlative, and order statistics classes are used in conjunction with various table views and plots.
With the exception of contingency statistics which can be performed on any type (nominal, cardinal,
or ordinal) of variables, all currently implemented algorithms require cardinal or ordinal variables as
inputs. The following statistics algorithms are currently available in VTK.

Univariate Algorithms
These algorithms accept a single column (or a set of single columns) and perform an analysis of the
distribution of data in that column.

Descriptive statistics. 

• Learn: calculate minimum, maximum, mean, and centered M2, M3 and M4 aggregates;
• Derive: calculate unbiased variance estimator, standard deviation, skewness (g1 and G1 estima-

tors), kurtosis (g2 and G2 estimators);
• Assess: mark with relative deviations (one-dimensional Mahlanobis distance).

Order statistics. 

• Learn: calculate histogram;
• Derive: calculate arbitrary quantiles, such as 5-point statistics (quartiles) for box plots, deciles,

percentiles, etc.;
• Assess: mark with the quantile index.

Figure 8–13  An example utilization of VTK's
statistics algorithms with the OverView client
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Bivariate statistics:
These algorithms accept a pair(s) of columns to operate on, and perform a comparative analysis.

Correlative statistics. 

• Learn: calculate minima, maxima, means, and centered M2 aggregates;
• Derive: calculate unbiased variance and covariance estimators, Pearson correlation coefficient,

and linear regressions (both ways);
• Assess: mark with squared two-dimensional Mahlanobis distance.

Contingency statistics. 

• Learn: calculate contingency table;
• Derive: calculate joint, conditional, and marginal probabilities, as well as information entro-

pies;
• Assess: mark with joint and conditional PDF values, as well as pointwise mutual informations.

Multivariate statistics:
These filters all accept multiple requests Ri, each of which is a set of ni variables upon which simulta-
neous statistics should be computed.

Multi-correlative statistics. 

• Learn: calculate means and pairwise centered M2 aggregates;
• Derive: calculate the upper triangular portion of the symmetric ni x ni covariance matrix and its

(lower) Cholesky decomposition;
• Assess: mark with squared multi-dimensional Mahlanobis distance.

Principal component analysis (PCA) statistics. 

• Learn: identical to the multi-correlative filter;
• Derive: everything the multi-correlative filter provides, plus the ni eigenvalues and eigenvec-

tors of the covariance matrix;
• Assess: perform a change of basis to the principal components (eigenvectors), optionally pro-

jecting to the first mi components, where mi <= ni is either some user-specified value or is
determined by the fraction of maximal eigenvalues whose sum is above a user-specified thresh-
old. This results in mi additional columns of data for each request Ri.

k-Means statistics (kMeans was added after VTK 5.4). 

• Learn: calculate new cluster centers for data using initial cluster centers. When initial cluster
centers are provided by the user using an additional input table, multiple sets of new cluster
centers are computed. The output metadata is a multiblock dataset containing at a minimum one
vtkTable with columns specifying the following for each run: the run ID, number of clusters,
number of iterations required for convergence, RMS error associated with the cluster, the num-
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ber of elements in the cluster, and the new cluster coordinates;

• Derive: calculates the global and local rankings amongst the sets of clusters computed in the
learn phase. The global ranking is the determined by the error amongst all new cluster centers,
while the local rankings are computed amongst clusters sets with the same number of clusters.
The total error is also reported; 

• Assess: mark with closest cluster id and associated distance for each set of cluster centers.

Using statistics algorithms

It is fairly easy to use the statistics classes of VTK. For example, Listing 1 demonstrates how to cal-
culate contingency statistics, on two pairs of column of an input set inData of type vtkTable, with no
subsequent data assessment. It is assumed here the input data table has at least 3 columns.

// Assume the input dataset is passed to us
  // Also is assume that it has a least 3 columns
  vtkTable* inData = static_cast<vtkTable*>(arg);

  // Create contingency statistics class
  vtkContingencyStatistics* cs = vtkContingencyStatistics::New();

  // Set input data port
  cs->SetInput(0, inData);

  // Select pairs of columns (0,1) and (0,2) in inData
  cs->AddColumnPair(inData->GetColumnName[0], inData-
>GetColumnName[1]);
  cs->AddColumnPair(inData->GetColumnName[0], inData-
>GetColumnName[2]);

  // Calculate statistics with Learn and Derive phases only
#if VTK_5_4_OR_EARLIER
  cs->SetLearn(true);
  cs->SetDerive(true);
  cs->SetAssess(false);
#else
  cs->SetLearnOption(true);
  cs->SetDeriveOption(true);
  cs->SetAssessOption(false);
#endif
  cs->Update();

The previous code section’s requests for each pair of columns of interest are specified by calling Add-
ColumnPair(), as is done for all bivariate algorithms. Univariate algorithms instead call AddColumn()
a number of times to unambiguously specify a set of requests. However, multivariate filters have a
slightly different usage pattern. In order to queue a request for multivariate statistics algorithms, Set-
ColumnStatus() should be called to turn on columns of interest (and to turn off any previously-
selected columns that are no longer of interest). Once the desired set of columns has been specified, a
call to RequestSelectedColumns() should be made. Consider the example from Table 1 where 2



8.6  Statistics 197

requests are mentioned: {A,B,C} and {B,C,D}. The code snippet in Listing 2 shows how to queue
these requests for a vtkPCAStatistics object.

  
vtkPCAStatistics* pps = vtkPCAStatistics::New();

  // Turn on columns of interest
  ps->SetColumnStatus("A", 1);
  ps->SetColumnStatus("B", 1);
  ps->SetColumnStatus("C", 1);
  ps->RequestSelectedColumns();

  // Columns A, B, and C are still selected, so first we turn off
  // column A so it will not appear in the next request.
  ps->SetColumnStatus("A", 0);
  ps->SetColumnStatus("D", 1);
  ps->RequestSelectedColumns();
[Listing 2: An example of requesting multiple multi-variate analyses.]

Parallel Statistics Algorithms
One of the purposes of building a full statistical model in three phases is parallel computational effi-
ciency. In our approach, inter-processor communication and updates are performed only for primary
statistics. The calculations to obtain derived statistics from primary statistics are typically fast and
simple and need only be calculated once, without communication, upon completion of all parallel
updates of primary variables. Data to be assessed is assumed to be distributed in parallel across all
processes participating in the computation, thus no communication is required as each process
assesses its own resident data.

Therefore, in the parallel versions of the statistical engines, inter-processor communication is
required only for the Learn phase, while both Derive and Assess are executed in an embarrassingly
parallel fashion due to data parallelism. This design is consistent with the data parallelism methodol-
ogy used to enable parallelism within VTK, most notably in ParaView. The following 5 parallel sta-
tistics classes are currently available in VTK:

• vtkPDescriptiveStatistics
• vtkPCorrelativeStatistics
• vtkPContingencyStatistics
• vtkPMultiCorrelativeStatistics
• vtkPPCAStatistics

Each of these parallel algorithms is implemented as a subclass of the respective serial version of the
algorithm and contains a vtkMultiProcessController to handle inter-processor communication. Within
each of the parallel statistics classes, the Learn phase is the only phase whose behavior is changed (by
reimplementing its virtual method) due to the data parallelism inherent in the Derive and Assess
phases. The Learn phase of the parallel algorithms performs two primary tasks:

1. Calculate correlative statistics on local data by executing the Learn code of the superclass.
2. If parallel updates are needed (i.e. the number of processes is greater than 1), perform necessary 

data gathering and aggregation of local statistics into global statistics.
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Note that the parallel versions of the statistics algorithms can be used with the same syntax as that
which is used for their serial superclasses. All that is required is a parallel build of VTK and a version
of MPI installed on your system.

8.7 Processing Multi-Dimensional Data
Many information visualization, scientific, engineering, and economic problems involve data that is
either implicitly or explicitly multi-dimensional. In the field of text analysis, a corpus of documents is
often represented as a matrix (2D array) that stores the number of times each term (word) in the cor-
pus appears in each document.. This type of term-frequency data can be extended into higher dimen-
sions, as in an analysis of public Wiki edits that encodes the number of times a term is used by a
particular author on a specific date as a 3D tensor. 

In physical experiments, a series of measurements often form a tensor of three or more dimensions,
i.e. weather measurements taken at multiple stations across multiple times. In economics, a dataset
containing changes in stock value for differing combinations of stock symbol, date, and time horizon
could also be represented as a 3D tensor. Although these examples originate in widely varying
domains, representing their data using multi-dimensional arrays makes it possible to bring a common
set of methods from multi-linear algebra to bear on their analysis. Powerful algorithms such as Singu-

Figure 8–14  Mapping two-
dimensional term-document fre-
quency data to a matrix for test
analysis
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lar Value Decomposition, PARAFAC, DEDICOM, and TUCKER can be used to seek out correlations
in data that would otherwise be hidden from users.

Note, in each of these examples the data is likely to be more-or-less “sparse”. In the text analysis use-
cases, not every term in a corpus will be used in every document; and in scientific experiments,
instrument malfunctions may cause data to be undefined or ‘null’ over varying time ranges. Similarly,
stocks enter-and-exit markets on a regular basis, leading to undefined points within the data. Any sys-
tem that represents multi-dimensional data must be able to explicitly represent these undefined points
for efficiency in memory and computation, and to ensure the correctness of calculations. A system
that ignores undefined or'null' values will not produce correct results.

Design
To meet the preceding challenges, the vtkArray class and its derivatives provide the functionality to
store and manipulate sparse and dense arrays of arbitrary dimension (Figure 8–17). Note first that
vtkArray and its subclasses are entirely separate from the traditional VTK array types such as vtk-
DataArray, vtkIntArray, , vtkFloatArray, and other array types derived from vtkAbstractArray. In
some future release we plan to unify these two hierarchies.

At the top of the N-Dimensional array hierarchy, vtkArray provides methods and functionality
that are common to all arrays, regardless of the type of values stored or the type of storage used.
Using vtkArray, you can:

• Create heterogeneous containers of arrays.

Figure 8–15  Mapping three-
dimensional time-author-term
data to a tensor for text analysis

Figure 8–16  Mapping three-
dimensional year-station-mea-
surement meterological data to a
tensor for analysis.



200 Information Visualization

• Implement algorithms that convert between arrays of different types.
• Implement algorithms that modify the structure of an array without needing to know what type

of value it contains, such as an algorithm to transpose a matrix.

The vtkTypedArray<T> template class derives
from vtkArray, and is used to provide strongly-
typed access to the values stored in the array
while ignoring the type of storage used. Using
vtkTypedArray<T>, you can efficiently manipu-
late arrays that contain a specific type (int, dou-
ble, string, etc) while ignoring how the array
data is stored (dense, sparse, etc).

Finally, VTK currently provides two con-
crete derivatives of vtkTypedArray<T>, vtk-
DenseArray<T> and vtkSparseArray<T>, that
implement specific storage strategies: 

 vtkDenseArray<T> stores values using a single contiguous block of memory, with Fortran
ordering for compatibility with the many linear algebra libraries (such as BLAS and LAPACK) that
are designed to work with Fortran-ordered memory. vtkDenseArray<T> provides efficient O(1)
retrieval of values and is most appropriate when working with dense data that is well-defined for
every location in the array. The memory used by vtkDenseArray<T> is proportional to the product of
the array extents along each dimension.

vtkSparseArray<T> uses sparse coordinate storage to store data efficiently when it isn't defined
for every location within the array. Each non-null value is stored in an unordered list of values and its
coordinates. A single 'null' value is used to represent the remaining contents of the array. As long as
it’s sufficiently sparse, a high-dimension dataset, that would be impossible to store in memory using
vtkDenseArray<T>, can be easily manipulated using vtkSparseArray<T>. This is because the mem-
ory used is proportional to the number of non-null values in the array, rather than the size of the array.

The vtkDenseArray<T> and vtkSparseArray<T> storage classes included with VTK are designed to
provide good all-around performance in a wide-variety of use-cases, and for arbitrary numbers of
dimensions. In practice there may be situations where custom storage classes can provide better per-
formance at the expense of generality, and the vtkArray interfaces are designed with this in mind.
Users can create their own array storage classes by deriving from vtkTypedArray<T> and implement-
ing a few pure-virtual methods. A hypothetical use-case for customized array storage might involve
creating compressed-row or compressed-column storage for integration with a library that manipu-

Figure 8–17  VTK N-dimensional array classes

Figure 8–18  How vtk-
DenseArray<T> stores a
3x3 matirx using Fortran
ordering.
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lates matrices in one of those formats. Another use-case for custom arrays would be the creation of a
read-only 'procedural' array that encapsulates a computed sequence such as the Fibonacci sequence -
such an array wouldn't actually store any information, but could be used as an input for other calcula-
tions.

Using multi-dimensional arrays
You create multi-dimensional arrays in VTK by instantiating the desired concrete array class (vtk-
DenseArray<T>, vtkSparseArray<T>, or similar) templated on the type of value you wish to store
(int, double, string, etc), then specify the extents (number of dimensions and size along each dimen-
sion) of the resulting array:

// Creating a dense vector (1D array) of strings:
vtkDenseArray<vtkStdString>* vector = 
vtkDenseArray<vtkStdString>::New(); 
vector->Resize(10);

// Creating a dense 10 x 20 matrix (2D array) of integers:
vtkDenseArray<int>* matrix = vtkDenseArray<int>::New();
matrix->Resize(10, 20);

// Creating a sparse 10 x 20 x 30 x 40 tensor
// (4D array) of floating-point values:
vtkArrayExtents extents;
Extents.SetDimensions(4); 
extents[0] = 10;
extents[1] = 20; 
extents[2] = 30;
extents[3] = 40; 
vtkSparseArray<double>* tensor = vtkSparseArray<double>::New();
tensor->Resize(extents);

Note that the vtkArray::Resize() method has been overloaded so that you can easily create one, two,
or three-dimensional arrays by simply specifying the size along each dimension. For four-or-more
dimensions, you must use an instance of the vtkArrayExtents helper class to encode the number of
dimensions and extents.

Figure 8–19  How vtkSparse-
Array<T> stores a sparse 3x3
matrix using coordiante storage.
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After resizing, the new arrays must be properly initialized. This process will vary depending on the
array storage type - for example, the contents of vtkDenseArray<T> will be undefined after resizing,
so vtkDenseArray<T> provides a Fill() method that can be used to overwrite the entire array with a
single value:

matrix->Fill(0);

Sparse arrays will be completely empty (all values will be undefined or ‘null’ values) after resizing,
and it is always a good idea to explicitly specify what the 'null' value (the value that is returned when-
ever a caller accesses an undefined set of coordinates) should be:

tensor->SetNullValue(0.0);

Having initialized an array, the next step is to populate it using SetValue():

// Overwrite vector[5] with "Hello World!":
vector->SetValue(5, "Hello, World!"); 

// Overwrite matrix[4, 3] with "22":
matrix->SetValue(4, 3, 22); 

// Overwrite tensor[3, 7, 1, 2] with "1.5":
vtkArrayCoordinates 
coordinates;
coordinates.SetDimensions(4); 
coordinates[0] = 3;
coordinates[1] = 7; 
coordinates[2] = 1;
coordinates[3] = 2; 
tensor->SetValue(coordinates, 1.5);

Note that, as with Resize(), there are overloaded versions of SetValue() that work with one-, two-, or
three-dimensional data, and that a helper class - vtkArrayCoordinates - is used to supply coordinates
for operations on higher dimension arrays. Not surprisingly, GetValue() is used to retrieve data from
an array:

// Access array value [5]:
vtkStdString vector_value = vector->GetValue(5); 

// Access matrix value [4, 3]:
int matrix_value = matrix->GetValue(4, 3); 

// Access tensor value [3, 7, 1, 2]:
double tensor_value = tensor->GetValue(coordinates);

SetValue() and GetValue() are strongly-typed methods provided by vtkTypedArray<T>, and assume
that you know the type of data stored in the array in advance, either because you created the array
yourself, or you used SafeDownCast() to cast from vtkArray to vtkTypedArray<T> for some specific
T. For situations where you are working with an array of unknown type, there are SetVariantValue() /
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GetVariantValue() methods provided by vtkArray that allow you to conveniently set and get values
from any array, regardless of type, albeit with the overhead of conversion to-and-from variant values:

// Print value [8] from any one-dimensional array
// to the console, regardless of type:
vtkArray* generic_array = /* Defined elsewhere */
cout << generic_array->GetVariantValue(8).ToString() << endl;

In this example, GetVariantValue() returns a vtkVariant object, and the vtkVariant::ToString() method
converts the underlying value to a string, regardless of the original type. Similarly, you could use vari-
ants to shuffle data within an array without having to know the type of data it contains:

// Swap values [3] and [7] within an array, regardless of array type:
vtkVariant temp = generic_array->GetVariantValue(3);
generic_array->SetVariantValue(3, generic_array->GetVariantValue(7));
generic_array->SetVariantValue(7, temp);

Performance
Although SetValue() and GetValue() provide an easily-understood, uniform interface to all arrays
regardless of their storage type, the convenience of this approach carries an abstraction penalty. In the
material that follows, we will cover some important techniques for improving the performance of
array-related code.

Populating Dense Arrays
You will often need to manipulate the contents of vtkDenseArray<T> as a simple block of memory,
either for I/O operations or for interoperability with other libraries. For these situations, vtkDenseAr-
ray<T> provides the GetStorage() method, which returns a pointer to the memory block that stores
the array contents. You could use this pointer to write the (binary) contents of an array to a file as a
single contiguous block:

// Write the contents of a dense int array as binary data to a stream
void WriteDenseArray(vtkDenseArray<int>* array, ostream& stream)
{
  stream.write(
    reinterpret_cast<char*>(array->GetStorage()),
    array->GetSize() * sizeof(int));
}

Alternately, you could pass the memory block to a library that performs dense array calculations, so
long as the ordering of the values in the memory block (Fortran) match what the library expects. You
should try to use this approach whenever practical, since it avoids making deep-copies of your data as
you pass it to a library and retrieve the results.

Populating Sparse Arrays 
Recall that vtkSparseArray<T> stores values internally using a list of non-null values with their cor-
responding coordinates. This means that whenever SetValue() is called, vtkSparseArray<T> must
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first determine whether an existing value at those coordinates already exists. If it does, the old value is
replaced with the new value; otherwise, the new value and its coordinates are appended to the end of
the list. This linear search for existing values makes SetValue() an expensive operation for sparse
arrays, compared to a constant-time operation on dense arrays. Used naively, SetValue() makes the
creation of sparse arrays unacceptably slow.

Fortunately, vtkSparseArray<T> provides the AddValue() method, which appends values to the
internal list without performing a search for existing values, and executes in amortized constant time.
This provides excellent performance, but means that the caller is responsible to avoid calling
AddValue() more than once with the same set of coordinates. In practice, this means that AddValue()
should only be used on an array when you are populating it from scratch (as you would do if you were
implementing a pipeline source that creates new sparse arrays). Never call AddValue() on an array
with unknown contents (such as the input to a filter), since you run the risk of adding values with
duplicate coordinates to the array's internal list (which is not allowed). The following code demon-
strates using AddValue() to efficiently create a 10000 x 10000 diagonal matrix:

vtkSparseArray<double>* array = vtkSparseArray<double>::New();
array->Resize(10000, 10000);
array->SetNullValue(0.0);
for(vtkIdType i = 0; i != 10000; ++i)
    {
    array->AddValue(i, i, 1.0);
    }

Iteration
The preceding examples demonstrate how to populate arrays efficiently by avoiding the pitfalls of the
SetValue() method. However, similar issues arise when accessing arrays using GetValue() - because
vtkSparseArray stores non-null values in an unordered list, GetValue() must perform a linear search
every time it is called, leading to unacceptably slow performance. To address this, VTK provides
another technique - iteration - that makes it possible to read and write values to dense and sparse
arrays in constant time, so long as certain conditions are met. Using iteration, we can:

• Eliminate the cost of linear lookups when getting / setting sparse array values. 
• Visit only non-null values in sparse arrays. 
• Implement filters using a consistent interface across dense and sparse arrays. 
• Implement filters that operate on arbitrary-dimension data.

The iteration interface provided for VTK multi-dimensional arrays works by exposing the values
stored in an array as a single unordered list. Each value in the array is assigned an index in the half-
open range [0, N), where N is the number of non-null values stored in the array, and the vtkArray and
vtkTypedArray<T> classes provide methods for accessing values 'by index': SetValueN(), GetVal-
ueN(), and GetCoordinatesN(). Using these methods, you can “visit” every value in an array, regard-
less of the type of array storage, and regardless of the number of dimensions in the array, using a
single loop. For example, the following code efficiently increments every value in an array of integers
by one, without any knowledge of its dimensions or whether the array is sparse or dense:

vtkTypedArray<int>* array = /* Defined elsewhere */
for(vtkIdType n = 0; n != array->GetNonNullSize(); ++n)
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  {
  array->SetValueN(n, array->GetValueN(n) + 1);
  }

Note that the order in which we “visit” the values in the array using GetValueN() / SetValueN() is pur-
posefully undefined, and that the above code works because the order is unimportant - regardless of
the type of underlying array, whether dense or sparse, one-dimensional or 11-dimensional, it does not
matter whether value[3] is incremented before or after value[300], so long as both are eventually
modified in a consistent manner. 

Although you cannot control the order in which values are visited, you can use GetCoordi-
natesN() to discover “where you are at” as you iterate over the contents of any array, and this is usu-
ally sufficient for most algorithm implementations. For example, the following code computes the
sum of the values in each row in a matrix, storing the results in a dense vector. Although we visit the
matrix values in arbitrary order, we can use each value's coordinates as a constant time lookup to
accumulate values in our result vector:

vtkTypedArray<double>* matrix = /* Defined elsewhere */
vtkIdType row_count = matrix->GetExtents()[0];

vtkTypedArray<double>* vector = vtkDenseArray<double>::New();
vector->Resize(row_count);
vector->Fill(0.0);

for(vtkIdType n = 0; n != matrix->GetNonNullSize(); ++n)
  {
  vtkArrayCoordinates coordinates;
  matrix->GetCoordinatesN(n, coordinates);
  vtkIdType row = coordinates[0];

  vector->SetValue(row, vector->GetValue(row) + matrix->GetValueN(n));
  }

The lack of a specific order of iteration may seem limiting at first, but a surprisingly large number of
algorithms can be written to work within this constraint, benefiting from constant-time lookups,
dimension, and storage-type independence.

Array Data

Now that we can create and manipulate multi-dimension arrays, it's time to move them through the
VTK pipeline. Like vtkAbstractArray, vtkArray isn't a vtkDataObject, so it cannot be used directly by
the pipeline. Instead, VTK provides vtkArrayData which acts as a container for arrays, and vtkArray-
DataAlgorithm which can be used to implement vtkArrayData sources and filters:

Array Sources 

• vtkDiagonalMatrixSource - Produces sparse or dense matrices of arbitrary size, with user-
assigned values for the diagonal, superdiagonal, and subdiagonal.
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• vtkBoostRandomSparseArraySource - Produces sparse matrices with arbitrary size and number
of dimensions. Provides separate parameters to control generation of random values and ran-
dom sparse patterns. 

• vtkTableToSparseArray - Converts a vtkTable containing coordinates and values into a sparse
array of arbitrary dimensions.

Array Algorithms 

• vtkAdjacencyMatrixToEdgeTable - Converts a dense matrix into a vtkTable suitable for use
with vtkTableToGraph. Dimension labels in the input matrix are mapped to column names in
the output table. 

• vtkArrayVectorNorm - Computes an L-norm for each column-vector in a sparse double matrix. 
• vtkCosineSimilarity - Treats each row or column in a matrix as a vector, and computes the dot-

product similarity between each pair of vectors, producing a vtkTable suitable for use with vtk-
TableToGraph. Note: In VTK versions after 5.4, vtkCosineSimilarity has been renamed vtkDot-
ProductSimilarity, to better describe its functionality

• vtkDotProductSimilarity -Treats each row or column in a matrix as a vector, and computes the
dot-product similarity between each pair of vectors, producing a vtkTable suitable for use with
vtkTableToGraph. 

• vtkBoostLogWeighting - Replaces each value p in an array with the natural logarithm of p+1.
Good example of a filter that works with any array, containing any number of dimensions. 

• vtkMatricizeArray - Converts sparse double arrays of arbitrary dimension to sparse matrices.
For example, an i x j x k tensor can be converted into an i x jk, j x ik, or ij x k matrix. 

• vtkNormalizeMatrixVectors - Normalizes either row vectors or column vectors in a matrix.
Good example of a filter that works efficiently with both sparse and dense input matrices. Good
example of a filter that works with either row or column vectors. 

• vtkTransposeMatrix - Computes the transpose of a matrix. 
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Geospatial Visualization 9

Geospatial visualization is a discipline that combines
techniques from traditional scientific visualization and information visualization in order to display
geographically organized data. VTK's geospatial visualization facilities are currently under develop-
ment and while VTK 5.4 provides some facilities for rendering high resolution maps, the API is sub-
ject to change in the next revision of VTK and may even break backwards compatibility.

9.1 Geographic Views and Representations
The main geospatial visualization functionality provided by VTK is the ability to render extremely
large texture images onto geometric representations of the Earth. Both the image data and the geome-
try it is textured upon must be hierarchical representations that are loaded on demand from disk or a
network server because they would otherwise consume too much memory and take too long to load.
The following Python snippet shows the easiest way to display a map in VTK, along with a picture of
the result. For information on the contents of versionUtil, which resolves some differences between
VTK 5.4 and later versions, see “Information Visualization” on page 163. Also note that specifying “-
D <path>” will allow the script to find the image data from the VTK data repository.

from vtk import *
import vtk.util.misc
import versionUtil

# Read in a small map image from VTKData.
rd = vtkJPEGReader()
datapath = vtk.util.misc.vtkGetDataRoot()
rd.SetFileName(datapath + '/Data/NE2_ps_bath_small.jpg')
rd.Update()
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# Create a GeoView
gv = vtkGeoView()
rw = versionUtil.SetupView(gv)

# Add both image and geometry representations to the view
mi = gv.AddDefaultImageRepresentation(rd.GetOutput())
# Start threads that fetch data as required
gv.GetTerrain().GetSource().Initialize(1)
mi.GetSource().Initialize(1)

# Render and interact with the view.
gv.GetRenderer().SetBackground(1, 1, 1)
gv.GetRenderer().SetBackground2(.5, .5, .5)
gv.GetRenderer().GradientBackgroundOn()
versionUtil.ShowView(gv)

The Geovis toolkit provides a specialization of vtkView that cre-
ates and manages a set of actors to render a virtual globe textured
with the image you provide of the Earth's surface. The vtkGe-
oView class also includes a compass widget which allows you to
rotate the globe about an axis perpendicular to the viewport by
clicking and dragging on the compass rose. The compass widget
also allows you to zoom in and out using the distance slider and to
change the angle between the Earth's surface normal and the cam-
era view vector using the camera tilt slider.

GeoView's AddDefaultImageRepresentation method cre-
ates two representations: one—vtkGeoAlignedImageRepresenta-
tion—that takes a high resolution input map image and generates
a tile hierarchy; and one—vtkGeoTerraindata that is well-
defined—that generates a geometry hierarchy representing a 3-
dimensional globe. You are of course free to use different repre-
sentations. The next two paragraphs show how to manually create and add representations.

The vtkGeoView will accept one geometry representation and multiple aligned image represen-
tations. For instance, by adding the following lines to the script above—just before the call to
ShowView()—you can display a cloud layer on top of the base map.

# Read in a cloud cover image from VTKData.
rd2 = vtkJPEGReader()
datapath = vtk.util.misc.vtkGetDataRoot()
rd2.SetFileName(datapath + '/Data/clouds.jpeg')
rd2.Update()

# Create the texture image hierarchy from the cloud image
mi = vtkGeoAlignedImageRepresentation()
ms = vtkGeoAlignedImageSource()
ms.SetImage(rd2.GetOutput())
ms.Initialize(1) # Start a thread to respond to requests
mi.SetSource(ms)
gv.AddRepresentation(mi) # A GeoView may have multiple textures

Figure 9–1  3D geospatial view 
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To add geographically located information to the visualization,
vtkGeoView will accept graph representations whose coordinates
are specified as latitude and longitude. In VTK 5.4, the representa-
tion must be a vtkGeoGraphRepresentation instance but in later
versions any vtkRenderedGraphRepresentation whose layout strat-
egy results in latitude and longitude coordinates is acceptable.

# Create a graph with lat-long coordinates
gs = vtkGeoRandomGraphSource()
if versionUtil.VersionGreaterThan(5, 4):
  gr = vtkRenderedGraphRepresentation

gr.SetLayoutStrategyToAssignCoordinates
('latitude', 'longitude')

  gr.SetEdgeLayoutStrategyToGeo(0.1)
else:
  gr = vtkGeoGraphRepresentation()

gr.SetInputConnection( gs.GetOutputPort() )
gv.AddRepresentation( gr )

While the 3-D virtual globe in vtkGeoView is entertaining, in
some situations geographic visualizations can be more informa-
tive using a cartographic map projection that shows the entire
Earth on a flat surface. The vtkGeoView2D subclass of vtkView,
the vtkGeoTerrain2D 2-dimensional map geometry representa-
tion, and the vtkGeoGraphRepresentation2D graph representation
provide a way to produce maps using cartographic projections.
The vtkGeoView2D accepts the same image representations as the
vtkGeoView, as the following code snippet illustrates.

gv = vtkGeoView2D()

# Create the terrain geometry
ps = vtkGeoProjectionSource()
ps.Initialize(1)
ps.SetProjection(138) # The "robin" projection
tr = vtkGeoTerrain2D()
tr.SetSource(ps)
gv.SetSurface(tr) # A GeoView can only have one terrain

# Create image representations and graph source
# the same way as previous 3D examples.
# Omitted for brevity ...

# Render and interact with the view.
versionUtil.Show( gv )

Figure 9–2  Using multi-textur-
ing in VTK's geospatial view

Figure 9–3  A graph drawn on a
3-D globe.
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9.2 Generating Hierarchies
You may have noticed from the examples above that the
vtkGeoAlignedImageSource takes the name of a single
image file as an input. As the size of the image file
increases, generating a set of tiles that can be down-
loaded to the video card becomes costly. Similarly, sam-
pling cartographic projections—which frequently
involves evaluating transcendental functions at each
point—in order to generate polygonal tiles can also be
burdensome. To avoid performing this work each time a
program is started,

• the vtkGeoAlignedImageRepresentation and vtkGeoTerrain classes provide a SaveDatabase()
method to save the resulting hierarchy of tiles into a directory, and

• alternative sources named vtkFileImageSource and vtkFileTerrainSource can be used which
read these tiles from disk instead of generating them on the fly from the source image or carto-
graphic projection.

Now that we have covered how to use the vtkGeoView and vtkGeoView2D along with their matching
representations, the next sections discuss how the representations work with the sources providing the
underlying data.

9.3 Hierarchical Data Sources—On-demand resolution
In the examples above, you might have noticed that the image and terrain representations each man-
age a source object. These source objects are instances of hierarchical image or geometry data and
they all inherit from vtkGeoSource. The vtkGeoSource class is an abstract base class that provides a
consistent way to perform on-demand loading that allows interactive rendering. Because loading
geometry and image data from a disk or network can introduce undesirable latency in rendering, the
vtkGeoSource class uses threads to load requested data asynchronously. Each time a render occurs,
content that has already been loaded into a vtkGeoSource subclass instance is used for drawing.
Whenever this content is not deep enough in the hierarchy to result in a rendering with a sufficient
accuracy, new hierarchy nodes are added to a list of requests. The auxiliary thread in the vtkGeo-
Source subclass is responsible for loading the requested nodes and signaling to the main thread that
the new image or geometry node is ready for insertion into the hierarchy.

The vtkGeoAlignedImageSource subclass of vtkGeoSource represents a hierarchy of image
tiles. Each tile provides a regularly-sampled image over a rectangular patch in latitude-longitude
coordinate-space (lat-long space). These tiles are textured onto geometry (polydata) obtained from
another hierarchy. VTK provides 2 sources of geometric hierarchies:

• 3-dimensional coordinates projected into screen space by the rendering pipeline (such as
OpenGL®), or

• 2-dimensional coordinates projected into a cartographic space by a traditional map projection.

The 3-dimensional screen-space polydata hierarchy is represented by the class named vtkGeoGlobe-
Source; the 2-dimensional cartographic space polydata hierarchy is represented by vtkGeoProjection-

Figure 9–4  Showing the same graph
from Figure 9–3 on VTK's 2D geospatial
view
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Source. These classes generate or read the geometry and present a hierarchy, but they do not
determine which nodes in the hierarchy should be used for rendering. That task is reserved for the ter-
rain classes.

9.4 Terrain
A terrain class exists for each case and references a subclass of vtkGeoSource from which it obtains a
representation of the Earth's geometry. The terrain classes are representations responsible for request-
ing geometry from the vtkGeoSource and configuring a list of actors used to render a cut of the hier-
archy that has been loaded. The actors created by the terrain classes are reused as different tiles are
made available by the vtkGeoSource. In addition to assigning polydata from a tile to an actor, the ter-
rain classes assign image data used to texture the geometry. On hardware that supports multitexturing,
multiple lat-long-aligned images may be assigned to each tile.

In the 3-dimensional case, the Earth is represented using the vtkGeoTerrain class that provides
rectangular patches that approximate a sphere and are tessellated at varying resolutions depending on
a camera's position and orientation. Coordinates are specified in meters.

In the 2-dimensional case, the Earth is represented using the vtkGeoTerrain2D class that pro-
vides rectangular patches whose coordinates are in some cartographic space. The units of the carto-
graphic space coordinates vary depending on the map projection used. Because the vtkPoints class
requires all points to have 3 coordinates but only 2 are significant, all z coordinate values are 0. The
patches are polygonal data which may contain triangles and quadrilaterals. The subset of patches in
the hierarchy that are presented for rendering are selected based on the error with which they repre-
sent the map projection compared to the viewport pixel size.

9.5 Cartographic Projections
The cartographic projections applied in the 2-dimensional case are provided by the vtkGeoProjection
class. To transform to or from cartographic coordinates, the vtkGeoTransform class takes a source
and destination vtkGeoProjection instance and uses the libproj4 library in VTK/Utilities to transform
points. Because vtkGeoTransform inherits from the vtkAbstractTransform class, the vtkTransform-
Filter may be used to transform any data you wish to or from cartographic space. By default, new vtk-
GeoProjection instances are set to the natural cartographic transform named “latlong”. Over 180
projections are provided, a few of which are shown in Figure 9–5. Note that many projections are not
intended for use over the entire globe, but rather over a small lat-long region. If you attempt to use
these projections on a domain that is too large, the results will often be confusing and incoherent.

Figure 9–5  Some interest-
ing cartographic projections
provided by libproj4
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The example below illustrates how a
cartographic projection can be used to trans-
form vector data from lat-long space into
cartographic space. The vector data in the
example is provided by the vtkGeoGraticule
class, which generates a grid covering the
globe with lines of constant latitude and
longitude. The graticule is sampled at a
lower rate near the poles to avoid clutter.

# The default is latlong 
# (no projection at all)
ps = vtkGeoProjection()

# Interesting destination 
# projections to try:
#  wintri, rouss, robin, eck1
pd.SetName('wintri') # Use the Robinson projection
pd.SetCentralMeridian(0)

# The vtkGeoTransform class moves points from one projection to
# another by applying the inverse of the source projection and
# the forward projection of the destination to each point.
gt = vtkGeoTransform()
gt.SetSourceProjection(ps)
gt.SetDestinationProjection(pd)

# We will obtain points in lat-long coordinates from the
# vtkGeoGraticule. It creates a grid that covers the globe in
# lat-long coordinates.
gg = vtkGeoGraticule()
gg.SetLongitudeBounds(-180, 180)
gg.SetLatitudeBounds(-90, 90)
# How many grid points should there be along the latitude?
gg.SetLatitudeLevel(3)
# How many grid points should there be along the longitude?
gg.SetLongitudeLevel(3)

# The vtkTransformFilter is a vtkAlgorithm that uses a transform
# to map points from one coordinate system to another.
tr = vtkTransformFilter()
tr.SetTransform(gt)
tr.SetInputConnection(gg.GetOutputPort())

# Create a mapper, actor, renderer, to display the results.

Figure 9–6  A grid of equal latitude/longitude lines
sent through a 2D projection
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Building Models 10

We have seen how to use source objects (both readers
and procedural objects) to create geometry. (See “Creating Simple Models” on page 42.) VTK pro-
vides several other techniques to generate more complex models. Three techniques covered in this
chapter are implicit modeling, extrusion, and surface reconstruction from unorganized points. 

If you are working with data in a form that lacks topological or geometric structure, VTK can
represent this information as field data (using class vtkDataObject, see “Working With Field Data” on
page 249), which can be further processed to produce datasets for visualization with the techniques in
this chapter. For example, an n-dimensional financial record can be reduced to three dimensions by
choosing three variables as independent variables. Then the techniques described here—Delaunay tri-
angulation, Gaussian splatting, and surface reconstruction—can be used to create structure suitable
for visualization by standard methods.

10.1 Implicit Modeling
Implicit modeling is a powerful technique employing 3D contouring (isosurface generation) to create
polygonal surface meshes. The contouring operation is applied to a vtkImageData dataset (a regular
volume) whose scalar values have been synthetically generated. The key to implicit modeling is that
the scalar field can be generated using a wide variety of techniques. These techniques include produc-
ing a distance field from generating primitives (e.g., a field representing the distance from a set of
lines and/or polygons) as well as using boolean set operations to combine the scalar fields.

Creating An Implicit Model

Here’s an example that uses some lines to generate a complex, polygonal surface. The lines are
arranged to spell the word “HELLO” and serve as the generating seed geometry (Figure 10–1). (The
Tcl script is taken from VTK/Examples/Modelling/Tcl/hello.tcl.)
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# create lines
vtkPolyDataReader reader

reader SetFileName "$VTK_DATA_ROOT/Data/hello.vtk"
vtkPolyDataMapper lineMapper

lineMapper SetInputConnection [reader GetOutputPort]
vtkActor lineActor

lineActor SetMapper lineMapper
eval [lineActor GetProperty] SetColor $red

# create implicit model
vtkImplicitModeller imp
  imp SetInputConnection [reader GetOutputPort]
  imp SetSampleDimensions 110 40 20
  imp SetMaximumDistance 0.25
  imp SetModelBounds -1.0 10.0 -1.0 3.0 -1.0 1.0
vtkContourFilter contour
  contour SetInputConnection [imp GetOutputPort]
  contour SetValue 0 0.25
vtkPolyDataMapper impMapper
  impMapper SetInputConnection [contour GetOutputPort]
  impMapper ScalarVisibilityOff
vtkActor impActor
  impActor SetMapper impMapper
  eval [impActor GetProperty] SetColor $peacock
  [impActor GetProperty] SetOpacity 0.5

What’s happening in this script is that the lines that stroke out the word “hello” serve as the generat-
ing primitives. The vtkImplicitModeller class computes the distance from the lines (taking the closest
distance to any line) to the points in the output vtkImageData and assigns this distance as the scalar
value at each point in the dataset. The output is then passed to the vtkContourFilter which generates a
polygonal isosurface. (The isosurface value is the distance from the generating primitives.)

There are a couple of important parameters in vtkImplicitModeller. The MaximumDistance
instance variable controls how far from the generating primitives to continue the distance calculation.
This instance variable, expressed as a fraction of the grid length, has a great effect on the speed of cal-
culation: smaller values result in faster computation, but the isosurface may become choppy or break
up if the values are too small. The SampleDimensions instance variable controls the resolution of the
output vtkImageData, and ModelBounds controls the position and size of the dataset in space.

Figure 10–1  Implicit modeling from lines spelling the word
“hello.”
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Sampling Implicit Functions
Another powerful modeling technique is the use of implicit functions. Implicit functions have the
form

F(x,y,z) = constant

Spheres, cones, ellipsoids, planes, and many other useful geo-
metric entities can be described with implicit functions. For
example, a sphere S of radius R centered at the origin can be
described by the equation F(x,y,z) = R2 - x2 - y2 - z2. When
F(x,y,z)=0, the equation describes S exactly. When F(x,y,z) < 0,
we describe a sphere that lies inside the sphere S, and when
F(x,y,z) > 0, we describe a sphere that lies outside the sphere S.
As its name implies, an implicit function defines a surface
implicitly; producing an explicit representation of the surface
(e.g., polygons) requires sampling the function over a volume
and then performing an isocontouring operation as demonstrated
in the next example.

Besides modeling, implicit functions can also be combined using the set operations union,
intersection, and difference. These operations allow you to create complex geometry using combina-
tions of implicit functions. Here’s an example script that models an ice cream cone by using a sphere
(ice cream), a cone intersected by two planes (to create a cone of finite extent), and another sphere to
simulate the “bite” out of the ice cream. The script is taken from VTK/Examples/Modelling/Tcl/
iceCream.tcl.

# create implicit function primitives
vtkCone cone
  cone SetAngle 20
vtkPlane vertPlane
  vertPlane SetOrigin .1 0 0
  vertPlane SetNormal -1 0 0
vtkPlane basePlane
  basePlane SetOrigin 1.2 0 0
  basePlane SetNormal 1 0 0
vtkSphere iceCream
  iceCream SetCenter 1.333 0 0
  iceCream SetRadius 0.5
vtkSphere bite
  bite SetCenter 1.5 0 0.5
  bite SetRadius 0.25

# combine primitives to build ice-cream cone
vtkImplicitBoolean theCone

theCone SetOperationTypeToIntersection
  theCone AddFunction cone
  theCone AddFunction vertPlane
  theCone AddFunction basePlane

Figure 10–2  Implicit modeling
using boolean combinations.



216 Building Models

# take a bite out of the ice cream
vtkImplicitBoolean theCream
  theCream SetOperationTypeToDifference
  theCream AddFunction iceCream
  theCream AddFunction bite

# iso-surface to create geometry of the cone
vtkSampleFunction theConeSample
  theConeSample SetImplicitFunction theCone
  theConeSample SetModelBounds -1 1.5 -1.25 1.25 -1.25 1.25 
  theConeSample SetSampleDimensions 60 60 60
  theConeSample ComputeNormalsOff
vtkContourFilter theConeSurface
  theConeSurface SetInputConnection [theConeSample GetOutputPort]
  theConeSurface SetValue 0 0.0
vtkPolyDataMapper coneMapper
  coneMapper SetInputConnection [theConeSurface GetOutputPort]
  coneMapper ScalarVisibilityOff
vtkActor coneActor
  coneActor SetMapper coneMapper
  eval [coneActor GetProperty] SetColor $chocolate

# iso-surface to create geometry of the ice cream
vtkSampleFunction theCreamSample
  theCreamSample SetImplicitFunction theCream
  theCreamSample SetModelBound 0 2.5 -1.25 1.25 -1.25 1.25

theCreamSample SetSampleDimensions 60 60 60
  theCreamSample ComputeNormalsOff
vtkContourFilter theCreamSurface
  theCreamSurface SetInputConnection [theCreamSample GetOutputPort]
  theCreamSurface SetValue 0 0.0
vtkPolyDataMapper creamMapper
  creamMapper SetInputConnection [theCreamSurface GetOutputPort]
  creamMapper ScalarVisibilityOff
vtkActor creamActor
  creamActor SetMapper creamMapper
  eval [creamActor GetProperty] SetColor $mint

The classes vtkSampleFunction and vtkContourFilter are the keys to building the polygonal geome-
try. vtkSampleFunction evaluates the implicit function (actually the boolean combination of implicit
functions) to generate scalars across a volume (vtkImageData) dataset. vtkContourFilter is then used
to generate an isosurface which approximates the implicit function. The accuracy of the approxima-
tion depends on the nature of the implicit function, as well as the resolution of the volume generated
by vtkSampleFunction (specified using the SetSampleDimensions() method). 

A couple of usage notes: Boolean combinations can be nested to arbitrary depth. Just make sure
the hierarchy does not contain self-referencing loops. Also, you may wish to use vtkDecimatePro to
reduce the number of primitives output by the contour filter since the number of triangles can be quite
large. See “Decimation” on page 107 for more information.
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10.2 Extrusion 

Extrusion is a modeling technique that sweeps a generating
object along a path to create a surface. For example, we can
sweep a line in a direction perpendicular to it to create a
plane. 

The Visualization Toolkit offers two methods of extru-
sion: linear extrusion and rotational extrusion. In VTK, the
generating object is a vtkPolyData dataset. Lines, vertices,
and “free edges” (edges used by only one polygon) are used to
generate the extruded surface. The vtkLinearExtrusionFilter
sweeps the generating primitives along a straight line path;
the vtkRotationalExtrusionFilter sweeps them along a rota-
tional path. (Translation during rotation is also possible.)

In this example we will use an octagonal polygon (i.e., an approximation to a disk) to sweep out
a combined rotational/translational path to model a “spring” (Figure 10–3). The filter extrudes its
input (generating primitives) around the z axis while also translating (during rotation) along the z axis
and adjusting the sweep radius. By default, the instance variable Capping is on, so the extruded sur-
face (a hollow tube) is capped by the generating primitive. Also, we must set the Resolution instance
variable to generate a reasonable approximation. (The vtkPolyDataNormals filter used in the follow-
ing example is described in “Generate Surface Normals” on page 107.) 

# create spring profile (a disk)
vtkPoints points
  points InsertPoint 0 1.0 0.0 0.0
  points InsertPoint 1 1.0732 0.0 -0.1768
  points InsertPoint 2 1.25 0.0 -0.25
  points InsertPoint 3 1.4268 0.0 -0.1768
  points InsertPoint 4 1.5 0.0 0.00
  points InsertPoint 5 1.4268 0.0 0.1768
  points InsertPoint 6 1.25 0.0 0.25
  points InsertPoint 7 1.0732 0.0 0.1768
vtkCellArray poly
  poly InsertNextCell 8;#number of points
  poly InsertCellPoint 0
  poly InsertCellPoint 1
  poly InsertCellPoint 2
  poly InsertCellPoint 3
  poly InsertCellPoint 4
  poly InsertCellPoint 5
  poly InsertCellPoint 6
  poly InsertCellPoint 7
vtkPolyData profile
  profile SetPoints points
  profile SetPolys poly

# extrude profile to make spring
vtkRotationalExtrusionFilter extrude
  extrude SetInput profile

Figure 10–3  Rotational extrusion.
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  extrude SetResolution 360
  extrude SetTranslation 6
  extrude SetDeltaRadius 1.0
  extrude SetAngle 2160.0;#six revolutions
  
vtkPolyDataNormals normals
  normals SetInputConnection [extrude GetOutputPort]
  normals SetFeatureAngle 60
vtkPolyDataMapper map
  map SetInputConnection [normals GetOutputPort]
vtkActor spring
  spring SetMapper map
  [spring GetProperty] SetColor 0.6902 0.7686 0.8706
  [spring GetProperty] SetDiffuse 0.7
  [spring GetProperty] SetSpecular 0.4
  [spring GetProperty] SetSpecularPower 20
  [spring GetProperty] BackfaceCullingOn

The vtkLinearExtrusionFilter is similar, but it is simpler to use than vtkRotationalExtrusionFilter.
Linear extrusion can be performed along a user-specified vector
(SetExtrusionTypeToVectorExtrusion()) or towards a user-specified point
(SetExtrusionTypeToPointExtrusion()); or the extrusion can be performed in the direction of the sur-
face normals of the generating surface (SetExtrusionTypeToNormalExtrusion()).

10.3 Constructing Surfaces
Often we wish to construct a surface from a set of unstructured points or other data. The points may
come from a laser digitizing system or may be assembled from multi-variate data. In this section we
examine techniques to build new surfaces from data of this form. You may also wish to refer to
“Building Models” on page 213 for other methods to create surfaces from generating primitives (i.e.,
implicit modeling).

Delaunay Triangulation
The Delaunay triangulation is widely used in computational geometry. The basic application of the
Delaunay triangulation is to create a simplicial mesh (i.e., triangles in 2D, tetrahedra in 3D) from a set
of points. The resulting mesh can then be used in a variety of ways, including processing with stan-
dard visualization techniques. In VTK, there are two objects for creating Delaunay triangulations:
vtkDelaunay2D and vtkDelaunay3D.

Note: Delaunay triangulation is numerically sensitive. The current version of vtkDelaunay3D
may not be robust enough to reliably handle large numbers of points. This will be improved in the
near future.

vtkDelaunay2D. The vtkDelaunay2D object takes vtkPointSet (or any of its subclasses) as input and
generates a vtkPolyData on output. Typically the output is a triangle mesh, but if you use a non-zero
Alpha value it is possible to generate meshes consisting of triangles, lines, and vertices. (This param-
eter controls the “size” of output primitives. The size of the primitive is measured by an n-dimen-
sional circumsphere; only those pieces of the mesh whose circumsphere has a circumradius less than
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or equal to the alpha value are sent to the output. For example, if an edge of length L is less than
2*Alpha, the edge would be output). 

In the following Tcl example we generate points using
a random distribution in the (0,1) x-y plane.
(vtkDelaunay2D ignores the z-component during execution,
although it does output the z value.) To create a nicer picture
we use vtkTubeFilter and vtkGlyph3D to create tubes
around mesh edges and spheres around the mesh points. The
script comes from VTK/Examples/Modelling/Tcl/
DelMesh.tcl. 

# create some points
vtkMath math
vtkPoints points
for {set i 0} {$i<50} {incr i 1} {
  eval points InsertPoint $i [math Random 0 1] \

[math Random 0 1] 0.0
}
vtkPolyData profile
  profile SetPoints points

# triangulate them
vtkDelaunay2D del
  del SetInput profile
  del SetTolerance 0.001
vtkPolyDataMapper mapMesh
  mapMesh SetInputConnection [del GetOutputPort]
vtkActor meshActor
  meshActor SetMapper mapMesh

[meshActor GetProperty] SetColor .1 .2 .4
vtkExtractEdges extract
  extract SetInputConnection [del GetOutputPort]
vtkTubeFilter tubes
  tubes SetInputConnection [extract GetOutputPort]
  tubes SetRadius 0.01
  tubes SetNumberOfSides 6
vtkPolyDataMapper mapEdges
  mapEdges SetInputConnection [tubes GetOutputPort]
vtkActor edgeActor
  edgeActor SetMapper mapEdges

eval [edgeActor GetProperty] SetColor $peacock
  [edgeActor GetProperty] SetSpecularColor 1 1 1
  [edgeActor GetProperty] SetSpecular 0.3
  [edgeActor GetProperty] SetSpecularPower 20
  [edgeActor GetProperty] SetAmbient 0.2
  [edgeActor GetProperty] SetDiffuse 0.8

vtkSphereSource ball
  ball SetRadius 0.025
  ball SetThetaResolution 12

Figure 10–4  2D Delaunay triangulation
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  ball SetPhiResolution 12
vtkGlyph3D balls
  balls SetInputConnection [del GetOutputPort]
  balls SetSourceConnection [ball GetOutputPort]
vtkPolyDataMapper mapBalls
  mapBalls SetInputConnection [balls GetOutputPort]
vtkActor ballActor
  ballActor SetMapper mapBalls
  eval [ballActor GetProperty] SetColor $hot_pink
  [ballActor GetProperty] SetSpecularColor 1 1 1
  [ballActor GetProperty] SetSpecular 0.3
  [ballActor GetProperty] SetSpecularPower 20
  [ballActor GetProperty] SetAmbient 0.2
  [ballActor GetProperty] SetDiffuse 0.8

The Tolerance instance variable is used to determine whether points are coincident. Points located a
distance Tolerance apart (or less) are considered coincident, and one of the points may be discarded.
Tolerance is expressed as a fraction of the length of the diagonal of the bounding box of the input
points. 

Another useful feature of vtkDelaunay2D is the ability to define constraint edges and polygons.
Normally, vtkDelaunay2D will generate a Delaunay triangulation of an input set of points satisfying
the circumsphere criterion. However, in many cases additional information specifying edges in the
triangulation (constraint edges) or “holes” in the data (constraint polygons) may be available. By
specifying constraint edges and polygons, vtkDelaunay2D can be used to generate sophisticated trian-
gulations of points. The following example (taken from VTK/Examples/Modelling/Tcl/con-
strainedDelaunay.tcl) demonstrates this.

vtkPoints points
  points InsertPoint 0 1 4 0
  points InsertPoint 1 3 4 0
  points InsertPoint 2 7 4 0

...(more points defined)...
vtkCellArray polys
  polys InsertNextCell 12
  polys InsertCellPoint 0
  polys InsertCellPoint 1
  polys InsertCellPoint 2

...(a total of two polygons defined)...
vtkPolyData polyData
  polyData SetPoints points
  polyData SetPolys polys

# generate constrained triangulation
vtkDelaunay2D del
  del SetInput polyData
  del SetSource polyData
vtkPolyDataMapper mapMesh
  mapMesh SetInputConnection [del GetOutputPort]
vtkActor meshActor
  meshActor SetMapper mapMesh
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# tubes around mesh
vtkExtractEdges extract
  extract SetInputConnection [del GetOutputPort]
vtkTubeFilter tubes
  tubes SetInputConnection [extract GetOutputPort]
  tubes SetRadius 0.1
  tubes SetNumberOfSides 6
vtkPolyDataMapper mapEdges
  mapEdges SetInputConnection [tubes GetOutputPort]
vtkActor edgeActor
  edgeActor SetMapper mapEdges
  eval [edgeActor GetProperty] SetColor $peacock
  [edgeActor GetProperty] SetSpecularColor 1 1 1
  [edgeActor GetProperty] SetSpecular 0.3
  [edgeActor GetProperty] SetSpecularPower 20
  [edgeActor GetProperty] SetAmbient 0.2
  [edgeActor GetProperty] SetDiffuse 0.8

In this example (resulting image shown on the left of Figure 10–5), a second input to vtkDelaunay2D
has been defined (with the SetSource() method). This input defines two polygons, one ordered coun-
ter-clockwise and defining the outer rectangular boundary, and the second clockwise-ordered polygon
defining the “vtk” hole in the triangulation.

Using constraint edges is much simpler since the ordering of the edges is not important. Refer-
ring to the example VTK/Examples/Modelling/Tcl/faultLines.tcl, constraint edges (lines
and polylines provided to the second input Source) are used to constrain the triangulation along a set
of edges. (See the right side of Figure 10–5.)

vtkDelaunay3D. vtkDelaunay3D is similar to vtkDelaunay2D. The major difference is that the out-
put of vtkDelaunay3D is an unstructured grid dataset (i.e., a tetrahedral mesh). 

vtkMath math
vtkPoints points
for {set i 0} {$i<25} {incr i 1} { 

points InsertPoint $i [math Random 0 1]\
[math Random 0 1] [math Random 0 1]}

Figure 10–5  Constrained Delaunay triangulation. On the left, a constraint polygon defines a hole in the
triangulation. On the right, constraint edges define fault lines in a geological horizon.
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vtkPolyData profile
  profile SetPoints points

# triangulate them
vtkDelaunay3D del
  del SetInput profile
  del BoundingTriangulationOn
  del SetTolerance 0.01
  del SetAlpha 0.2

# shrink the result to help see it better
vtkShrinkFilter shrink
  shrink SetInputConnection [del 
GetOutputPort]
  shrink SetShrinkFactor 0.9
vtkDataSetMapper map
  map SetInputConnection [shrink GetOutputPort]
vtkActor triangulation
  triangulation SetMapper map
  [triangulation GetProperty] SetColor 1 0 0

In this example (taken from VTK/Examples/Modelling/Tcl/Delaunay3D.tcl) we triangulate a
random set of points in 3D space ranging between (0,1) along each of the coordinate axes. A non-zero
Alpha is used, so the mesh consists of a collection of tetrahedra, triangles, lines, and points. The
resulting tetrahedral mesh is shrunk with vtkShrinkFilter and mapped with vtkDataSetMapper.

Gaussian Splatting
Many times data has no inherent structure, or the dimension of the data is high relative to what 2D,
3D, or 4D (3D with animation) visualization techniques can represent. An example of one such data
set is scalar values (i.e., temperature) located at random points in space from a thermocouple measur-
ing system. Multidimensional financial data (i.e., many records each record having several variables),
is another example. One of the simplest and most robust procedures that can used to treat such data is
to resample the data on a volume (i.e., vtkImageData dataset) and then visualize the resampled data-
set. In the following C++ example (VTK/Examples/Modelling/Cxx/finance.cxx) we show
how to do this with multivariate financial data. You may wish to refer to “Working With Field Data”
on page 249 for an alternative way to work with this data.

The data consists of an ASCII text file with 3188 financial records. Each record contains the
following information: the time late in paying the loan (TIME_LATE); the monthly payment of the
loan (MONTHLY_PAYMENT); the principal left on the loan (UNPAID_PRINCIPAL); the original amount
of the loan (LOAN_AMOUNT); the interest rate on the loan (INTEREST_RATE); and the monthly income
of the loanee (MONTHLY_INCOME). 

The purpose of the visualization is to understand the relationship of these variables to the vari-
able of major concern: TIME_LATE. Building a mathematical model or understanding of this data
helps financial institutions make less risky loans. What we will do in the example is to show the late
paying loans in context with the total loan population. We begin by choosing MONTHLY_PAYMENT as
the x-axis, INTEREST_RATE as the y-axis, and LOAN_AMOUNT as the z-axis, and then choose
TIME_LATE as the dependent variable (i.e., we reduce the dimensionality of the data by selecting
three variables and ignoring the others). The class vtkGaussianSplatter is used to take the reduced

Figure 10–6  3D Delaunay tri-
angulation with non-zero alpha.
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financial data and “splat” them into a vtkImageData dataset using Gaussian ellipsoids. Then vtkCon-
tourFilter is used to generate an isosurface. Note that the first instance of vtkGaussianSplatter splats
the entire dataset without scaling the splats, while the second instance of vtkGaussianSplatter scales
the splats according to the scalar value (i.e., TIME_LATE). The late loans are rendered in red while the
total population is rendered in a translucent white color. (See Figure 10–7.) Following is the C++
code demonstrating Gaussian splatting. 

main ()
{
 double bounds[6];

vtkDataSet *dataSet;
 
...read data...
if ( ! dataSet ) exit(0);

 // construct pipeline for original 
population
 vtkGaussianSplatter *popSplatter = 
vtkGaussianSplatter::New();
  popSplatter->SetInput(dataSet);
  popSplatter-
>SetSampleDimensions(50,50,50);
  popSplatter->SetRadius(0.05);
  popSplatter->ScalarWarpingOff();
 vtkContourFilter *popSurface = vtkContourFilter::New();
  popSurface->SetInputConnection(popSplatter->GetOutputPort());
  popSurface->SetValue(0,0.01);
 vtkPolyDataMapper *popMapper = vtkPolyDataMapper::New();
  popMapper->SetInputConnection(popSurface->GetOutputPort());
  popMapper->ScalarVisibilityOff();
 vtkActor *popActor = vtkActor::New();
  popActor->SetMapper(popMapper);
  popActor->GetProperty()->SetOpacity(0.3);
  popActor->GetProperty()->SetColor(.9,.9,.9);

// construct pipeline for delinquent population
 vtkGaussianSplatter *lateSplatter = vtkGaussianSplatter::New();
  lateSplatter->SetInput(dataSet);
  lateSplatter->SetSampleDimensions(50,50,50);
  lateSplatter->SetRadius(0.05);
  lateSplatter->SetScaleFactor(0.005);
 vtkContourFilter *lateSurface = vtkContourFilter::New();
  lateSurface->SetInputConnection(lateSplatter->GetOutputPort());
  lateSurface->SetValue(0,0.01);
 vtkPolyDataMapper *lateMapper = vtkPolyDataMapper::New();
  lateMapper->SetInputConnection(lateSurface->GetOutputPort());
  lateMapper->ScalarVisibilityOff();
 vtkActor *lateActor = vtkActor::New();
  lateActor->SetMapper(lateMapper);
  lateActor->GetProperty()->SetColor(1.0,0.0,0.0);

Figure 10–7  Splatting data.
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 // create axes
 popSplatter->Update();
 popSplatter->GetOutput()->GetBounds(bounds);
 vtkAxes *axes = vtkAxes::New();
  axes->SetOrigin(bounds[0], bounds[2], bounds[4]);
  axes->SetScaleFactor(

popSplatter->GetOutput()->GetLength()/5);
 vtkTubeFilter *axesTubes = vtkTubeFilter::New();
  axesTubes->SetInputConnection(axes->GetOutputPort());
  axesTubes->SetRadius(axes->GetScaleFactor()/25.0);
  axesTubes->SetNumberOfSides(6);
 vtkPolyDataMapper *axesMapper = vtkPolyDataMapper::New();
  axesMapper->SetInputConnection(axesTubes->GetOutputPort());
 vtkActor *axesActor = vtkActor::New();
  axesActor->SetMapper(axesMapper);

 // graphics stuff
 vtkRenderer *renderer = vtkRenderer::New();
 vtkRenderWindow *renWin = vtkRenderWindow::New();
  renWin->AddRenderer(renderer);
 vtkRenderWindowInteractor *iren =

vtkRenderWindowInteractor::New();
  iren->SetRenderWindow(renWin);

 // read data, set up renderer
 renderer->AddActor(lateActor);
 renderer->AddActor(axesActor);
 renderer->AddActor(popActor);
 renderer->SetBackground(1,1,1);
 renWin->SetSize(300,300);

 // interact with data
 iren->Initialize();
 iren->Start();
...clean up...
}

What’s interesting about this example is that the majority of late payments occur in a region of a high
interest rate (expected) and lower monthly payment amount. Therefore, it’s the smaller loans with
higher interest rates which are the problem in this data.

Another filter for resampling data into a volume is vtkShepardMethod. You may wish to mod-
ify the previous C++ example to use this class.

Surfaces from Unorganized Points

In computer graphics applications, surfaces are often represented as three-dimensional unorganized
points. Laser and other digitizers are often the source of these point sets. Reconstructing surfaces
from point clouds is both computationally and algorithmically challenging. While the methods
described previously (Delaunay triangulation and Gaussian splatting) may be used with varying lev-
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els of success to reconstruct surfaces from point clouds, VTK has a class designed specifically for this
purpose. 

vtkSurfaceReconstructionFilter can be used to reconstruct sur-
faces from point clouds. This filter takes as input a vtkDataSet defin-
ing points assumed to lie on the surface of a 3D object. The following
script (VTK/Examples/Modelling/Tcl/reconstructSur-
face.tcl) shows how to use the filter. Figure 10–8 shows the results.

vtkProgrammableSource pointSource
  pointSource SetExecuteMethod readPoints
proc readPoints {} {
  set output [pointSource GetPolyDataOutput]
  vtkPoints points
  $output SetPoints points

set file [open "$VTK_DATA_ROOT/Data/
cactus.3337.pts" r]
  while { [gets $file line] != -1 } {
   scan $line "%s" firstToken
   if { $firstToken == "p" } {
     scan $line "%s %f %f %f" firstToken x y z
     points InsertNextPoint $x $y $z
   }
  }
  points Delete; #okay, reference counting
}

# Construct the surface and create isosurface
vtkSurfaceReconstructionFilter surf
  surf SetInputConnection [pointSource GetOutputPort]
vtkContourFilter cf
  cf SetInputConnection [surf GetOutputPort]
  cf SetValue 0 0.0
vtkReverseSense reverse
 reverse SetInputConnection [cf GetOutputPort]

reverse ReverseCellsOn
 reverse ReverseNormalsOn
vtkPolyDataMapper map
  map SetInputConnection [reverse GetOutputPort]
  map ScalarVisibilityOff
vtkActor surfaceActor
  surfaceActor SetMapper map

The example begins by reading points from a file using vtkProgrammableSource filter. (See “Pro-
grammable Filters” on page 419 for more information.) vtkSurfaceReconstructionFilter takes the
points and generates a volumetric representation (similar to what vtkGaussianSplatter did in the pre-
vious section). The volume is contoured (with an isosurface value=0.0) to generate a surface and ver-
tex normals. Because of the nature of the data, the vertex normals point inward so vtkReverseSense is
used to reverse the normals and polygon ordering. (On some systems inward pointing normals will
result in black surfaces during rendering.)

Figure 10–8  Surface
reconstruction.



226 Building Models

The algorithm works reasonably well as long as the points are close enough together. The
instance variable SampleSpacing can be set to control the dimensions of the output volume. If
SampleSpacing is given a negative value, the algorithm makes a guess at the voxel size. The output
volume bounds the input point cloud.
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Time Varying Data 11

11.1 Introduction to temporal support
The visualization toolkit was created for the purpose of

allowing people to visualize and thus explore features in data with spatial extent. It allows people to
answer questions, such as "Where are the regions of maximum value located within this data?? "What
shape and value do they have?" and "How are those shapes distributed throughout?" VTK provides a
plethora of techniques for displaying and analyzing data, as it exists at a single moment in time.
Exploration of data that has temporal extent is also important. One would also like to answer ques-
tions such as. "How do those shapes grow, move and shrink over time?” 

That goal is complicated by the fact that VTK represents a point with only X, Y and Z coordi-
nate values. Adding T is impractical because of backward compatibility requirements and the need to
conserve RAM in the most common case in which T unimportant. With previous versions of the visu-
alization toolkit, people implemented a variety of workarounds to overcome the basic lack of support
for time. For instance, multiple attribute array sets (one set for each time step) were sometimes loaded
and filters were told to iterate through the sets. 

Creating such workarounds was difficult not only because of the lack of support in VTK but
also because of the variety of formats in which time varying data is stored. Some practitioners store
an entire dataset in a sequentially named file for each (regularly or irregularly sampled) point in time.
Others store just the time varying portions of the data in one or many separate files. Some store the T
coordinates alongside the X, Y, and Z coordinates as suggested above, and some store the data in
highly compressed encoded formats.

As compute power has grown and become widespread, exploration and analysis of time vary-
ing scientific data has become commonplace. Since release 5.2, VTK has included a general-purpose
infrastructure for time varying visualization. The infrastructure is not wasteful of memory and is
backward compatible. In the common case when time is immaterial, no additional RAM or disk space
is consumed, and the majority of filters that are time insensitive did not need any modification.  The
infrastructure is also opening ended and extensible. In addition to supporting flipbook style anima-
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tions, which would allow one to answer the temporal question posed above, it also allows one to pro-
grammatically answer quantitative questions such as:

• “At what time do the shapes take on a maximum volume?”

• “At what point do they move most quickly?”

• “What are the average attribute values over a particular region of time?”

• “What does a 2D plot of values for particular elements or locations look like?”

To do so, one finds, or creates a vtkAlgorithm that takes into account the temporal dimension to
answer the question, and then builds a pipeline that exercises it. A time-aware filter is one that is
capable of: requesting one or more specific time steps from the pipeline behind it, doing some pro-
cessing once supplied with the requested data objects, and producing an answer (in the form of
another data object) for the downstream filters.

The many varieties of temporal representations are facilitated because of the reader abstraction.
A reader, as described in Chapter 12, is responsible for reading a file or set of files on the file system,
interpreting a specific file format, and producing one or more data objects. A time aware reader is one
that additionally tells the pipeline what the available temporal domain is, and is capable of producing
an answer (again in the form of a data object) for the specific time (or times) that the downstream
pipeline has requested of it.

11.2 VTK's implementation of time support
VTK supports time varying data at the pipeline level. vtkExecutives are the glue that hold neighbor-
ing vtkAlgorithms together and thus make up the pipeline. Besides linking Algorithms together,
Executives are also responsible for telling each Algorithm exactly what to do. The Executives do so
by communicating meta-information, small pieces of data (stored in vtkInformation containers), up
and down the pipeline before causing their attached Algorithms to execute. For example, each Algo-
rithm is given a vtkInformation object that specifies where, or what spatial sub domain it is to fill.
When doing temporal visualization, Executives also tell each Algorithm when, or at what point in
time they are to do so.  This each Algorithm can now be given a vtkInformation object that specifies
what temporal sub domain that processing is supposed to take place in.

To be exact, the pipeline now supports temporal visualization because it recognizes the follow-
ing meta-information keys, and understands how and when to transport them and react to their pres-
ence in order to drive filter execution.

TIME_RANGE

This key is injected into the pipeline by a reader of time varying data, at the source or beginning of the
pipeline. It contains two floating-point numbers, which are the minimum and maximum times that the
reader can produce data within, or in other words, the extent of the temporal domain.

TIME_STEPS

When the data produced by the reader is exact at discrete points in time, this key is also injected into
the pipeline by a reader of time varying data. It contains any number of floating point numbers which
may be regularly or irregularly placed within the temporal domain.
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UPDATE_TIME_STEPS

This key is injected into the pipeline at downstream end of the pipeline. It contains one or more float-
ing point numbers that correspond to the set of times that are to be processed by the pipeline update.

DATA_TIME_STEPS

When the update request reaches the reader, it may or may not be able to provide results for exactly
that time. For example the renderer may ask for a time that lies between two points in the
TIME_STEPS. The reader injects this key into the pipeline to indicate the exact data time that corre-
sponds to the data it produces in response to the request.

CONTINUE_EXECUTING

This flag is injected into the pipeline to cause the pipeline to keep iterating in order to fulfill a set of
time requests.

Because time support was added at the pipeline level, one must know something about how the
visualization pipeline executes in order to understand the actions that the above meta information
cause, and thus understand what VTK's time support can be used for. VTK's standard streaming
demand driven pipeline operates in four stages. The same four passes are used for time varying visu-
alization, but they are often (either for a subset of or for the full pipeline) iterated in a loop. 

During the first pass, called REQUEST_DATA_OBJECT , each Executive creates an empty
DataObject of whatever type is needed for the Algorithm. A vtkJPEGReader for example, produces
an empty vtkImageData. When a time aware filter requests multiple time steps from a non-time aware
filter upstream, the Executive will change the filter's output type to be a vtkTemporalDataSet. That
output acts as a cache for the actual datasets produces for each requested time.

During the second pass, called REQUEST_INFORMATION, filters produce whatever light-
weight meta-information they can about the data they are about to create. A vtkJPEGReader would
provide an image extent for example. This pass starts at the upstream end and works forward toward
the display. It is during this pass when time aware readers are required to inject their TIME_RANGE
and TIME_STEPS keys, which downstream filters and the application can use to guide their actions.

During the third pass, called REQUEST_UPDATE_EXTENT, the filters agree, starting at the
downstream end and working back toward the reader, what portion of their input will be required to
produce the output they are themselves being asked for. It is at this pass that the
UPDATE_TIME_STEPS request moves backwards.

During the last pass, called REQUEST_DATA, Algorithms actually do the work requested of
them, which means for time varying data, producing data at the time requested and filling in the
DATA_TIME_STEPS parameter.

At first this appears to still be a brute force approach. One still makes a flipbook animation by
stepping through time, updating the pipeline to draw an image at each time. In older versions of VTK
iterating over a loop in which a time parameter was set on the reader and then the display was ren-
dered often did this. In modern VTK this is done similarly. The only difference from the user's stand-
point is that the requested time is set on the renderer instead of the reader. However, several details in
the implementation make VTK's new time support more efficient, easier to use and more flexible than
it was previously.

First, Algorithms are free to request and provide multiple times. This makes it possible for any
filter to consider more that one time step together, in effect merging a temporal pipeline. This enables
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more advanced time varying visualizations than flip books, such as interpolation between time steps
and advanced motion blur like effects (time trails).

Second, the Executive has the ability to automatically iterate portions of the pipeline that are
not time aware. This makes it unnecessary for the programmer to explicitly control individual Algo-
rithms in the pipeline. To compute a running average, one would simply set the width or support as a
parameter on an averaging filter and then tell the pipeline to execute once. Before this would have
been done by explicitly updating the pipeline over multiple passes and at each pass telling the reader
exactly what time is required for the active portion of the running average.

Third, the Executive, and even Algorithms themselves, are able to manipulate the meta-infor-
mation keys, which enable techniques such as temporal shifting, scaling and reversion. These are use-
ful in cases such as normalize data sources to a common frame of reference.

Finally, the pipeline will, and it is possible to manually cause, caching of temporal results, and
to do so without keeping all results from the reader in memory simultaneously. Caching can give sub-
stantial speedups and makes techniques like comparative visualization of the same pipeline at differ-
ent points in time effective.

Using time support

The default pipeline created by VTK programs consists of Algorithms connected by vtkStreamingDe-
mandDrivenPipeline Executives. This Executive does not do automatic iteration or temporal caching.
Thus the first step in doing temporal analysis with VTK is to replace the default pipeline with a newer
Executive class that does. The following code fragment does this. To use it, simply place these two
lines at the top of your program, before creating any filters.

vtkSmartPointer<vtkCompositeDataPipeline> cdp = 
vtkSmartPointer<vtkCompositeDataPipeline>::New();
vtkAlgorithm::SetDefaultExecutivePrototype(cdp);

As with any other type of data, the most important step towards using VTK to visualize time varying
data is to get the data into a format that the VTK pipeline can process. As Chapter 9 explains, this
essentially means finding a reader, which can read the file that you are working with. If the data is
time varying, you must also be sure that that the reader knows about the new pipeline features
described in (2 above), or in other words is time aware.

There are a growing number of readers in VTK, which are time aware. Examples include (along
with subclasses and relatives of the following):

• vtkExodusReader - readers for Sandia National Lab's Exodus file format

• vtkEnsightReader - readers CEI's EnSight file format

• vtkLSDynaReader - reader for Livermore Software Technology Corporation's multiphysics
simulation software package files

• vtkXMLReader - readers for Kitware's newer XML based file format 

Once you find such a reader, using it then becomes a matter of instantiating the reader, setting a file-
name, and calling update. You can programmatically get the available temporal domain from the file
by calling UpdateInformation on the reader, and can tell it to update at a specific time by calling Set-
UpdateTimeStep(int port, double time), followed by a call to Update().
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The following code segment illustrates how to instantiate a time aware reader and query it for
the time domain in a file.

vtkSmartPointer<vtkGenericEnSightReader> r = 
vtkSmartPointer<vtkGenericEnSightReader>::New();
r->SetCaseFileName(".../VTKData/Data/EnSight/naca.bin.case");

// Update meta-data. This reads time information and other meta-data.
r->UpdateInformation();

// The meta-data is in the output information
vtkInformation* outInfo = r->GetExecutive()->GetOutputInformation(0);

if (outInfo.Has(vtkStreamingDemandDrivenPipeline::TIME_STEPS()))
  {
  cout << "Times are:" << endl;
  for(int i=0; i<outInfo-
>Length(vtkStreamingDemandDrivenPipeline::TIME_STEPS()), i++)
    {
    cout << outInfo->Get(vtkStreamingDemandDrivenPipeline::TIME_STEPS(), 
i) << endl;
    }
  }
else
  {
  cout << "That file has not time content." << endl;
  }

There are a growing number of readers in VTK which are time aware, but there are many more read-
ers that are not. And there are still more file formats for which no reader yet exists. What exactly must
a reader do to support temporal visualization? It must do at least two things. It must announce the
temporal range that it has data for, and it must respect the time that is requested of it by the pipeline.

Announcing the range happens during the REQUEST_INFORMATION pipeline pass. Do this
by populating the TIME_STEPS and TIME_RANGE keys.

int vtkTimeAwareReader::RequestInformation(
  vtkInformation* vtkNotUsed(request),
  vtkInformationVector** vtkNotUsed(inputVector),
  vtkInformationVector* outputVector )
{
  vtkInformation* outInfo = outputVector->GetInformationObject(0);

  // Read the time information from the file here.
  // ...

  // Let timeValues be an array of times (type double)
  // nSteps is the number of time steps in the array.
  outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_STEPS(), 
timeValue, nSteps);
  double timeRange[2];
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  timeRange[0] = timeValue[0];
  timeRange[1] = timeValue[nSteps - 1];
  outInfo->Set(vtkStreamingDemandDrivenPipeline::TIME_RANGE(), 
timeRange, 2);

  return 1;
}

The reader finds out during the REQUEST_DATA pass, what time or times it is being asked of at
present and responds accordingly. The time request comes in the UPDATE_TIME_STEPS key. 

int vtkTimeAwareReader::RequestData(
  vtkInformation* vtkNotUsed(request),
  vtkInformationVector** vtkNotUsed(inputVector),
  vtkInformationVector* outputVector )
{
  vtkInformation* outInfo = outputVector->GetInformationObject(0);

  if (outInfo->Has( 
vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS()))
    {
    // Get the requested time steps.
    int numRequestedTimeSteps = outInfo-
>Length(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS());
    double* requestedTimeValues = outInfo-
>Get(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS());

    double firstTime = requestedTimeValues[0];
    double lastTime = requestedTimeValues[numRequestedTimeSteps-1];
    // ...
    }

  // ..

  return 1;
}

The reader is free to interpret this request however it likes. Most use a floor function to find the near-
est lesser exact time value for which they have data. For this reason it is useful to provide the exact
time the data produced by the reader actually corresponds to. Placing the DATA_TIME_STEPS key
in the output data object does this.

double myAnswerTime = this->Floor_in_timeValue(firstTime);
vtkDataObject *output= outInfo->Get(vtkDataObject::DATA_OBJECT());
output->GetInformation()->Set(vtkDataObject::DATA_TIME_STEPS(), 
&myAnswerTime, 1);

Many readers can satisfy only a single time request in any given call. In this case they are free to pro-
duce any particular vtkDataSet subclass. They typically only honor the first requested value as in the
preceding code. Other readers can efficiently satisfy multiple time requests. An example might be a
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reader for a file format the stores only changed values in subsequent time steps. In that case shallow
copies of the constant portions of the data are effective. When the reader can provide data at multiple
times, it must produce a vtkTemporalDataSet and fill it with the data for each answer. Here is how a
filter would create a temporal dataset that has data at times 0.1 and 0.3.

vtkSmartPointer<vtkTemporalDataSet>tds = 
vtkSmartPointer<vtkTemporalDataSet>::New();

vtkSmartPointer<vtkPolyData> pd0 = vtkSmartPointer<vtkPolyData>::New();
pd0->GetInformation()->Append(vtkDataObject::DATA_TIME_STEPS(), 0.1);

tds->SetTimeStep(0, pd0);

vtkSmartPointer<vtkPolyData> pd1 = vtkSmartPointer<vtkPolyData>::New();
pd1->GetInformation()->Append(vtkDataObject::DATA_TIME_STEPS(), 0.3);

tds->SetTimeStep(1, pd1);

4) Time aware filters

(Time aware filters using)

There are also a growing number of time aware filters in VTK. The temporal statistics filter is an
example. It computes statistics such as the average, minimum, and maximum values as well as the
standard deviation of, all attribute values for every point and cell in the input data over all time steps.
For the most part, given that you are using the proper Executive and have a time aware source or
reader somewhere in the pipeline, using a time aware filter is no different than using any standard fil-
ter. Simply set up the pipeline and call update. The following code illustrates. 

vtkSmartPointer<vtkTemporalStatistics> ts = 
vtkSmartPointer<vtkTemporalStatistics>::New()
ts->SetInputConnection(r->GetOutputPort())
ts->Update()

cout 
  << ts->GetOutput()->GetBlock(0)->GetPointData()->GetArray(1)-
>GetName() 
  << endl;
cout 
  << ts->GetOutput()->GetBlock(0)->GetPointData()->GetArray(1)-
>GetTuple1(0) 
  << endl;

(Time aware filters creating)

Although the number of time aware filters in VTK is growing, it will never cover every possible tem-
poral analysis technique. When you find that the toolkit lacks a technique that you need, you can
write a new filter. 

A time aware filter must be able to cooperate with the Executive in order to manipulate the tem-
poral dimension in order to do its work. For example, the temporal statistics filter examines all time
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steps on its input and summarizes the information. In doing so, it removes time from consideration
from downstream filters. A graphing filter that plots value changes over time does the same. The out-
put graph, which has time along the X-axis, is "timeless" and does not itself change as time moves.
Filters that act like that should remove the TIME keys from their output in the
REQUEST_INFORMATION pass.

int vtkTemporalStatistics::RequestInformation(
  vtkInformation *vtkNotUsed(request),
  vtkInformationVector **vtkNotUsed(inputVector),
  vtkInformationVector *outputVector)
{
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  // The output data of this filter has no time associated with it.  It 
is the
  // result of computations that happen over all time.
  outInfo->Remove(vtkStreamingDemandDrivenPipeline::TIME_STEPS());
  outInfo->Remove(vtkStreamingDemandDrivenPipeline::TIME_RANGE());

  return 1;
}

The temporal statistics filter produces a single value, but it needs to ask its own input to produce all of
the time steps that it can. It populates the UPDATE_TIME_STEPS key to ask the input filter what
times to produce data for. Note, this filter only needs to examine one time step at a time, in effect
streaming time as it aggregates results. Thus in this example we ask for only the next time step. Other
filters may request more than one time step, or all of them, but should be careful not to overrun mem-
ory when doing so.

int vtkTemporalStatistics::RequestUpdateExtent(
   vtkInformation *vtkNotUsed(request),
   vtkInformationVector **inputVector,
   vtkInformationVector *vtkNotUsed(outputVector))
{
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);

  // The RequestData method will tell the pipeline Executive to iterate 
the
  // upstream pipeline to get each time step in order.  On every 
iteration,
  // this method will be called first which gives this filter the 
opportunity 
  // to ask for the next  time step.
  double *inTimes = inInfo-
>Get(vtkStreamingDemandDrivenPipeline::TIME_STEPS());
  if (inTimes)
    {
    inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS(),
                       &inTimes[this->CurrentTimeIndex], 1);
    }
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  return 1;
}

This filter examines one time step at a time, so it needs to iterate over all the time steps to produce the
correct result. The application does not have to do the iteration for us, because the filter can tell the
Executive to do it on its own. It sets the CONTINUE_EXECUTING() flag to make the Executive
loop. On the first call, the filter sets up the loop and set the flag. That causes the
REQUEST_UPDATE_EXTENT and REQUEST_DATA passes to happen continuously until the fil-
ter decides to remove the flag. At each iteration, the filter asks for a different time step (see Request-
UpdateExtent above). After examining all time steps, it clears the flag. At this point the output will
have the computed overall statistics.

int vtkTemporalStatistics::RequestData(vtkInformation *request,
  vtkInformationVector **inputVector,
  vtkInformationVector *outputVector)
{
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  vtkDataObject *input = vtkDataObject::GetData(inInfo);
  vtkDataObject *output = vtkDataObject::GetData(outInfo);

  if (this->CurrentTimeIndex == 0)
    {
    // First execution, initialize arrays.
    this->InitializeStatistics(input, output);
    }
  else
    {
    // Subsequent execution, accumulate new data.
    this->AccumulateStatistics(input, output);
    }

  this->CurrentTimeIndex++;

  if (  this->CurrentTimeIndex
        < inInfo-
>Length(vtkStreamingDemandDrivenPipeline::TIME_STEPS()))
    {
    // There is still more to do.
    request-
>Set(vtkStreamingDemandDrivenPipeline::CONTINUE_EXECUTING(), 1);
    }
  else
    {
    // We are done.  Finish up.
    this->PostExecute(input, output);
    request-
>Remove(vtkStreamingDemandDrivenPipeline::CONTINUE_EXECUTING());
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    this->CurrentTimeIndex = 0;
    }

  return 1;
}

In the previous example, the filter was written to operate by looking at one time step at a time. For
other operation, that may not be practical, geometric interpolation for example requires two time
steps. This example demonstrates how a filter can request multiple time steps simultaneously and pro-
cess them together. To request multiple time steps, you set UPDATE_TIME_STEPS to contain more
than one value during the REQUEST_UPDATE_EXTENT pass.

int vtkSimpleTemporalInterpolator::RequestUpdateExtent (
   vtkInformation * vtkNotUsed(request),
   vtkInformationVector **inputVector,
   vtkInformationVector *outputVector)
{
  // get the info objects
  vtkInformation* outInfo = outputVector->GetInformationObject(0);
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);

  // Find the time step requested by downstream
  if (outInfo-
>Has(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS()))
    {
    if (outInfo-
>Length(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS()) != 1)
      {
      vtkErrorMacro("This filter can only handle 1 time request");
      return 0;
      }
    upTime =
      outInfo-
>Get(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS())[0];

    double inUpTimes[2];
// Find two time steps that surround upTime here and set inUpTimes
// This requests two time steps from upstream.

    inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS(),
                        inUpTimes, 2);
    }

  return 1;
}

Now REQUEST_DATA will be called only once, but when it does it will be given a temporal data set
which contains two time steps. These can be extracted and processed as in the following:

int vtkSimpleTemporalInterpolator::RequestData(
   vtkInformation *vtkNotUsed(request),
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   vtkInformationVector **inputVector,
   vtkInformationVector *outputVector)
{
  vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
  vtkInformation *outInfo = outputVector->GetInformationObject(0);

  vtkTemporalDataSet *inData = vtkTemporalDataSet::SafeDownCast(
    inInfo->Get(vtkDataObject::DATA_OBJECT()));
  vtkTemporalDataSet *outData = vtkTemporalDataSet::SafeDownCast(
    outInfo->Get(vtkDataObject::DATA_OBJECT()));

  // get the input times
  double *inTimes = inData->GetInformation()-
>Get(vtkDataObject::DATA_TIME_STEPS());
  int numInTimes = inData->GetInformation()-
>Length(vtkDataObject::DATA_TIME_STEPS());

  // get the requested update time
  upTime =
    outInfo-
>Get(vtkStreamingDemandDrivenPipeline::UPDATE_TIME_STEPS())[0];

  vtkDataObject *in0 = inData->GetTimeStep(0);
  vtkDataObject *in1 = inData->GetTimeStep(1);

  // Interpolate in0 and in1 at upTime and produce outData here.

  // set the resulting time
  outData->GetInformation()->Set(vtkDataObject::DATA_TIME_STEPS(),
     upTime, 1);

  return 1;
}
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In this chapter we briefly describe various ways to read,
write, import, and export data. Readers ingest a single dataset, while importers create an entire scene,
which may include one or more datasets, actors, lights, cameras, and so on. Writers output a single
dataset to disk (or stream), and exporters output an entire scene. In some cases, you may want to
interface to data that is not in standard VTK format, or in any other common format that VTK sup-
ports. In such circumstances, you may wish to treat data as field data, and convert it in the visualiza-
tion pipeline into datasets that the standard visualization techniques can properly handle.

12.1 Readers
We saw in “Reader Source Object” on page 44 how to use a reader to bring data into the visualization
pipeline. Using a similar approach, we can read many other types of data. Using a reader involves
instantiating the reader, supplying a filename, and calling Update() somewhere down the pipeline.

There are many different readers in the VTK library, all of which exist to read files and produce
data structures that can be processed and visualized by the rest of the visualization pipeline. A reader
then, is any vtkAlgorithm, which does not require input connections and which knows how to read
files to produce vtkDataObjects. 

There are many different readers in VTK because there are many important file formats for sci-
entific data. The different file formats exist to make permanent different varieties of data such as
structured, unstructured, polygonal, tabular, or graph. As a user of VTK, an important task is to deter-
mine what VTK data structure corresponds to the data of interest to you and then to find a reader that
reads in the files you work with to produce that structure. This section introduces some of the avail-
able readers.

There are some points to make note of before diving into the list of readers. For all VTK data
structure types there exists one or two VTK native reader classes. These classes were written in con-
cert with developing or extending the corresponding data type. The older native reader class reads
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files with the ".vtk" extension, and the newer reads XML based files with the ".vt?" extension (where
? describes the type). Both old and new formats support writing data in text or binary formats. The
newer format is more involved, but it fully supports the most recent vtk features including named
arrays, 32 bit / 64 bit encoding, streamed processing and the all of the latest data structures. Both for-
mats have parallel processing extensions, which are implemented with meta files which refer to exter-
nal serial files that are meant to be read independently. See “VTK File Formats” on page 469., for
details of the native file formats.

This chapter lists the VTK native readers for each data type as well as a selection of the readers
that interface with the more well known third party file formats and produce that type. 

Finally note that, if a suitable reader does not exist one can write one in C++, or use the tech-
niques described in“Working With Field Data” on page 249 to coerce the output of the most generic
reader, vtkProgrammableDataObjectSource, into the proper data type.

Data Object Readers

• vtkProgrammableDataObjectSource - an algorithm that executes a user specified function to
produce a vtkDataObject.. The user specified function can be written to read in any particular
file format, or procedurally generate data without reading any file.

• vtkGenericDataObjectReader - read a ".vtk" file, the legacy file format for all of VTK's data
structures and populate a vtkDataObject or the most specific subclass thereof with the structure
defined in the file. This reader will produce vtkTable for example, if the .vtk file contains Tabu-
lar Data, and vtkUnstructuredGrid if the chosen .vtk file contains an Unstructured Grid. This
class reads the header information to find out what type of data is in the file and then delegates
the rest of the processing to one of the more specific classes described below.

• vtkDataObjectReader - read a ".vtk" file and populate a DataObject with Field associated
arrays. This differs from vtkGenericDataObjectReader in that it will not produce the specific
data structure best suited to the contents of the file and instead always produces the most gen-
eral one, vtkDataObject.

Data Set Readers

These readers produce generic vtkDataSet as output. Typically, the reader requires an Update() invo-
cation to determine what kind of concrete vtkDataSet subclass is created.

• vtkDataSetReader - like vtkDataObjectReader, but this class is limited to the more common
vtkDataSet subclasses.

• vtkPDataSetReader - like vtkDataSetReader, but reads parallel vtk (.pvtk) format files, which
are meta files that references several legacy .vtk files which are meant to be processed by differ-
ent processors simultaneously

• vtkGenericEnSightReader (and subclasses) - read EnSight files

Image and Volume Readers

• vtkStructuredPointsReader - reads ".vtk" legacy format files containing image data

• vtkXMLImageDataReader - reads ".vti" files, one of the newer XML based VTK file formats
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• vtkXMLPImageDataReader  - reads ".pvti" XML based parallel partitioned files that reference
individual ".vti" files

• vtkImageReader - reads raw image data. Since the file format is a raw dump, you must specify
the image extent, byte ordering, scalar type etc in order to get the correct result from the file.

• vtkDICOMImageReader - reads DICOM (Digital Imaging and Communications in Medicine)
images

• vtkGESignaReader - reads GE Signa Imaging files
• vtkMINCImageReader - a netCDF based reader for MINC (Montreal Neurological Institute

Center) files
• vtkSTLReader - read stereo-lithography files
• vtkJPEGReader - reads JPEG files
• vtkPNMReader - reads PNM files
• vtkTIFFReader - reads TIFF files

Rectilinear Grid Readers

• vtkRectilinearGridReader - reads ".vtk" legacy format files containing rectilinear grid data
• vtkXMLRectilinearGridReader  - reads ".vtr" XML based VTK files
• vtkXMLPRectilinearGridDataReader  - reads ".pvtr" XML based parallel partitioned files that

reference individual ".vtr" files
• vtkSESAMEReader - reads Los Alamos National Lab Equation of state data base files (http://

t1web.lanl.gov/doc/SESAME_3Ddatabase_1992.html)

Structured Grid Readers

• vtkStructuredGridReader - reads ".vtk" legacy format files containing structured grid data
• vtkXMLStructuredGridReader  - reads ".vts" XML based VTK files
• vtkXMLPStructuredGridReader  - reads ".pvts" XML based parallel partitioned files that refer-

ence individual ".vts" files
• vtkPLOT3DReader - reads NASA PLOT3D structured CFD computation datasets (http://peo-

ple.nas.nasa.gov/~rogers/plot3d/intro.html)

Polygonal Data Readers
• vtkPolyDataReader - reads ".vtk" legacy format files containing polygonal data
• vtkXMLPolyDataReader  - reads ".vtp" XML based VTK files
• vtkXMLPPolyDataReader  - reads ".pvtp" XML based parallel partitioned files that reference

individual ".vtp" files
• vtkOBJReader - reads Wavefront .obj files
• vtkPLYReader - reads Stanford University .ply files
• vtkParticleReader - reads particle with scalar data x,y,z,value in ascii or binary format
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• vtkSimplePointsReader - example reader, reads points written as X Y Z floating point form and
produce edges and vtk_vertex cells in vtkPolyData (PD)

• vtkSLACParticleReader - reads netCDF files written with conventions for Stanford Linear
Accelerator Center processing tools. Output corresponds to particles in space. This differs from
vtkNetCDFReader in that although both understand the NetCDF format, this reader adds con-
ventions suited to a particular area of  scientific research.

Unstructured Grid Readers

• vtkUnstructuredGridReader - reads ".vtk" legacy format files containing unstructured grid data
• vtkXMLUnstructuredGridReader  - reads ".vtu" XML based VTK files
• vtkXMLPUnstructuredGridReader  - reads ".pvtu" XML based parallel partitioned files that

reference individual ".vtu" files
• vtkCosmoReader - read Los Alamos National Lab cosmology binary data format files 
• vtkExodusReader - read Sandia National Lab Exodus format files
• vtkPExodusReader - parallel processing specialization of  vtkExodusReader in which each pro-

cessor reads its own portion of the blocks from the file simultaneously
• vtkChacoReader - reads Sandia Chaco graph package format files and produces Unstruc-

turedGrid data
• vtkPChacoReader - reads Sandia Chaco graph format packages on one processor and internally

distributes portions of the data to other parallel processors

Graph Readers

• vtkGraphReader - read ".vtk" legacy format files containing general Graph data
• vtkTreeReader - read ".vtk" legacy format files to produce more specialized Trees
• vtkXMLTreeReader - reads XML based VTK files
• vtkChacoGraphReader - reads a file  written in the Sandia Chaco graph package  format. This

differs from vtkChacoReader in that it produces a vtkUndirectedGraph instead of the more spa-
tially oriented vtkUnstructuredGrid.

• vtkPBGLGraphSQLReader - read vertex and edge tables from an Parallel Boost Graph Library
SQL database

• vtkSQLGraphReader - read vertex and edge tables from an SQL database
• vtkRISReader - read a RIS format bibliographic citation file and produce a vtkTable (TA)

Table Readers

• vtkTableReader - - read ".vtk" legacy format files containing general tabular data
• vtkDelimitedTextReader - read text files in which newlines separate each row and a single user

specified delimiter character, for example, comma, tab or space, separates columns
• vtkFixedWidthTextReader - read text files in which newlines separate each row and where each

column has a fixed width
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• vtkISIReader - read bibliographic citation records in ISI format 

Composite Data Readers

vtkCompositeDataSet’s concrete subclasses vtkMultiPieceDataSet, vtkHierarchicalBoxDataSet, and
vtkMultiBlockDataSet are VTK's way of representing compound data objects, or data objects which
contain other data objects. These structures are useful in parallel processing, for adaptively refined
simulations and to represent hierarchical relationships between related parts. Several readers import
complex data and produce composite data outputs. The contents of the composite data may be any or
all of the above atomic types, and/or additional composite data objects.

• vtkXMLCompositeDataReader - and its subclasses read XML based VTK files. The standard
extensions for these files include ".vtm", ".vth" and ".vtb".

• vtkExodusIIReader - read Sandia Exodus2 format files and directly produce MultiBlock datas-
ets. This differs from vtkExodusReader in that the output is not converted to a single vtkUn-
structuredGrid, which can potentially conserve memory  when the data is regular.

• vtkPExodusIIReader- parallel processing specialization of the preceding each processor inde-
pendently and simultaneously reads its own subset of the blocks

• vtkOpenFOAMReader  - read file written in OpenFOAM (computational fluid dynamics) for-
mat

12.2 Writers
Writers output vtkDataObjects to the file system. A writer is any vtkAlgorithm which takes in a vtk-
DataObject, usually one produced by the vtkAlgorithm connected to the writer's input, and writes it to
the file system in some standard format. There are many different writers in VTK because there are
many important file formats.

Typically, using a writer involves setting an input and specifying and output file name (or some-
times names) as shown in the following.

vtkPolyDataWriter writer
writer SetInput [aFilter GetOutput]
writer SetFileName “outFile.vtk”
writer SetFileTypeToBinary
writer Write

The legacy VTK writers offer you the option of writing binary (SetFileTypeToBinary()) or ASCII
(SetFileTypeToASCII()) files. (Note: binary files may not be transportable across computers. VTK
takes care of swapping bytes, but does not handle transport between 64-bit and 32-bit computers.)

The VTK XML writers also allow you to write in binary (SetDataModeToBinary()) or ASCII
(SetDataModeToAscii()); and appended binary mode is also available (SetDataModeToAppended()).
The VTK XML readers and writers do handle transporting data between 32-bit and 64-bit computers
in addition to taking care of byte swapping.

The following is a list of available writers.
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Data Object Writers

• vtkGenericDataObjectWriter - Writes any type of vtkDataObject to file in the legacy ".vtk" file
format.

• vtkDataObjectWriter -- Write only the vtkDataObject's field data in legacy ".vtk" file format.

Data Set Writers

• vtkDataSetWriter - Writes any type of vtkDataSet to file in legacy ".vtk" file format

• vtkPDataSetWriter - Writes any type of vtkDataSet to file in legacy ".pvtk" parallel partitioned
file format

• vtkXMLDataSetWriters - Writes any type of vtkDataSet to file in the newer XML based ".vt?"
format.

Image and Volume Writers

• vtkStructuredPointsWriter - Write image data in legacy ".vtk" format

• vtkPImageWriter - A parallel processing specialization of the preceding

• vtkXMLImageDataWriter - Write image data in XML based ".vti" format

• vtkMINCImageWriter -  A netCDF based writer for MINC (Montreal Neurological Institute
Center) files

• vtkPostScriptWriter - write image into post script format

• vtkJPEGWriter - write into JPEG format

• vtkPNMWriter - write into PNM format

• vtkTIFFWriter - write into TIFF format

Rectilinear Grid Writers

• vtkRectilinearGridWriter - Write rectilinear grid in legacy ".vtk" format

• vtkXMLRectilinearGridWriter - Write rectilinear grid in XML based ".vtr" format

• vtkXMLPRectilinearGridWriter - A parallel processing specialization of the preceding

Structured Grid Writers

• vtkStructuredGridWriter - Write structured grid in legacy ".vtk" format

• vtkXMLStructuredGridWriter - Write structured grid in XML based ".vts" format

• vtkXMLPStructuredGridWriter - A parallel processing specialization of the preceding

Polygonal Data Writers

• vtkPolyDataWriter - Write polygonal data in legacy ".vtk" format

• vtkXMLPolyDataWriter - Write polygonal data in XML based ".vtp" format
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• vtkXMLPPolyDataWriter - A parallel processing specialization of the preceding
• vtkSTLWriter - Write stereo-lithography files
• vtkIVWriter - Write into OpenInventor 2.0 format
• vtkPLYWriter - Writer Stanford University ".ply" files

Unstructured Grid Writers

• vtkUnstructuredGridWriter - Write unstructured data in legacy ".vtk" format
• vtkXMLUnstructuredGridWriter - Write unstructured data in XML based ".vtu" format
• vtkXMLPUnstructuredGridWriter - A parallel processing specialization of the preceding
• vtkEnSightWriter - Write vtk unstructured grid data as an EnSight file

Graph Writers

• vtkGraphWriter - write vtkGraph data to a file in legacy ".vtk" format
• vtkTreeWriter - write vtkTree data to a file in legacy ".vtk" format

Table Writers

• vtkTableWriter - write vtkTable data to file in legacy ".vtk" format

Composite Data Writers

• vtkXMLCompositeDataWriter (and its subclasses) - writers for composite data structures
including hierarchical box (multires image data) and multi-block (related datasets) data types

• vtkExodusIIWriter - Write composite data in Exodus II format

12.3 Importers
Importers accept data files that contain multiple datasets
and/or the objects that compose a scene (i.e., lights, cam-
eras, actors, properties, transformation matrices, etc.).
Importers will either generate an instance of vtkRender-
Window and/or vtkRenderer, or you can specify them. If
specified, the importer will create lights, cameras, actors,
and so on, and place them into the specified instance(s).
Otherwise, it will create instances of vtkRenderer and
vtkRenderWindow, as necessary. The following example
shows how to use an instance of vtkImporter (in this case a
vtk3DSImporter—imports 3D Studio files). This Tcl script
was taken from VTK/Examples/IO/Tcl/flamingo.tcl
(see Figure 12–1). Figure 12–1  Importing a file.
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vtk3DSImporter importer
 importer ComputeNormalsOn
 importer SetFileName \

"$VTK_DATA_ROOT/Data/iflamigm.3ds"
 importer Read

set renWin [importer GetRenderWindow]
vtkRenderWindowInteractor iren
 iren SetRenderWindow $renWin

The Visualization Toolkit supports the following importers. (Note that the superclass vtkImporter is
available for developing new subclasses.)

• vtk3DSImporter — import 3D Studio files
• vtkVRMLImporter — import VRML version 2.0 files

12.4 Exporters
Exporters output scenes in various formats. Instances of vtkExporter accept an instance of vtkRender-
Window, and write out the graphics objects supported by the exported format.

vtkRIBExporter exporter
exporter SetRenderWindow renWin
exporter SetFilePrefix “anExportedFile”
exporter Write

The vtkRIBExporter shown above writes out multiple files in RenderMan format. The FilePrefix
instance variable is used to write one or more files (geometry and texture map(s), if any).

The Visualization Toolkit supports the following exporters.

• vtkGL2PSExporter — export a scene as a PostScript file using GL2PS
• vtkIVExporter — export an Inventor scene graph
• vtkOBJExporter — export a Wavefront .obj files
• vtkOOGLExporter — export a scene into GeomView OOGL format
• vtkRIBExporter — export RenderMan files
• vtkVRMLExporter — export VRML version 2.0 files
• vtkPOVExporter - export into file format for the Persistence of Vision Raytracer

(www.povray.org)
• vtkX3DExporter - export into X3D format (an XML based 3d scene format similar to VRML)

12.5 Creating Hardcopy
Creating informative images is a primary objective of VTK, and to document what you’ve done, sav-
ing images and series of images (i.e., animations) is important. This section describes various ways to
create graphical output.
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Saving Images

The simplest way to save images is to use the vtkWindowToImageFilter which grabs the output buffer
of the render window and converts it into vtkImageData. This image can then be saved using one of
the image writers (see “Writers” on page 164 for more information). Here is an example

vtkWindowToImageFilter w2i
 w2i SetInput renWin

vtkJPEGWriter writer
 writer SetInput [w2i GetOutput]
 writer SetFileName "DelMesh.jpg"
 writer Write

Note that it is possible to use the off-screen mode of the render window when saving an image. The
off-screen mode can be turned on by setting OffScreenRenderingOn() for the render window.

Saving Large (High-Resolution) Images

The images saved via screen capture or by saving the render window vary greatly in quality depend-
ing on the graphics hardware and screen resolution supported on your computer. To improve the qual-
ity of your images, there are two approaches that you can try. The first approach allows you to use the
imaging pipeline to render pieces of your image and then combine them into a very high-resolution
final image. We’ll refer to this as tiled imaging. The second approach requires external software to
perform high resolution rendering. We’ll refer to this as the RenderMan solution.

Tiled Rendering. Often we want to save an image of resolution greater than the resolution of the
computer hardware. For example, generating an image of 4000 x 4000 pixels is not easy on a
1280x1024 computer display. The Visualization Toolkit makes this trivial with the class
vtkRenderLargeImage. This class breaks up the rendering process into separate pieces, each piece
containing just a portion of the final image. The pieces are assembled into a final image, which can be
saved to file using one of the VTK image writers. Here’s how it works (Tcl script taken from VTK/
Examples/Rendering/Tcl/RenderLargeImage.tcl).

vtkRenderLargeImage renderLarge
 renderLarge SetInput ren
 renderLarge SetMagnification 4

vtkTIFFWriter writer
 writer SetInputConnection [renderLarge GetOutputPort]
 writer SetFileName largeImage.tif
 writer Write

The Magnification instance variable (an integer value) controls how much to magnify the input ren-
derer’s current image. If the renderer’s image size is (400,400) and the magnification factor is 5, the
final image will be of resolution (2000,2000). In this example, the resulting image is written to a file
with an instance of vtkTIFFWriter. Of course, other writer types could be used.
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RenderMan. RenderMan is a high-quality software rendering system currently sold by Pixar, the
graphics animation house that created the famous Toy Story movie. RenderMan is a commercial pack-
age. A license for a single computer RenderMan rendering plugin for Maya costs $995 at the time of
this writing.. Fortunately, there is at least one modestly priced (or free system if you’re non-commer-
cial) RenderMan compatible system that you can download and use: Pixie (Blue Moon Ray Tracer).
Pixie is slower than RenderMan, but it also offers several features that RenderMan does not.

In an earlier section (“Exporters” on page 166) we saw how to export a RenderMan .rib file
(and associated textures). You can adjust the size of the image RenderMan produces using the
SetSize() method in the vtkRIBExporter. This method adds a line to the rib file that causes Render-
Man (or RenderMan compatible system such as Pixie) to create an output TIFF image of size (xres,
yres) pixels.

12.6 Creating Movie Files
In addition to writing a series of images, VTK also has three classes that allow you to write movie
files directly: vtkAVIWriter, vtkFFMPEGWriter and vtkMPEG2Writer. Both are subclasses of vtkGe-
nericMovieWriter. vtkAVIWriter uses Microsoft's multimedia API to create movie files, and is thus
only available on Windows machines. The FFMPEG and MPEG2 media formats are available on all
platforms, but because of license incompatibilities are provided only in source code format, and not
within the VTK library itself. To use either of these interface classes you must manually download
and compile the library on your machine and then configure and build VTK to link to them. Instruc-
tions for doing so and the library source code are available at http://www.vtk.org/VTK/resources/soft-
ware.html#addons. Both of these classes take a 2D vtkImageData as input – often the output of the
vtkWindowToImageFilter. The important methods in these classes are as follows.

• Start — Call this method once to start writing a movie file.

• Write— Call this method once per frame added to the movie file.

• End — Call this method once to end the writing process.

Similar to the other writers, the movie writers also have SetInput and SetFileName methods. Example
Tcl code for writing a movie file with 100 frames follows.

vtkMPEG2Writer writer
writer SetInput [aFilter GetOutput]
writer SetFileName "movie.mpg"
writer Start

for {set i 0} {$i < 100} {incr i} {
writer Write

# modify input to create next frame of movie
…

}

writer End
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12.7 Working With Field Data
Many times data is organized in a form different from that found in VTK. For example, your data may
be tabular, or possibly even higher-dimensional. And sometimes you’d like to be able to rearrange
your data, assigning some data as scalars, some as point coordinates, and some as other attribute data.
In such situations VTK’s field data, and the filters that allow you to manipulate field data, are essen-
tial.

To introduce this topic a concrete example is useful. In the previous chapter (“Gaussian Splat-
ting” on page 156) we saw an example that required writing custom code to read a tabular data file,
then extracting specified data to form points and scalars (look at the function ReadFinancialData()
found in VTK/Examples/Modelling/Cxx/finance.cxx). While this works fine for this example,
it does require a lot of work and is not very flexible. In the following example we’ll do the same thing
using field data.

The data is in the following tabular format.

NUMBER_POINTS 3188
TIME_LATE
 29.14  0.00  0.00 11.71  0.00  0.00  0.00  0.00 
 0.00 29.14  0.00  0.00  0.00  0.00  0.00  0.00 
....
MONTHLY_PAYMENT
 7.26  5.27  8.01 16.84  8.21 15.75 10.62 15.47 
 5.63  9.50 15.29 15.65 11.51 11.21 10.33 10.78 
....

This format repeats for each of the following fields: time late in paying the loan (TIME_LATE); the
monthly payment of the loan (MONTHLY_PAYMENT); the principal left on the loan
(UNPAID_PRINCIPAL); the original amount of the loan (LOAN_AMOUNT); the interest rate on the loan
(INTEREST_RATE); and the monthly income of the borrower (MONTHLY_INCOME). These six fields
form a matrix of 3188 rows and 6 columns.

We start by parsing the data file. The class vtkProgrammableDataObjectSource is useful for
defining special input methods without having to modify VTK. All we need to do is to define a func-
tion that parses the file and puts the results into a VTK data object. (Recall that vtkDataObject is the

vtkDataArray

Array 1 Array n-1Array 0

Figure 12–2  Structure of field data—an array of arrays. Each array may be of a different native
data type and may have one or more components.
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most general form of data representation.) Reading the data is the most challenging part of this exam-
ple, found in VTK/Examples/DataManipulation/Tcl/FinancialField.tcl.

set xAxis INTEREST_RATE
set yAxis MONTHLY_PAYMENT
set zAxis MONTHLY_INCOME
set scalar TIME_LATE

# Parse an ascii file and manually create a field. Then construct a 
# dataset from the field.
vtkProgrammableDataObjectSource dos
  dos SetExecuteMethod parseFile

proc parseFile {} {
  global VTK_DATA_ROOT

  # Use Tcl to read an ascii file
  set file [open "$VTK_DATA_ROOT/Data/financial.txt" r]
  set line [gets $file]
  scan $line "%*s %d" numPts
  set numLines [expr (($numPts - 1) / 8) + 1 ]

  # Get the data object's field data and allocate
  # room for 4 fields
  set fieldData [[dos GetOutput] GetFieldData]
  $fieldData AllocateArrays 4

  # read TIME_LATE - dependent variable
  # search the file until an array called TIME_LATE is found
  while { [gets $file arrayName] == 0 } {}
  # Create the corresponding float array
  vtkFloatArray timeLate
  timeLate SetName TIME_LATE
  # Read the values
  for {set i 0} {$i < $numLines} {incr i} {
   set line [gets $file]
   set m [scan $line "%f %f %f %f %f %f %f %f" \
  v(0) v(1) v(2) v(3) v(4) v(5) v(6) v(7)]
   for {set j 0} {$j < $m} {incr j} {timeLate InsertNextValue $v($j)}
  }
  # Add the array
  $fieldData AddArray timeLate 

  # MONTHLY_PAYMENT - independent variable
  while { [gets $file arrayName] == 0 } {}
  vtkFloatArray monthlyPayment
  monthlyPayment SetName MONTHLY_PAYMENT
  for {set i 0} {$i < $numLines} {incr i} {
   set line [gets $file]
   set m [scan $line "%f %f %f %f %f %f %f %f" \
  v(0) v(1) v(2) v(3) v(4) v(5) v(6) v(7)]
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   for {set j 0} {$j < $m} {incr j} {monthlyPayment InsertNextValue 
$v($j)}
  }
  $fieldData AddArray monthlyPayment 

  # UNPAID_PRINCIPLE - skip
  while { [gets $file arrayName] == 0 } {}
  for {set i 0} {$i < $numLines} {incr i} {
   set line [gets $file]
  }

  # LOAN_AMOUNT - skip
  while { [gets $file arrayName] == 0 } {}
  for {set i 0} {$i < $numLines} {incr i} {
   set line [gets $file]
  }

  # INTEREST_RATE - independent variable
  while { [gets $file arrayName] == 0 } {}
  vtkFloatArray interestRate
  interestRate SetName INTEREST_RATE
  for {set i 0} {$i < $numLines} {incr i} {
   set line [gets $file]
   set m [scan $line "%f %f %f %f %f %f %f %f" \
  v(0) v(1) v(2) v(3) v(4) v(5) v(6) v(7)]
   for {set j 0} {$j < $m} {incr j} {interestRate InsertNextValue $v($j)}
  }
  $fieldData AddArray interestRate 

  # MONTHLY_INCOME - independent variable
  while { [gets $file arrayName] == 0 } {}
  vtkIntArray monthlyIncome
  monthlyIncome SetName MONTHLY_INCOME
  for {set i 0} {$i < $numLines} {incr i} {
   set line [gets $file]
   set m [scan $line "%d %d %d %d %d %d %d %d" \
  v(0) v(1) v(2) v(3) v(4) v(5) v(6) v(7)]
   for {set j 0} {$j < $m} {incr j} {monthlyIncome InsertNextValue $v($j)}
  }
  $fieldData AddArray monthlyIncome 
}

Now that we've read the data, we have to rearrange the field data contained by the output vtkDataOb-
ject into a form suitable for processing by the visualization pipeline (i.e., the vtkGaussianSplatter).
This means creating a subclass of vtkDataSet, since vtkGaussianSplatter takes an instance of vtkData-
Set as input. There are two steps required. First, the filter vtkDataObjectToDataSetFilter is used to
convert the vtkDataObject to type vtkDataSet. Then, vtkRearrangeFields and vtkAssignAttribute are
used to move a field from the vtkDataObject to the vtkPointData of the newly created vtkDataSet and
label it as the active scalar field.
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vtkDataObjectToDataSetFilter do2ds
  do2ds SetInputConnection [dos GetOutputPort]
  do2ds SetDataSetTypeToPolyData
  do2ds DefaultNormalizeOn
  do2ds SetPointComponent 0 $xAxis 0 
  do2ds SetPointComponent 1 $yAxis 0
  do2ds SetPointComponent 2 $zAxis 0 

vtkRearrangeFields rf
  rf SetInputConnection [do2ds GetOutputPort]
  rf AddOperation MOVE $scalar DATA_OBJECT POINT_DATA

vtkAssignAttribute aa
  aa SetInputConnection [rf GetOutputPort]
  aa Assign $scalar SCALARS POINT_DATA
  aa Update

There are several import techniques in use here. 

1. All filters pass their input vtkDataObject through to their output unless instructed otherwise (or 
unless they modify vtkDataObject). We will take advantage of this in the downstream filters.

2. We set up vtkDataObjectToDataSetFilter tocreate an instance of vtkPolyData as its output, with 
the three named arrays of the field data serving as x, y, and z coordinates. In this case we use 
vtkPolyData because the data is unstructured and consists only of points.

3. We normalize the field values to range between (0,1) because the axes' ranges are different 
enough that we create a better visualization by filling the entire space with data. 

4. The filter vtkRearrangeFields copies/moves fields between vtkDataObject, vtkPointData and 
vtkCellData. In this example, an operation to move the field called $scalar from the data object 
of the input to the point data of the output is added.

5. The filter vtkAssignAttribute labels fields as attributes. In this example, the field called $scalar 
(in the point data) is labeled as the active scalar field.

The Set___Component() methods are the key methods of vtkDataObjectToDataSetFilter. These
methods refer to the data arrays in the field data by name and by component number. (Recall that a
data array may have more than one component.) It is also possible to indicate a (min,max) tuple range
from the data array, and to perform normalization. However, make sure that the number of tuples
extracted matches the number of items in the dataset structure (e.g., the number of points or cells).

There are several related classes that do similar operations. These classes can be used to rear-
range data arbitrarily to and from field data, into datasets, and into attribute data. These filters
include:

• vtkDataObjectToDataSetFilter — Create a vtkDataSet, building the dataset’s geometry, topol-
ogy and attribute data from the chosen arrays within the vtkDataObject’s field data.

• vtkDataSetToDataObjectFilter — Transform vtkDataSet into vtkFieldData contained in a vtk-
DataObject.

• vtkRearrangeFields — Move/copy fields between field data, point data, and cell data.
• vtkAssignAttribute — Label a field as an attribute.
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• vtkMergeFields — Merge multiple fields into one.
• vtkSplitField — Split a field into multiple single component fields.
• vtkDataObjectReader — Read a VTK formatted field data file.
• vtkDataObjectWriter — Write a VTK formatted field data file.
• vtkProgrammableDataObjectSource — Define a method to read data of arbitrary form and rep-

resent it as field data (i.e., place it in a vtkDataObject).





Chapter 13

Interaction, Widgets and Selections 13

The greatest power in a visualization system is not in its
ability to process data or create an image, but rather in its mechanism for allowing the user to interact
with the scene in order to guide the visualization in new directions. In VTK this interaction comes in
a variety of forms from basic mouse and keyboard interaction allowing you rotate, translate and
zoom, to the interactive widget elements in the scene that can be manipulated to control various
parameters of the visualization, to the selection mechanism for identifying portions of the data. This
chapter will cover the basics of interaction and introduce you to the tools you can use to develop your
own customized interaction model for your application.

13.1 Interactors
Once you've visualized your data, you typically want to interact with it. The Visualization Toolkit
offers several approaches to do this. The first approach is to use the built in class vtkRenderWindow-
Interactor. The second approach is to create your own interactor by specifying event bindings. And
don't forget that if you are using an interpreted language you can type commands at run-time. You
may also wish to refer to “Picking” on page 59 to see how to select data from the screen. (Note:
Developers can also interface to a windowing system of their choice. See “Integrating With The Win-
dowing System” on page 421.) 

vtkRenderWindowInteractor

vtkRenderWindowInteractor provides a platform-independent interaction mechanism for mouse/key/
time events. Platform specific subclasses intercept messages from the windowing system that occur
within the render window and convert them to platform independent events. Specific classes may
observe the interactor for these user events and respond to them. One such class is vtkInteractorOb-
server. (Remember that multiple renderers can draw into a rendering window and that the renderer
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draws into a viewport within the render window. Interactors support multiple renderers in a render
window). We've seen how to use vtkRenderWindowInteractor previously, here's a recapitulation.

vtkRenderWindowInteractor iren
iren SetRenderWindow renWin
iren AddObserver UserEvent {wm deiconify .vtkInteract}

Apart from providing a platform independent interaction, vtkRenderWindowInteractor also provides
functionality for frame rate control. The class maintains a notion of two kinds of requested frame
rates: “DesiredUpdateRate” and “StillUpdateRate”. The rationale for this is that during interaction,
one is willing to sacrifice some amount of rendering quality for better interactivity. Hence, the inter-
actor (to be more exact the interactor styles as you will see in the next section), sets the target frame
rate to the DesiredUpdateRate during interaction. After interaction, the target frame rate is set back to
the StillUpdateRate. Typically the DesiredUpdateRate is much larger than the StillUpdateRate. If a
vtkLODActor is present in the scene (“Level-Of-Detail Actors” on page 55), it will then switch to a
level of detail low enough to meet the target rate. A volume mapper (See “Volume Rendering” on
page 139.) can cast fewer rays, or skip texture planes to meet the desired frame rate. Users may set
these rates using the methods SetDesiredUpdateRate() and SetStillUpdateRate() on the interactor.

Interactor Styles
Everyone has a favorite way of interacting with data. There are two distinctly different ways to con-
trol interaction style in VTK. The first (and the recommended method) is to use a subclass of vtkInter-
actorStyle, either one supplied with the system or one that you write. The second method is to add
observers that watch for events on the vtkRenderWindowInteractor and define your own set of call-
backs (or commands) to implement the style. (Note: 3D widgets are another, more complex way to
interact with data in the scene.)

vtkInteractorStyle 
The class vtkRenderWindowInteractor can support different
interaction styles. When you type “t” or “j” in the interactor
(see the previous section) you are changing between track-
ball and joystick interaction styles. The way this works is
that vtkRenderWindowInteractor translates window-system-
specific events it receives (e.g., mouse button press, mouse
motion, keyboard events) to VTK events such as Mouse-
MoveEvent, StartEvent, and so on. (See “User Methods,
Observers, and Commands” on page 29.) Different styles
then observe particular events and perform the action(s)
appropriate to the event, typically some form of camera
manipulation. To set the style, use the vtkRenderWindowIn-
teractor's SetInteractorStyle() method. For example:

vtkInteractorStyleFlight flightStyle
vtkRenderWindowInteractor iren
iren SetInteractorStyle flightStyle
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A variety of interactor styles are provided with the toolkit. Below, we list some of the interactor styles
found in the toolkit:

• vtkInteractorStyleTrackballActor - Allows the user to interact with (rotate, pan, etc.) actors in
the scene independent of each other in a trackball based style. The trackball style is motion sen-
sitive, ie. the magnitude of the mouse motion is proportional to the camera motion associated
with a particular mouse binding.

• vtkInteractorStyleTrackballCamera - Allows the user to interactively manipulate (rotate, pan,
etc.) the camera, the viewpoint of the scene in a trackball based style.

• vtkInteractorStyleJoystickActor - allows the user to interact with actors in a joystick style. The
joystick style is position sensitive; ie. the position of the mouse relative to the center of the
object, rather than the velocity of the mouse motion, determines the speed of the object's
motion.

• vtkInteractorStyleJoystickCamera - Manipulate the camera in a joystick style.
• vtkInteractorStyleFlight - Provides flight motion routines. It is suitable for a fly through interac-

tion (for instance through the colon in virtual colonoscopy), or a fly over (for instance over a
terrain, or height field).

• vtkInteractorStyleImage - The style is specially designed to work with images that are being
rendered with vtkImageActor. Its interactions support window/level etc.

• vtkInteractorStyleRubberbandZoom - This interactor style allows the user to draw a rectangle
(rubberband) in the render window and zooms the camera appropriately into the selected
region.

• vtkGeoInteractorStyle - Tailored for interaction with a geographic view (for instance a globe).
Its interaction capabilities include orbit, zoom and tilt. It also features a compass widget for
changing view parameters.

• vtkInteractorStyleTreeMapHover - works with a tree map (See “Information Visualization” on
page 163.). Interactions allow 2D pan/zoom and balloon annotations for nodes on the tree map,
node selection capabilities etc.

• vtkInteractorStyleAreaSelectHover - Similar to vtkInteractorStyleTreeMapHover except that it
works with an area layout (See “Area Layouts” on page 175.)

• vtkInteractorStyleUnicam - Single mouse button, context sensitive interaction.

Adding vtkRenderWindowInteractor Observers
While a variety of interactor styles are available in VTK, you may prefer to create your own custom
style to meet the needs of a particular application. In C++ the natural approach is to subclass vtkInter-
actorStyle. (See “vtkRenderWindowInteractor” on page 255.) However, in an interpreted language
(e.g., Tcl, Python, or Java), this is difficult to do. For interpreted languages the simplest approach is to
use observers to define particular interaction bindings. (See “User Methods, Observers, and Com-
mands” on page 29.) The bindings can be managed in any language that VTK supports, including
C++, Tcl, Python, and Java. An example of this is found in the Tcl code VTK/Examples/GUI/Tcl/
CustomInteraction.tcl, which defines bindings for a simple Tcl application. Here's an excerpt to give
you an idea of what's going on.
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vtkRenderWindowInteractor iren
iren SetInteractorStyle ""
iren SetRenderWindow renWin

# Add the observers to watch for particular events
# These invoke Tcl procedures
set Rotating 0
set Panning 0
set Zooming 0

iren AddObserver LeftButtonPressEvent {global Rotating; set Rotating 1}
iren AddObserver LeftButtonReleaseEvent \
{global Rotating; set Rotating 0}

iren AddObserver MiddleButtonPressEvent {global Panning; set Panning 1}
iren AddObserver MiddleButtonReleaseEvent \
{global Panning; set Panning 0}

iren AddObserver RightButtonPressEvent {global Zooming; set Zooming 1}
iren AddObserver RightButtonReleaseEvent {global Zooming; set Zooming 0}
iren AddObserver MouseMoveEvent MouseMove
iren AddObserver KeyPressEvent Keypress

proc MouseMove {} {
...

 set xypos [iren GetEventPosition]
 set x [lindex $xypos 0]
 set y [lindex $xypos 1]
...

 }

proc Keypress {} {
set key [iren GetKeySym]
if { $key == "e" } {

  vtkCommand DeleteAllObjects
  exit
  }
...
}

Note that a key step in this example is disabling the default interaction style by invoking SetInterac-
tionStyle(""). Observers are then added to watch for particular events which are tied to the appropri-
ate Tcl procedures. This example is a simple way to add bindings from a Tcl script. If you would like
to create a full GUI using Tcl/Tk, then use the vtkTkRenderWidget, and refer to “Tcl/Tk” on page 433
for more details.

13.2 Widgets
Interactor styles are generally used to control the camera and provide simple keypress and mouse-ori-
ented interaction techniques. Interactor styles have no representation in the scene; that is, they cannot
be “seen” or interacted with, the user must know what the mouse and key bindings are in order to use
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them. Certain operations, however, are greatly facilitated by the ability to operate directly on objects
in the scene. For example, starting a rake of streamlines along a line is easily performed if the end-
points of the line can be interactively positioned.

VTK's 3D widgets have been designed to provide this functionality. Like the class vtkInterac-
torStyle, VTK's widgets are subclasses of vtkInteractorObserver. That is, they listen to mouse and
keyboard events invoked by vtkRenderWindowInteractor. Unlike vtkInteractorStyle, however, these
widgets have some geometrical representation in the scene, with which the user typically interacts.
VTK provides numerous widgets tailored to perform tasks that range from measurements and annota-
tions to segmentations, scene parameter manipulation, probing etc. 

Since their inception into VTK, the widget architecture has undergone a redesign. The older
widgets derive from vtk3DWidget. Below, we will discuss the architecture of the newer widgets.
These derive from vtkAbstractWidget, which derives from vtkInteractorObserver. This class defines
the behavior of the widget (its interaction, etc). The widget’s geometry (how it appears in the scene) is
encapsulated in the form of a prop. This is a class that derives from vtkWidgetRepresentation, which
derives from vtkProp. This decoupling of the behavior (interaction) from the representation (geome-
try) allows one to create multiple representations for the same widget. This allows users to override
existing representations with their own representations without having to reimplement event process-
ing. They are useful in a parallel, distributed computing world where the capabilities for event pro-
cessing may not exist. A vtkHandleWidget that is used to represent a seed has four geometric
representations namely: vtkPointHandleRepresentation2D, vtkPointHandleRepresentation3D, vtk-
SphereHandleRepresentation and vtkPolygonalHandleRepresentation. These render a handle as a 2D
crosshair, 3D crosshair, a sphere or a user supplied polygonal shape respectively. The following snip-
pet found in Widgets/Testing/Cxx/TestHandleWidget.cxx shows how to create a widget and tie it to
its representation. Here, we’ll create a handle widget that can be moved around in a 3D world. The
handle is represented via a 3D crosshair, as dictated by its representation.

// Create a render window interactor
vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
 iren->SetRenderWindow(renderWindow);

// Create a 3D cross hair representation for a handle
double worldPos[3] = {-0.0417953, 0.202206, -0.0538641};
vtkPointHandleRepresentation3D *handleRep 
= vtkPointHandleRepresentation3D::New();
handleRep->SetHandleSize(10);
handleRep->SetWorldPosition(worldPos);

// Create the handle widget.
vtkHandleWidget *handleWidget = vtkHandleWidget::New();
handleWidget->SetInteractor(iren);
handleWidget->SetRepresentation(handleRep);
handleWidget->EnabledOn();

While each widget provides different functionality and offers a different API, the 3D widgets are sim-
ilar in how they are set up and used. The general procedure is as follows.

1. Instantiate the widget

2. Specify the render window interactor that the widget will observe for user events
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3. Create callbacks (i.e., commands) as necessary using the Command/Observer mechanism.See 
“User Methods, Observers, and Commands” on page 29. The widgets typically invoke the 
generic events indicating that they are being interacted with and also widget specific events 
during interaction, such as StartInteractionEvent, InteractionEvent, and EndInteractionEvent. 
The user typically observes these events to update data, visualization parameters or the applica-
tion's user interface. 

4. Create the appropriate representation and provide it to the widget using SetRepresentation, or 
use the default representation provided by the widget.

5. Finally the widget must be enabled, so that it is visible on the scene. By default, a keypress “i” 
will enable the widget and it will appear in the scene.

While SetEnabled toggles the visibility of a widget, in some cases, it may be necessary to disable a
widget's interaction, while keeping it visible in the scene. Event processing for the newer widgets can
be disabled via:

widget->ProcessEventsOff();

This will cause the widget to stop responding to interactions, which will end up being processed by
the underlying interactor style.

Reconfigurable Bindings

Users may also like to customize mouse / keyboard bindings for a widget, due to personal preference
or when a different interaction device is used. The newly architected widgets allow you to reconfigure
bindings. All user events are associated with specific widget actions. The widgets use an intermediate
class called an “event translator” to translate user events to widget specific events. In turn, the widget
event is mapped into a method invocation on the widget. The event translator can be used to change
the default bindings as shown in the following code excerpt from Widgets/Testing/Cxx/TestSlider-
Widget.cxx

vtkWidgetEventTranslator *translator = 
sliderWidget->GetEventTranslator();

 translator->SetTranslation( 
vtkCommand::RightButtonPressEvent, vtkWidgetEvent::Select);

translator->SetTranslation( 
vtkCommand::RightButtonReleaseEvent, vtkWidgetEvent::EndSelect);

As a result, the user can manipulate the slider’s notch using the right mouse button in addition to the
default left button. The user may also remove existing bindings using the RemoveTranslation method.

translator->RemoveTranslation( vtkCommand::LeftButtonPressEvent );
translator->RemoveTranslation( vtkCommand::LeftButtonReleaseEvent );

A list of translations associated with a widget can be obtained by exercising its Print statement:

translator->Print( std::cout );
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Cursor Management and Highlighting
Most widgets also manage the cursor, changing its shape appropriately when hovering over a portion
of the widget to indicate an action. Highlighting is another common feature, for instance the handle of
a box widget will change color when hovered upon / selected to indicate its ability to be manipulated.

Widget Hierarchies
Widgets also support hierarchies. A widget may be “parented” by another widget to enable creation of
composite widgets, using one or more existing widgets. For instance a vtkDistanceWidget internally
comprises two vtkHandleWidgets, as its children, representing the end points. The children listen to
their parent for events, instead of the render window interactor, thereby allowing the parent to modify
their behavior if necessary. Within VTK, the handle widget is used as a child in several other widgets
such as the Angle, BiDimensional, Box, Parallelopiped, Line and Seed widgets.

Timers
Apart from responding to events, from the user, VTK's widgets can also respond to other events, such
as timer events. For instance a vtkBalloonWidget is used to popup text / image annotations when the
mouse hovers over an actor for a user specified time. To do this, the widget observes the interactor for
the MouseMoveEvent and the TimerEvent, so that the widget may take action when the mouse stag-
nates over an actor for a time exceeding a user specified “TimerDuration”. 

The following excerpt from Rendering/Testing/Cxx/TestInteractorTimers.cxx illustrates how to
request and observe the render window interactor for timers.

// Observe the interactor for timers with a callback
iren->AddObserver(vtkCommand::TimerEvent, myCallback);

// Create a timer that repeats every 3 milliseconds
tid = iren->CreateRepeatingTimer(3);

// Create a timer that fires once after 1 second.
tid = iren->CreateOneShotTimer(10000);

Priorities
Several classes may observe the render window interactor simultaneously for user events. These
include all subclasses of vtkInteractorObserver, such as the interactor style and one or more widgets
in the scene. Mousing in the scene, not on any particular widget will engage the vtkInteractorStyle,
but mousing on a particular widget will engage just that widget-typically no other widget or interactor
style will see the events. (One notable exception is the class vtkInteractorEventRecorder that records
events and then passes them along. This class can also playback events, thereby making it useful for
recording sessions. The class is used in VTK to exercise regression tests for the widgets.). Such a sce-
nario may result in event competition. Competition for user events is handled through “priorities”. All
subclasses of vtkInteractorObserver can be assigned a priority using the SetPriority method. Objects
with a higher priority are given the opportunity to process events before those with a lower priority.
They may also choose to abort event processing for a given event, and in effect grab “focus”.

In fact, the reason the widgets handle event processing before the interactor style is due to their
having a higher priority than the interactor styles.
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Point Placers
Note that interactions happen in a 2D window. 3D widgets may need to translate 2D coordinates to
coordinates in a 3D world. For instance, consider the use of a vtkHandleWidget to drop a seed point
on a render window. At what depth in the 3D scene should the seed be placed? VTK provides a few
standard ways define this mapping and a framework to create your own mapping. This is accom-
plished via a class called vtkPointPlacer. The contour widget and the handle widget have representa-
tions that accept a point placer to which they delegate the responsibility of translating from 2D to 3D
co-ordinates. One may use these to specify constraints on where a node may be moved. For instance,
the following excerpt found in Widgets/Testing/Cxx/TestSurfaceConstrainedHandleWidget.cxx
restricts the placement and interaction of seeds to a polygonal surface:

vtkHandleWidget *widget = vtkHandleWidget::New();
vtkPointHandleRepresentation3D *rep =
vtkPointHandleRepresentation3D::SafeDownCast(
widget->GetRepresentation());

// Restrict the placement of seeds to the polygonal surface defined by 
// "polydata" and rendered as "actor"
vtkPolygonalSurfacePointPlacer * pointPlacer
= vtkPolygonalSurfacePointPlacer::New();
pointPlacer->AddProp(actor);
pointPlacer->GetPolys()->AddItem( polydata );
rep->SetPointPlacer(pointPlacer);

Similarly, one may use the class vtkImageActorPointPlacer to restrict the placement of control points
of a contour widget to a slice of an image as shown in the following excerpt from Widgets/Testing/
Cxx/TestImageActorContourWidget.cxx.

vtkOrientedGlyphContourRepresentation *rep =
vtkOrientedGlyphContourRepresentation::New();

vtkImageActorPointPlacer * imageActorPointPlacer =
vtkImageActorPointPlacer::New();
imageActorPointPlacer->SetImageActor(ImageViewer->GetImageActor());

rep->SetPointPlacer(imageActorPointPlacer);

13.3 A tour of the widgets
The following is a selected list of widgets currently found in VTK and a brief description of their fea-
tures. Note that some of the concepts mentioned here have not yet been covered in this text. Please
refer to the appropriate cross-reference to learn more about a particular concept. 

Measurement Widgets

vtkDistanceWidget. The vtkDistanceWidget is used to measure the distance between two points in
2D, for instance to measure the diameter of a tumor in a medical image. The two end points can be
positioned independently, and when they are released, a PlacePointEvent is invoked so that you can
perform custom operations to reposition the point (snap to grid, snap to an edge, etc.) The widget has
two different modes of interaction: the first mode is used when you initially define the measurement
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(i.e., placing the two points) and then a manipulate mode is used to allow you to adjust the position of
the two points.

To use this widget, specify an instance of vtkDistance-
Widget and a representation (a subclass of vtkDistanceRepre-
sentation). The widget is implemented using two instances of
vtkHandleWidget which are used to position the end points of
the line. The representations for these two handle widgets are
provided by the vtkDistanceRepresentation. The following is
an example of vtkDistanceWidget taken from VTK/Widgets/
Testing/Cxx/TestDistanceWidget.cxx.

vtkPointHandleRepresentation2D *handle = 
vtkPointHandleRepresentation2D::New();

vtkDistanceRepresentation2D *rep = 
vtkDistanceRepresentation2D::New();
rep->SetHandleRepresentation(handle);

vtkDistanceWidget *widget = vtkDistanceWidget::New();
widget->SetInteractor(iren);
widget->SetRepresentation(rep);

vtkAngleWidget. The vtkAngleWidget is used to measure
the angle between two rays (defined by three points). The
three points (two end points and a center) can be positioned
independently in either 2D or 3D. Similar to vtkDistanceWid-
get, a PlacePointEvent is invoked when one of the handle
positions is altered so that you can adjust the position of the
point to snap to a grid or to perform other specialized place-
ment options. Also similar to the vtkDistanceWidget, the
vtkAngleWidget has two modes of operation. The first is in
effect as the angle widget is being defined and the three points
are initially placed. After that the widget switches to the
manipulation interaction mode, allowing you to adjust the
placement of each of the three points defining the angle.

To use this widget, specify an instance of vtkAngleWidget and a representation (a subclass of
vtkAngleRepresentation). The widget is implemented using three instances of vtkHandleWidget
which are used to position the three points. The representations for these handle widgets are provided
by the vtkAngleRepresentation. The following is an example of the vtkAngleWidget taken from
VTK/Widgets/Testing/Cxx/TestAngleWidget3D.cxx.

vtkPointHandleRepresentation3D *handle = 
vtkPointHandleRepresentation3D::New();

vtkAngleRepresentation3D *rep = vtkAngleRepresentation3D::New();
rep->SetHandleRepresentation(handle);

vtkAngleWidget *widget = vtkAngleWidget::New();
widget->SetInteractor(iren);
widget->SetRepresentation(rep);

vtkDistanceWidget

vtkAngleWidget
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Similarly one may instantiate the representation vtkAngleRepresentation2D to measure angles in 2D

vtkPointHandleRepresentation2D *handle = 
vtkPointHandleRepresentation2D::New();

vtkAngleRepresentation2D *rep = vtkAngleRepresentation2D::New();
rep->SetHandleRepresentation(handle);

widget->SetRepresentation(rep);

vtkBiDimensionalWidget. The vtkBiDimensionalWidget is
used to measure the bidimensional length of an object. The bi-
dimensional measure is defined by two finite, orthogonal lines
that intersect within the finite extent of both lines. The lengths
of these two lines gives the bidimensional measure. Each line
is defined by two handle widgets at the end points of each line.

The orthogonal constraint on the two lines limits how
the four end points can be positioned. The first two points can
be placed arbitrarily to define the first line (similar to vtkDis-
tanceWidget). The placement of the third point is limited by
the finite extent of the first line. As the third point is placed,
the fourth point is placed on the opposite side of the first line.
Once the third point is placed, the second line is defined since the fourth point is defined at the same
time, but the fourth point can be moved along the second line (i.e., maintaining the orthogonal rela-
tionship between the two lines). Once defined, any of the four points can be moved along their con-
straint line. Also, each line can be translated along the other line (in an orthogonal direction), and the
whole bi-dimensional widget can be rotated about its center point. Finally, by selecting the point
where the two orthogonal axes intersect the entire widget can be translated in any direction.

Placement of any point results in a special PlacePointEvent invocation so that special opera-
tions may be performed to reposition the point. Motion of any point, moving the lines, or rotating the
widget cause InteractionEvents to be invoked. Note that the widget has two fundamental modes: a
define mode (when initially placing the points) and a manipulate mode (after the points are placed).
Line translation and rotation are only possible in manipulate mode.

To use this widget, specify an instance of vtkBiDimensionalWidget and a representation (e.g.,
vtkBiDimensionalRepresentation2D). The widget is implemented using four instances of vtkHandle-
Widget which are used to position the end points of the two intersecting lines. The representations for
these handle widgets are provided by the vtkBiDimensionalRepresentation2D class. An example
taken from VTK/Widgets/TestBiDimensionalWidget.cxx is shown below:

vtkBiDimensionalRepresentation2D *rep = 
vtkBiDimensionalRepresentation2D::New();

vtkBiDimensionalWidget *widget = vtkBiDimensionalWidget::New();
widget->SetInteractor(iren);
widget->SetRepresentation(rep);

vtkBiDimensionalWidget
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Widgets for probing or manipulating underlying data

vtkHandleWidget. The vtkHandleWidget provides a handle
that can be interactively positioned in 2D or 3D space. They
may also be used as fiducials. Several geometrical representa-
tions are provided that enable creation of various shapes in 2D
and 3D. The handle can be translated in 2D/3D space with the
left mouse button. Dragging it with the shift key depressed
constrains its translation along one of the coordinate axes; the
axes being determined as the one most aligned with the mouse
motion vector. The handle may be resized using the right
mouse button. The widget invokes an InteractionEvent during
manipulation of the handles and an EndInteractionEvent after
interaction, allowing users to respond if necessary.

vtkHandleRepresentation is the abstract superclass for the handle's many representations.
vtkPointHandleRepresentation3D represents the handle via a 3D cross hair.
vtkPointHandleRepresentation2D represents it via a 2D cross hair on the overlay plane. vtkSphere-
HandleRepresentation represents it via a 3D sphere. vtkPolygonalHandleRepresentation3D allows
the users to plug in an instance of vtkPolyData so to render the handle in a user defined shape. The
myriad representations allow one to represent the end points of the distance, angle and bidimensional
widgets in various shapes. An example:

vtkHandleWidget *widget = vtkHandleWidget::New();
vtkPointHandleRepresentation3D *rep = 
vtkPointHandleReprentation3D::New()

widget->SetRepresentation(rep);

Constraints on handle placement and movement may be optionally placed via a subclass of vtkPoint-
Placer. A vtkPolygonalSurfacePointPlacer will restrict the handles to the surfaces of a vtkPolyData.

// Restrict the placement of seeds to the polygonal surface defined by 
// “polydata” and rendered as “actor”

vtkPolygonalSurfacePointPlacer * pointPlacer = 
vtkPolygonalSurfacePointPlacer::New();
pointPlacer->AddProp(actor);
pointPlacer->GetPolys()->AddItem( polydata );

rep->SetPointPlacer(pointPlacer);

Similarly, a vtkTerrainDataPointPlacer may be used to restrict the handles to a height field (a Digital
Elevation Map). 

vtkTerrainDataPointPlacer * placer = vtkTerrainDataPointPlacer::New();
placer->SetHeightOffset( 5.0 ); 
// height over the terrain to constrain the points to
placer->AddProp( demActor ); // prop representing the DEM.

rep->SetPointPlacer( placer );

vtkHandleWidget
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A vtkImageActorPointPlacer will restrict the handles to an image, represented by an instance of
vtkImageActor. Bounds may in addition be placed on this placer to further restrict the points within
the image actor via SetBounds.

vtkImageActorPointPlacer *placer = vtkImageActorPointPlacer::New();
placer->SetImageActor( imageActor );

vtkLineWidget2. The class vtkLineWidget2 allows the
define and manipulate a finite straight line in 3D space. The
line can be picked at its endpoints, (represented by instances
of vtkHandleWidget) to orient and stretch the line. It can also
be picked anywhere along the line so as to translate it in the
scene. Much like vtkHandleWidget, the movement of the end-
points or the center can be constrained to one of the axes by
dragging with the shift key depressed. The line can be scaled
about its center using the right mouse button. By moving the
mouse “up” the render window the line will be made bigger;
by moving “down” the render window the line gets smaller. A
common use of the line widget is to probe (“Probing” on
page 100) and plot data (“X-Y Plots” on page 66) or produce
streamlines (“Streamlines” on page 95) or stream surfaces
(“Stream Surfaces” on page 97). vtkLineRepresentation provides the geometry for the line widget.
One may also enable annotation of the length of the line. The widget invokes an InteractionEvent dur-
ing the manipulation of the line and an EndInteractionEvent after interaction, allowing users to
respond if necessary. Here’s an excerpt from Widgets/Testing/Cxx/TestLineWidget2.cxx.

vtkLineRepresentation *rep = vtkLineRepresentation::New();
p[0] = 0.0; p[1] = -1.0; p[2] = 0.0;
rep->SetPoint1WorldPosition(p);
p[0] = 0.0; p[1] =  1.0; p[2] = 0.0;
rep->SetPoint2WorldPosition(p);
rep->PlaceWidget(pl3d->GetOutput()->GetBounds());
rep->GetPolyData(seeds); // used to seed a streamline later
rep->DistanceAnnotationVisibilityOn();

vtkLineWidget2 *lineWidget = vtkLineWidget2::New();
lineWidget->SetInteractor(iren);
lineWidget->SetRepresentation(rep);
lineWidget->AddObserver(vtkCommand::InteractionEvent,myCallback);

vtkPlaneWidget. This widget can be used to orient and position a finite plane. The plane resolution
is variable. The widget produces an implicit function, which may be queried via the GetPlane method
and a polygonal output, which may be queried via the GetPolyData methods The plane widget may be
used for probing and seeding streamlines. The plane has four handles (at its corner vertices), a normal
vector, and the plane itself. By grabbing one of the four handles (use the left mouse button), the plane
can be resized. By grabbing the plane itself, the entire plane can be arbitrarily translated. Pressing
Control while grabbing the plane will spin the plane around the normal. If you select the normal vec-
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tor, the plane can be arbitrarily rotated. Selecting any part of the widget with the middle mouse button
enables translation of the plane along its normal. 

(Once selected using middle mouse, moving the mouse in
the direction of the normal translates the plane in the direction
of the normal; moving in the direction opposite the normal
translates the plane in the direction opposite the normal.) Scal-
ing (about the center of the plane) is achieved by using the right
mouse button, dragging “up” the render window to make the
plane bigger; and “down” to make it smaller. The public API of
the widget also allows the user to change the property of the
plane and the handle. One can also constrain the plane normal
to one of the coordinate axes, as is shown in the code snippet
below. The widget invokes an InteractionEvent during manipu-
lation and an EndInteractionEvent after interaction. The follow-
ing excerpt from Widgets/Testing/Cxx/TestPlaneWidget.cxx
illustrates the usage of this widget.

vtkPlaneWidget *planeWidget = vtkPlaneWidget::New();
planeWidget->SetInteractor(iren);
planeWidget->SetInput(pl3d->GetOutput());
planeWidget->NormalToXAxisOn();
planeWidget->SetResolution(20);
planeWidget->SetRepresentationToOutline();
planeWidget->PlaceWidget();
planeWidget->AddObserver(vtkCommand::InteractionEvent,myCallback);

vtkImplicitPlaneWidget2. This widget can be used to orient
and position an unbounded plane. An implicit function as well
as a polygonal output can be queried from this widget. The
widget consists of four parts: 1) a plane contained in a 2)
bounding box, with a 3) plane normal, which is rooted at a 4)
point on the plane. The widget may be scaled using the right
mouse button. The normal can be picked and dragged to ori-
ent the plane. The root of the normal can also be translated to
change the origin of the normal. The entire widget may be
translated using the middle mouse button. The polygonal out-
put is created by clipping the plane with a bounding box. The
widget is often used to “cutting” and “clipping”. One can
change various properties on the plane. The SetTubing can be
used to display a tubed outline of the plane. This excerpt from Widgets/Testing/Cxx/
TestImplicitPlaneWidget2.cxx illustrates the use of vtkImplicitPlaneWidget2 along with an instance
of vtkImplicitPlaneRepresentation

vtkImplicitPlaneRepresentation *rep = 
vtkImplicitPlaneRepresentation::New();
rep->SetPlaceFactor(1.25);
rep->PlaceWidget(glyph->GetOutput()->GetBounds());

vtkPlaneWidget
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vtkImplicitPlaneWidget2 *planeWidget = vtkImplicitPlaneWidget2::New();
planeWidget->SetInteractor(iren);
planeWidget->SetRepresentation(rep);
planeWidget->AddObserver(vtkCommand::InteractionEvent,myCallback);

vtkBoxWidget2. This widget orients and positions a bound-
ing box. The widget produces an implicit function and a
transformation matrix. The widget is used along with an
instance of a vtkBoxRepresentation. The representation rep-
resents box with seven handles: one on each of the six faces,
plus a center handle. The hexahedron has interior face angles
of 90 degrees, ie the faces are orthogonal. Each of the 7 han-
dles that can be moused on and manipulated. A bounding box
outline is shown, the “faces” of which can be selected for
object scaling. During interaction, the corresponding face or
the handle becomes highlighted, providing enhanced visual
cues. One can use the PlaceWidget() method to initially posi-
tion the widget. By grabbing the six face handles (using the
left mouse button), faces can be moved. By grabbing the cen-
ter handle (with the left mouse button), the entire hexahedron can be translated. (Translation can also
be employed by using the “shift-left-mouse-button” combination inside of the widget.) Scaling is
achieved by using the right mouse button; “up” the render window (makes the widget bigger) or
“down” the render window (makes the widget smaller). 

The vtkBoxWidget2 may be used to select, cut, clip, or perform any other operation that
depends on an implicit function (use the GetPlanes() method on the representation); or it can be used
to transform objects using a linear transformation (use the GetTransform() method on the representa-
tion). The widget is also typically used to define a region of interest, which may be used for annota-
tion or for cropping a dataset. The widget invokes a StartInteractionEvent, InteractionEvent, and
EndInteractionEvent events before, during and after interaction. One can turn on/off the display of the
outline between the handles using the SetOutlineCursorWires in vtkBoxRepresentation. The box wid-
get is used to transform vtkProp3D’s and sub-classes (“Transforming Data” on page 70) or to cut
(“Cutting” on page 98) or clip data (“Clip Data” on page 110). This excerpt from VTK/Widgets/Test-
ing/Cxx/BoxWidget2.cxx shows how this widget may be used to transform other props in the scene.

// Callback for the interaction
class vtkBWCallback2 : public vtkCommand
{
virtual void Execute(vtkObject *caller, unsigned long, void*)
{
vtkBoxWidget2 *boxWidget = reinterpret_cast<vtkBoxWidget2*>(caller);
vtkBoxRepresentation *boxRep = 
reinterpret_cast<vtkBoxRepresentation*>(boxWidget->
GetRepresentation());
boxRep->GetTransform(this->Transform);
this->Actor->SetUserTransform(this->Transform);

}
vtkTransform *Transform;
vtkActor     *Actor;
};

vtkBoxWidget2
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...  

vtkBoxRepresentation *boxRep = vtkBoxRepresentation::New();
boxRep->SetPlaceFactor( 1.25 );
boxRep->PlaceWidget(glyph->GetOutput()->GetBounds());

vtkBoxWidget2 *boxWidget = vtkBoxWidget2::New();
boxWidget->SetRepresentation( boxRep );    
boxWidget->AddObserver(vtkCommand::InteractionEvent,myCallback);  

vtkTransform *t = vtkTransform::New();
vtkBWCallback2 *myCallback = vtkBWCallback2::New();
myCallback->Transform = t;
myCallback->Actor = maceActor;

vtkAffineWidget. This widget provides support for interac-
tively defining affine transformations (shear / rotation / scal-
ing / translation). The widget used along with an instance of
vtkAffineRepresentation. vtkAffineRepresentation2D is a
concrete subclass of vtkAffineRepresentation to represent
affine transformations in 2D. This representation's geometry
consists of three parts: a box, a circle, and a cross. The box is
used for scaling and shearing. The left mouse button can be
used to stretch the box along one of the axes by clicking on
the edges, or to stretch along both axes by picking the corner.
The circle is used for rotation. The central cross may be
picked to achieve translation. During manipulation of the box, circle and cross respectively, the scale,
angle or translation component of the affine transform can optionally displayed as accompanying
annotation. All the geometry is drawn on the overlay plane by vtkAffineRepresentation maintaining a
constant size (width and height) specified in terms of normalized viewport coordinates.

The representation maintains a transformation matrix, which may be queried by users using the
GetTransform() method, so as to apply transformations to underlying props or datasets. The transfor-
mations generated by this widget assume that the representation lies in the x-y plane. If this is not the
case, the user is responsible for transforming this representation's matrix into the correct coordinate
space (by judicious matrix multiplication). Note that the transformation matrix returned by GetTrans-
form() is relative to the last PlaceWidget() invocation. (The PlaceWidget() method sets the origin
around which rotation and scaling occurs the origin is the center point of the bounding box pro-
vided.). VTK/Widgets/Testing/Cxx/TestAffineWidget.cxx shows how the affine widget may be used
to apply a transform to the underlying image. The widget invokes an InteractionEvent during interac-
tion and an EndInteractionEvent after interaction.

class vtkAffineCallback : public vtkCommand
{
virtual void Execute(vtkObject *caller, unsigned long, void*)    
{    
this->AffineRep->GetTransform(this->Transform);    
this->ImageActor->SetUserTransform(this->Transform);    
}
vtkImageActor *ImageActor;
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vtkAffineRepresentation2D *AffineRep;
vtkTransform *Transform;

};  

vtkAffineRepresentation2D *rep = vtkAffineRepresentation2D::New();
rep->SetBoxWidth(100);
rep->SetCircleWidth(75);
rep->SetAxesWidth(60);
rep->DisplayTextOn();
rep->PlaceWidget(bounds);

vtkAffineWidget *widget = vtkAffineWidget::New();
widget->SetInteractor(iren);
widget->SetRepresentation(rep);  

vtkAffineCallback *acbk = vtkAffineCallback::New();
acbk->AffineRep = rep;
acbk->ImageActor = imageActor;

widget->AddObserver(vtkCommand::InteractionEvent,acbk);
widget->AddObserver(vtkCommand::EndInteractionEvent,acbk);

vtkParallelopipedWidget. A vtkParallelopipedWidget can be
used interactively manipulate a parallelopiped in 3D. It is
meant to be used along with an instance of vtkParallelopiped-
Representation. The parallelopiped is represented by 8 handles
and 6 faces. The handles can be picked and dragged so as to
manipulate the parallelopiped. The handles are instances of
vtkHandleWidget, represented as spheres (vtkSphereHandle-
Representation). Left clicking on a handle and dragging it
moves the handle in space, the handles along faces shared by
this handle may also move so as to maintain topology as a par-
allelopiped. Dragging a handle with the shift button pressed
resizes the parallelopiped along an axis.The parallelopiped widget also has a special mode, designed
for probing the underlying data and displaying a cut through it. By ctrl-left-click on a handle, it buck-
les inwards to carve a “chair” out of the parallelopiped. In this mode, the parallelopiped has 14 han-
dles and 9 faces. These handles can again be picked to manipulate the parallelopiped or the
depression of the chair. The following excerpt from VTK/Widgets/Testing/Cxx/TestParallelopiped-
Widget.cxx illustrates the use of the vtkParallelopipedWidget.

vtkParallelopipedWidget *widget = vtkParallelopipedWidget::New();
vtkParallelopipedRepresentation *rep = 
vtkParallelopipedRepresentation::New();

widget->SetRepresentation(rep);
widget->SetInteractor( iren );
rep->SetPlaceFactor( 0.5 );
rep->PlaceWidget(parallelopipedPts);
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vtkImagePlaneWidget. This widget defines a plane in a 3D
scene to reslice image volumes interactively. The plane orienta-
tion may be interactively defined. Additional functionality
includes the ability to window-level the resliced data and defin-
ing the degree of interpolation while reslicing. Internally, the
widget contains an instance of vtkImageReslice. This slices
through the underlying volumetric image data based on the
defined plane. The output of this class is texture mapped onto
the plane, creating an “image plane widget”. Selecting the wid-
get with the middle mouse button with and without holding the
shift or control keys enables complex reslicing capablilites. A
set of ‘margins’ (left, right, top, bottom) are shown as a set of
plane-axes aligned lines. Without keyboard modifiers: select-
ing towards the middle of the plane margins enables translation
of the plane along its normal. Selecting one of the corners within the margins enables spinning around
the plane’s normal at its center. Selecting within a margin allows rotating about the center of the plane
around an axis aligned with the margin (i.e., selecting the left margin enables rotation around the
plane’s local y-prime axis). With the control key modifier: margin selection enables edge translation
(i.e., a constrained form of scaling). Selecting within the margins enables translation of the entire
plane. With shift key modifier: uniform plane scaling is enabled. Moving the mouse up enlarges the
plane while downward movement shrinks it. When selected the plane outline is highlighted to provide
visual cues.

Window-level is achieved by using the right mouse button. Window-level values can be reset
by shift + 'r' or control + 'r'. One can reset the camera by pressing 'r' or 'R'. The left mouse button can
be used to query the underlying image data with a snap-to cross-hair cursor. The nearest point in the
input image data to the mouse cursor generates the cross-hairs. With oblique slicing, this behavior
may appear unsatisfactory. Text annotations display the window-level and image coordinates/data
values. The text annotation may be toggled on and off with SetDisplayText. The widget invokes a
StartInteractionEvent, InteractionEvent and EndInteractionEvent at the beginning, during and end of
an interaction. The events StartWindowLevelEvent, WindowLevelEvent, EndWindowLevelEvent
and ResetWindowLevelEvent are invoked during their corresponding actions.

The vtkImagePlaneWidget has additional public API that allow it to be used has several meth-
ods that can be used in conjunction with other VTK objects. The GetPolyData() method can be used
to get the polygonal representation of the plane and can be used as input for other VTK objects. Some
additional features of this class include the ability to control the properties of the widget. You can set
the properties of: the selected and unselected representations of the plane's outline; the text actor via
its vtkTextProperty; the cross-hair cursor. In addition there are methods to constrain the plane so that
it is aligned along the x-y-z axes. Finally, one can specify the degree of interpolation used for reslic-
ing the data: nearest neighbor, linear, and cubic. One can also choose between voxel centered or con-
tinuous cursor probing. With voxel centered probing, the cursor snaps to the nearest voxel and the
reported cursor coordinates are extent based. With continuous probing, voxel data is interpolated
using vtkDataSetAttributes' InterpolatePoint method and the reported coordinates are 3D spatial con-
tinuous. VTK/Widgets/Testing/Cxx/ImagePlaneWidget.cxx uses vtkImagePlaneWidget to interac-
tively display axial, coronal and sagittal slices in a 3D volume. The following excerpt illustrates the
usage of this widget. 

vtkImagePlaneWidget
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vtkImagePlaneWidget* planeWidgetX = vtkImagePlaneWidget::New();
planeWidgetX->SetInteractor( iren);
planeWidgetX->SetKeyPressActivationValue('x');
planeWidgetX->SetPicker(picker);
planeWidgetX->RestrictPlaneToVolumeOn();
planeWidgetX->GetPlaneProperty()->SetColor(1,0,0);
planeWidgetX->SetTexturePlaneProperty(ipwProp);
planeWidgetX->TextureInterpolateOff();
planeWidgetX->SetResliceInterpolateToNearestNeighbour();
planeWidgetX->SetInput(v16->GetOutput());
planeWidgetX->SetPlaneOrientationToXAxes();
planeWidgetX->SetSliceIndex(32);
planeWidgetX->DisplayTextOn();
planeWidgetX->On();

vtkTensorProbeWidget. This widget can be used to probe
tensors along a trajectory. The trajectory is represented via a
polyline (vtkPolyLine). The class is intended to be used with
an instance of vtkTensorProbeRepresentation. The represen-
tation class is also responsible for rendering the tensors.
vtkEllipsoidTensorProbeRepresentation renders the tensors
as ellipsoids. The orientation and radii of the ellipsoids illus-
trate the major, medium, and minor eigenvalues/eigenvectors
of the tensors. The interactions of the widget are controlled
by the left mouse button. A left click on the tensor selects it.
It can dragged around the trajectory to probe the tensors on it.
The following is an example taken from Widgets/Testing/
Cxx/TestTensorProbeWidget.cxx.

vtkTensorProbeWidget *w = vtkTensorProbeWidget::New(); 
w->SetInteractor(iren);

vtkTensorProbeRepresentation * rep = 
vtkTensorProbeRepresentation::SafeDownCast(w->GetRepresentation());
rep->SetTrajectory(pd);

Annotation widgets

vtkScalarBarWidget. This class provides support for interactively manip-
ulating the position, size, and orientation of a scalar bar. This widget is typ-
ically used to display a color legend in the scene. The legend is displayed in
the overlay plane.vtkScalarBarWidget is meant to be used in conjunction
with an instance of vtkScalarBarRepresentation. The widget allows the
scalar bar to be resized, repositioned or reoriented. If the cursor is over an
edge or a corner of the scalar bar it will change the cursor shape to a resize
edge / corner shape. A drag with the left button then resizes the scalar bar.
Similarly, if the cursor is within the scalar bar, it changes shape to indicate
that it can be translated. The scalar bar can also be repositioned by pressing
the middle mouse button. If the position of a scalar bar is moved to be close

vtkTensorProbeWidget
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to the center of one of the four edges of the viewport, then the scalar bar will change its orientation to
align with that edge. This orientation is sticky in that it will stay that orientation until the position is
moved close to another edge. The orientation may also be programmatically specified. The scalar bar
itself text annotations can be queried or specified by retrieving or setting the scalar bar from the wid-
get or the representation. One can then set the lookuptable or properties such as text annotations. One
can also disable resizing by setting the SetResizable() method in the widget. Similarly one can disable
repositioning using the SetSelectable() flag in the widget. This excerpt from VTK/Widgets/Testing/
Cxx/TestScalarBarWidget.cxx illustrates its usage.

vtkScalarBarWidget *scalarWidget = vtkScalarBarWidget::New();
scalarWidget->SetInteractor(iren);
scalarWidget->GetScalarBarActor()->SetTitle("Temperature");
scalarWidget->GetScalarBarActor()->
SetLookupTable(outlineMapper->GetLookupTable());

vtkCaptionWidget. This widget provides support for inter-
actively placing a textual caption on the 2D overlay plane,
along with a leader (e.g., arrow) that points from the text to
the point in the scene to be annotated. The caption is repre-
sented by a vtkCaptionRepresentation. One can interactively
anchor the placement of the leader. The widget-representation
internally contains an instance of vtkCaptionActor2D to dis-
play the caption. One can set the caption actor directly on the
widget. The caption box automatically adjusts itself to fit the
text based on its font size, justification and other text proper-
ties. The widget invokes a StartInteractionEvent, Interac-
tionEvent and EndInteractionEvent at the beginning, during and end of an interaction. When the
caption text is selected, the widget emits a ActivateEvent that observers can watch for. This is useful
for opening GUI dialogs to adjust font characteristics, etc. The following excerpt from VTK/Widgets/
Testing/Cxx/TestCaptionWidget.cxx shows how this widget is used to annotate a scene.

// Create the widget
vtkCaptionActor2D *rep = vtkCaptionActor2D::New();
rep->SetCaption("This is a test\nAnd it has two lines");
rep->GetTextActor()->GetTextProperty()->
SetJustificationToCentered();

rep->GetTextActor()->GetTextProperty()->
SetVerticalJustificationToCentered();

vtkCaptionWidget *widget = vtkCaptionWidget::New();
widget->SetInteractor(iren);
widget->SetCaptionActor2D(rep);

vtkOrientationMarkerWidget. The vtkOrientationMarkerWidget provides support for interactively
manipulating the position, size, and orientation of a prop representing an orientation marker. The
input orientation marker is rendered as an overlay on the parent renderer, thus it appears superposed
over all provided props in the parent’s scene. The camera view of the orientation marker is made to
match that of the parent, so that it matches the scene’s orientation. This class maintains its own ren-
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derer which is added to the parent render window on a different layer. The camera view of the orien-
tation marker is made to match that of the parent by means of a command-observer mechanism. This
gives the illusion that the marker’s orientation reflects that of the prop(s) in the parent’s scene.

The widget listens to left mouse button and mouse move-
ment events. It will change the cursor shape based on its loca-
tion. If the cursor is over the overlay renderer, it will change the
cursor shape to a SIZEALL shape. With a click followed by a
drag, the orientation marker can be translated, (along with the
overlay viewport). If the mouse cursor is near a corner, the cur-
sor changes to a resize corner shape (e.g., SIZENW). With a
click and a drag, the viewport, along with the orientation marker
it contains is resized. The aspect ratio is maintained after releas-
ing the left mouse button, to enforce the overlay renderer to be
square, by making both sides equal to the minimum edge size.
The widget also highlights itself when the mouse cursor is over
it, by displaying an outline of the orientation marker.The widget
requires an instance of an orientation marker prop to be set. The marker prop itself can be any sub-
class of vtkProp. Specifically, vtkAxesActor and vtkAnnoatedCubeActor are two classes that are
designed to serve as orientation props. The former provides annotation in the form of annotated XYZ
axes. The latter appears as a cube, with the 6 faces annotated with textures created from user specified
text. A composite orientation marker can also be generated by adding instances of vtkAxesActor and
vtkAnnoatedCubeActor to a vtkPropAssembly, which can then be set as the input orientation marker.
The widget can be also be set up programmatically, in a non-interactive fashion by setting Interactive
to Off and sizing/placing the overlay renderer in its parent viewport by calling the widget's SetView-
port method. The following illustrates a typical usage; for a more complex use case see VTK/Wid-
gets/Testing/Cxx/TestOrientationMarkerWidget.cxx. 

vtkAnnotatedCubeActor* cube = vtkAnnotatedCubeActor::New();  
cube->SetXPlusFaceText ( "A" );
cube->SetXMinusFaceText( "P" );
cube->SetYPlusFaceText ( "L" );
cube->SetYMinusFaceText( "R" );
cube->SetZPlusFaceText ( "S" );
cube->SetZMinusFaceText( "I" );
cube->SetFaceTextScale( 0.666667 );
cube->SetFaceTextScale( 0.65 );

property = cube->GetCubeProperty();
property->SetColor( 0.5, 1, 1 );
property = cube->GetTextEdgesProperty();
property->SetLineWidth( 1 );
property->SetDiffuse( 0 );
property->SetAmbient( 1 );
property->SetColor( 0.1800, 0.2800, 0.2300 );

// this static function improves the appearance of the text edges
// since they are overlaid on a surface rendering of the cube's faces
vtkMapper::SetResolveCoincidentTopologyToPolygonOffset();

vtkOrientationMarkerWidget* widget = vtkOrientationMarkerWidget::New();
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widget->SetOutlineColor( 0.9300, 0.5700, 0.1300 );
widget->SetOrientationMarker( cube );
widget->SetInteractor( iren );
widget->SetViewport( 0.0, 0.0, 0.4, 0.4 );
widget->SetEnabled( 1 );

vtkBalloonWidget. This widget is used to popup annotations
when the mouse hovers over an actor for a specified time. The
annotation may be text and/or an images annotation when the
mouse hovers over an actor for a specified time. The widget
keeps track of user chosen props by associating an instance of
a vtkProp with an instance of a “balloon”. The balloon encap-
sulates annotations (text and/or images). The balloon is
brought up with user specified properties near the vtkProp when the mouse cursor hovers over it for a
specified delay. An instance of vtkBalloonRepresentation is used to draw the balloon. To use this wid-
get, first specify an instance of vtkBalloonWidget and the representation. Then list all instances of
vtkProp, a text string, and/or an instance of vtkImageData to be associated with each vtkProp. (Note
that you can specify both text and an image, or just one or the other.) You may also wish to specify the
hover delay. The widget invokes a WidgetActivateEvent before a balloon pops up, that observers can
watch for. VTK/Widgets/Testing/Cxx/TestBalloonWidget.cxx illustrates a typical usage.

class vtkBalloonCallback : public vtkCommand
{
virtual void Execute(vtkObject *caller, unsigned long, void*)
{
vtkBalloonWidget *balloonWidget = 
reinterpret_cast<vtkBalloonWidget*>(caller);

if ( balloonWidget->GetCurrentProp() != NULL )
{
cout << "Prop selected\n"; 
} 

}
};

...

vtkBalloonRepresentation *rep = vtkBalloonRepresentation::New();
rep->SetBalloonLayoutToImageRight();

vtkBalloonWidget *widget = vtkBalloonWidget::New();
widget->SetInteractor(iren);  
widget->SetRepresentation(rep);  
widget->SetTimerDuration( 3000 ); // hover delay in ms.  
widget->AddBalloon(sph,"This is a sphere",NULL);  
widget->AddBalloon(cyl,"This is a\ncylinder",image1->GetOutput());  
widget->AddBalloon(cone,"This is a\ncone,\na really big cone,\nyou 
wouldn't believe how big",image1->GetOutput()); 

vtkBalloonCallback *cbk = vtkBalloonCallback::New();  
widget->AddObserver(vtkCommand::WidgetActivateEvent,cbk);
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vtkTextWidget. This class provides support for interactively
placing text on the 2D overlay plane. The text is defined by an
instance of vtkTextActor. It derives from vtkBorderWidget
and inherits its border selection and resizing capabilities. The
text border may be selected with the left mouse button. A
click and a drag resizes the border along a particular direction,
determined by the corner or face along which the text bound-
ary is selected. The text along with its boundary may also be
translated using the selecting the text box near the center. One
can disable resizing and moving by turning the Selectable flag
on the widget. In addition, when the text is selected, the widget emits a WidgetActivateEvent that
observers can watch for. This is useful for opening GUI dialogues to adjust font characteristics, etc.
The widget also invokes a StartInteractionEvent, an InteractionEvent and an EndInteractionEvent
prior to, during and after user interaction with the widget.

One can retrieve the text property (vtkTextProperty) from the text actor managed by the widget
to change the properties of the text (font, font size, justification etc.). The following excerpt from
VTK/Widgets/Testing/Cxx/TestTextWidget.cxx illustrates this widget’s usage.

vtkTextActor *ta = vtkTextActor::New();
ta->SetInput("This is a test");

vtkTextWidget *widget = vtkTextWidget::New();  
widget->SetInteractor(iren);
widget->SetTextActor(ta);
widget->SelectableOff();

Segmentation / Registration widgets

vtkContourWidget. The contour widget is a very flexible class which may be used to draw closed or
open contours by interactively defining a set of control points. The widget has two modes. When
enabled, one enters a “define” mode through which the user can place control points in succession by
clicking the left mouse button. A contour is drawn passing through the nodes and interpolated
between the nodes according to some interpolation kernel. After the user has placed the points, he
presses the right mouse button. This takes the widget into a “manipulate” mode. The widget may also
enter the “manipulate” mode if the user closes the contour by clicking near the first control point. In
this mode, the user can interactively manipulate the contour. Mousing over a control point will high-
light the control point; users can click on a control point and move it around. This moves the node and
its associated lines, satisfying the constraint imposed by the interpolator. Clicking on the contour (but
not on the node), adds a node at that point. That node may be further manipulated. Mousing over a
node and hitting the “Delete” or “Backspace” key removes the node and re-interpolates the lines with
the remaining nodes. 

The contour widget is designed to work with a subclass of vtkContourRepresentation. Several
representations are provided. Two important ancillary classes used by the contour widget are the “vtk-
ContourLineInterpolator” and “vtkPointPlacer”. The class vtkContourLineInterpolator is an abstract
class that enables the user to specify the interpolation used to define curves between nodes. The class

vtkTextWidget
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vtkPointPlacer allows the user to impose constraints on the placement of the control points. Several
point placers and interpolators are provided. For instance, the class vtkBezierContourLineInterpola-
tor, constrains the interpolation between nodes to be a bezier curve. 

vtkOrientedGlyphContourRepresentation *contourRep = 
vtkOrientedGlyphContourRepresentation::New();

vtkContourWidget *contourWidget = vtkContourWidget::New();  
contourWidget->SetInteractor(iren);
contourWidget->SetRepresentation(contourRep);

vtkBezierContourLineInterpolator * interpolator = 
vtkBezierContourLineInterpolator::New();

contourRep->SetLineInterpolator(interpolator);
contourWidget->SetEnabled(1);

A user can draw contours on polygonal surfaces using vtkPolygonalSurfaceContourLineInterpolator.
This interpolator places its lines on the surface of a specified vtkPolyData. It is meant to be used in
conjunction with a vtkPolygonalSurfacePointPlacer. This placer constrains the placement of control
point nodes on the surface of the polydata. The interpolator internally uses a Dijkstra single source
shortest path algorithm to compute the shortest path from one control point to the next. The costs for
the paths are determined by the edge lengths in the mesh. The resulting path traverses along the edges
of the mesh from one node to the next. This example from VTK/Widgets/Testing/Cxx/TestDijk-
straGraphGeodesicPath.cxx illustrates its usage.

vtkContourWidget *contourWidget = vtkContourWidget::New();
contourWidget->SetInteractor(iren);
vtkOrientedGlyphContourRepresentation *rep =
vtkOrientedGlyphContourRepresentation::SafeDownCast(
contourWidget->GetRepresentation());

vtkPolygonalSurfacePointPlacer * pointPlacer
= vtkPolygonalSurfacePointPlacer::New();
pointPlacer->AddProp(demActor);
pointPlacer->GetPolys()->AddItem( pd );

rep->SetPointPlacer(pointPlacer);

vtkPolygonalSurfaceContourLineInterpolator * interpolator =
vtkPolygonalSurfaceContourLineInterpolator::New();

vtkContourWidget
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interpolator->GetPolys()->AddItem( pd );
rep->SetLineInterpolator(interpolator);

Using vtkTerranContourLineInterpolator, one can draw contours on height fields, such as Digital Ele-
vation Maps vtkTerrainContourLineInterpolator. This interpolator constrains the lines between con-
trol points to lie on the surface of the height field. One can also specify an offset for the lines, by
using the SetHeightOffset method on the interpolator. The class internally uses a vtkProjectedTerrain-
Path to project a polyline on the surface. Various projection modes may be specified on the projector.
This interpolator is meant to be used in conjunction with a vtkTerrainDataPointPlacer, which con-
strains the control point nodes to lie on the surface of the terrain. The following code snippet, from
VTK/Widgets/Testing/Cxx/TerrainPolylineEditor.cxx illustrates how one may use this interpolator
and point placer.

vtkContourWidget *contourWidget = vtkContourWidget::New();
vtkOrientedGlyphContourRepresentation *rep = 
vtkOrientedGlyphContourRepresentation::SafeDownCast(
contourWidget->GetRepresentation());

vtkTerrainDataPointPlacer * pointPlacer = 
vtkTerrainDataPointPlacer::New();
pointPlacer->AddProp(demActor); // the actor(s) containing the terrain

rep->SetPointPlacer(pointPlacer);

// Set a terrain interpolator. Interpolates points as they are placed,
// so that they lie on the terrain.
vtkTerrainContourLineInterpolator *interpolator =
vtkTerrainContourLineInterpolator::New();

rep->SetLineInterpolator(interpolator);
interpolator->SetImageData(demReader->GetOutput());

// Set the default projection mode to hug the terrain, unless user 
// overrides it.
interpolator->GetProjector()->SetProjectionModeToHug();
interpolator->GetProjector()->SetHeightOffset(20.0);
pointPlacer->SetHeightOffset(20.0);

Of particular interest is the “live wire” interpolator (vtkDijkstraImageContourLineInterpolator) where
the lines between the control points are interpolated based on the shortest path through the gradient
cost function computed on the image, resulting in the contours being attracted to the edges of the
image. As the control points are moved around, a new shortest path is computed. This is ideal for
interactive segmentation of organs, etc. This interpolator internally uses a vtkDijkstraImageGeodesic-
Path, which generates a single source shortest path through a cost function image by treating it as a
graph with VTK_PIXEL cells. The user is free to plug in the cost function. A typical cost function for
a gray scale image might be generated by the following pipeline: 

Image --> vtkImageGradientMagnitude --> vtkImageShiftScale

The gradient magnitude image is inverted, so that strong edges have low cost value. Costs in moving
from one vertex to another are calculated using a weighted additive scheme. One can set the edge
length weight, the curvature weight and the weight associated with the normalized image cost. These
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affect the computed cost function used to determine the shortest path. The contours are meant to be
placed on an image actor, hence the class vtkImageActorPointPlacer is used. This restricts the place-
ment of control point nodes to the plane containing the image. The following code snippet from VTK/
Widgets/Testing/Cxx/TestDijkstraImageGeodesicPath.cxx illustrates its usage.

vtkOrientedGlyphContourRepresentation *rep = 
vtkOrientedGlyphContourRepresentation::New();

vtkImageActorPointPlacer *placer = vtkImageActorPointPlacer::New();
placer->SetImageActor( actor );
rep->SetPointPlacer( placer );

vtkDijkstraImageContourLineInterpolator *interpolator =
vtkDijkstraImageContourLineInterpolator::New();
interpolator->SetCostImage( gradInvert->GetOutput() );

rep->SetLineInterpolator( interpolator );

vtkDijkstraImageGeodesicPath* path = 
interpolator->GetDijkstraImageGeodesicPath();
path->StopWhenEndReachedOn();

// prevent contour segments from overlapping
path->RepelPathFromVerticesOn();

// weights are scaled from 0 to 1 as are associated cost components
path->SetCurvatureWeight( 0.15 );
path->SetEdgeLengthWeight( 0.8 );
path->SetImageWeight( 1.0 );

vtkImageTracerWidget. This widget provides support to
trace free form contours through a planar surface (i.e., man-
ually tracing over image data). The user can click the left
button over the image, hold and drag to draw a freehand
line. Clicking the left button and releasing erases the widget
line, if it exists, and repositions the first handle. A middle
button click starts a snap drawn line. The line can be termi-
nated by clicking the middle button while depressing the
ctrl key. The contour loop being traced will be automati-
cally closed when the user clicks the last cursor position
within a specified tolerance to the first handle. The user can
drag a handle (and its associated line segments) by clicking
the right button on any handle that is part of a snap drawn
line. If the path is open and the flag AutoClose is set to On,
the path can be closed by repositioning the first and last
points over one another. A handle can be erased by pressing the ctrl key along with the right button on
the handle. Again, the snap drawn line segments are updated. If the line was formed by continuous
tracing, the line is deleted leaving one handle. A handle can be inserted by pressing the shift key and
the right button on any snap drawn line segment. This will insert a handle at the cursor position. The
line segment is split accordingly on either side of the cursor. One can disable interaction on the widget
by using the SetInteraction method.

vtkImageTracerWidget



280 Interaction, Widgets and Selections

Since the widget exists on a plane, (the handles, etc. are 2D glyphs), one must specify the plane
on which the widget lies. This is done by specifying the projection normal vector, via SetProjection-
Normal and the plane's position via SetProjectionPosition. In the excerpt below, the projection normal
is set to the X axis. The user can force snapping to the image data while tracing by using the flag
SnapToImage. The user can change the handle and line properties, using the methods SetHandleProp-
erty and SetLineProperty, or the SetSelectedHandleProperty and SetSelectedLineProperty. 

The widget invokes InteractionEvent and EndInteractionEvents. At this point, the current path
may be retrieved as a polydata via the GetPath method, so that segmentation etc may be performed on
the underlying image. The widget can also be initialized from a user specified set of control points, by
using the method InitializeHandles. This takes a pointer to a vtkPoints instance, containing the list of
points. VTK/Widgets/Testing/Cxx/TestImageTracerWidget.cxx illustrates how one may use the
vkImageTracerWidget and a vtkSplineWidget to segment images. The following is an excerpt.

vtkImageTracerWidget* imageTracerWidget = vtkImageTracerWidget::New();
imageTracerWidget->SetDefaultRenderer(ren1);
imageTracerWidget->SetCaptureRadius(1.5);
imageTracerWidget->GetGlyphSource()->SetColor(1, 0, 0);
imageTracerWidget->GetGlyphSource()->SetScale(3.0);
imageTracerWidget->GetGlyphSource()->SetRotationAngle(45.0);
imageTracerWidget->GetGlyphSource()->Modified();
imageTracerWidget->ProjectToPlaneOn();
imageTracerWidget->SetProjectionNormalToXAxes();
imageTracerWidget->SetProjectionPosition(imageActor1->
GetBounds()[0]);

imageTracerWidget->SetViewProp(imageActor1);
imageTracerWidget->SetInput(shifter->GetOutput());
imageTracerWidget->SetInteractor(iren);
imageTracerWidget->PlaceWidget();
imageTracerWidget->SnapToImageOff();
imageTracerWidget->AutoCloseOn();

vtkSplineWidget. This is another widget that can be used to
trace contours using a spline kernel. The widget predates the
rearchitecturing efforts that culminated in vtkContourWidget.
It derives from vtk3DWidget. The spline has handles, the
number of which can be changed, plus it can be picked on the
spline itself to translate or rotate it in the scene. The widget
responds to the following keyboard and mouse modifiers. 1)
left button down on and drag one of the spherical handles to
change the shape of the spline: the handles act as “control
points”. 2) left button or middle button down on a line seg-
ment forming the spline allows uniform translation of the
widget. 3) ctrl + middle button down on the widget enables
spinning of the widget about its center. 4) right button down
on the widget enables scaling of the widget. By moving the
mouse “up” the render window the spline will be made bigger; by moving “down” the render window
the widget will be made smaller. 5) ctrl key + right button down on any handle will erase it providing

vtkSplineWidget
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there will be two or more points remaining to form a spline. 6) shift key + right button down on any
line segment will insert a handle onto the spline at the cursor position.

The vtkSplineWidget has several methods that can be used in conjunction with other VTK
objects. The Set/GetResolution() methods control the number of subdivisions of the spline. The Get-
PolyData() method can be used to get the polygonal representation and for things like seeding stream-
lines or probing other datasets. Typically the widget is used to make use of the StartInteractionEvent,
InteractionEvent, and EndInteractionEvent events. The InteractionEvent is called on mouse motion,
the other two events are called on button down and button up (either left or right button).

Some additional features of this class include the ability to control the properties of the widget.
You can set the properties of the selected and unselected representations of the spline. For example,
you can set the property for the handles and spline. In addition there are methods to constrain the
spline so that it is aligned with a plane. As with vtkImageTracerWidget, one can specify the plane on
which the widget lies. This is done by specifying the projection normal vector, via SetProjectionNor-
mal and the plane's position via SetProjectionPosition. The GetSummedLength returns the approxi-
mate arc length of the spline by summing the line segments making up the spline. The SetClosed
method can be used to close the spline loop.

Using the SetParametricSpline method, one can also set the parametric spline object. Through
vtkParametricSpline's API, the user can supply and configure one of currently two types of spline:
vtkCardinalSpline or vtkKochanekSpline. The widget controls the open or closed configuration of the
spline. The following excerpt from VTK/Widgets/Testing/Cxx/TestSplineWidget.cxx illustrates the
usage of this widget.

vtkSplineWidget* spline = vtkSplineWidget::New();
spline->SetInput(v16->GetOutput());
spline->SetPriority(1.0);
spline->KeyPressActivationOff();
spline->PlaceWidget();
spline->ProjectToPlaneOn();
spline->SetProjectionNormal(0);
spline->SetProjectionPosition(102.4); //initial plane position
spline->SetProjectionNormal(3); //allow oblique orientations
spline->SetPlaneSource(

static_cast<vtkPlaneSource*>(ipw->GetPolyDataAlgorithm()));

// Specify the type of spline (change from default vtkCardinalSpline)
vtkKochanekSpline* xspline = vtkKochanekSpline::New();
vtkKochanekSpline* yspline = vtkKochanekSpline::New();
vtkKochanekSpline* zspline = vtkKochanekSpline::New();

vtkParametricSpline* para = spline->GetParametricSpline();
para->SetXSpline(xspline);
para->SetYSpline(yspline);
para->SetZSpline(zspline);

vtkPolyData* poly = vtkPolyData::New();
spline->GetPolyData(poly);
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vtkCheckerboardWidget. The checkerboard widget is used to
interactively control a checkerboard through an image actor dis-
playing two images. This is useful in evaluating the quality of
an image registration. The user can adjust the number of check-
erboard divisions in each of the i-j directions in a 2D image. The
widget is meant to be used in conjunction with a vtkChecker-
boardRepresentation. When enabled, a frame appears around
the vtkImageActor with sliders along each side of the frame. A
total of 4 sliders are provided for the two checkerboards, along
both the i and j directions. (This internally uses a
vtkSliderRepresentation3D). The user can interactively adjust
the sliders (see vtkSliderWidget) to the desired number of
checkerboard subdivisions. The user can override the default
slider representations by setting their own slider representations
on the widget. The widget needs an instance of a vtkImage-
CheckerBoard which, in turn, takes two images as input to generate the checkerboard. The following
example from VTK/Widgets/Testing/Cxx/TestCheckerboardWidget.cxx illustrates a typical usage.

vtkImageCheckerboard *checkers = vtkImageCheckerboard::New();
checkers->SetInput(0,image1);
checkers->SetInput(1,image2);
checkers->SetNumberOfDivisions(10,6,1);

vtkImageActor *checkerboardActor = vtkImageActor::New();
checkerboardActor->SetInput(checkers->GetOutput());

vtkCheckerboardRepresentation *rep = 
vtkCheckerboardRepresentation::New();
rep->SetImageActor(checkerboardActor);
rep->SetCheckerboard(checkers);

vtkCheckerboardWidget *checkerboardWidget = 
vtkCheckerboardWidget::New();
checkerboardWidget->SetInteractor(iren);
checkerboardWidget->SetRepresentation(rep);

vtkRectilinearWipeWidget. The vtkRectilinearWipeWidget displays a split view (2x2 checker-
board) of a pair of images allowing one to control the location of the split. This is useful in comparing
two images, typically the registered image from the source image in an image registration pipeline. A
rectilinear wipe is a 2x2 checkerboard pattern created by combining two separate images, where vari-
ous combinations of the checker squares are possible. It must be noted that although the this widget
appears similar in functionality to the checkerboard widget, there are important differences. Using
this widget, the user can adjust the layout of the checker pattern, such as moving the center point,
moving the horizontal separator, or moving the vertical separator. The location of the wipe (interface
between the two images) can be changed to any point in the image, unlike the checkerboard widget,
where one can interactively only change the resolution the checkerboard.?One can select the horizon-
tal separator and the vertical separator by selecting the separator using the left mouse button. Drag-
ging with the button depressed moves the separators. Selecting the center point allows you to move

vtkCheckerboardWidget
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the horizontal and vertical separators simultaneously. To use this widget, specify its representation
(by default the representation is an instance of vtkRectilinearWipeProp).

The representation requires that you specify an instance of
vtkImageRectilinearWipe and an instance of vtkImageActor. One
can specify various “wipe” modes on the vtkImageRectilinear-
Wipe instance. These modes determine how the two input images
are combined together. The first is a quad mode, using the method
SetWipeToQuad. In this mode, the inputs alternate horizontally
and vertically. One can get a purely horizontal or a vertical wipe
using SetWipeToHorizontal or SetWipeToVertical. In this mode,
one half of the image comes from one input, and the other half
from the other input. One can also get a corner wipe, with 3
inputs coming from one input image and one coming from the
other input image, by using the methods SetWIpeToLowerLeft,
SetWipeToLowerRight, SetWipeToUpperLeft and SetWipe-
ToUpperRight. The following excerpt from VTK/Widgets/Test-
ing/Cxx/TestRectilinearWipeWidget.cxx illustrates its usage.

vtkImageRectilinearWipe *wipe = vtkImageRectilinearWipe::New();
wipe->SetInput(0,pad1->GetOutput());
wipe->SetInput(1,pad2->GetOutput());
wipe->SetPosition(100,256);
wipe->SetWipeToQuad();

vtkImageActor *wipeActor = vtkImageActor::New();
wipeActor->SetInput(wipe->GetOutput());

vtkRectilinearWipeWidget *wipeWidget = vtkRectilinearWipeWidget::New();
vtkRectilinearWipeRepresentation *wipeWidgetRep=
static_cast<vtkRectilinearWipeRepresentation *>(
wipeWidget->GetRepresentation());

wipeWidgetRep->SetImageActor(wipeActor);
wipeWidgetRep->SetRectilinearWipe(wipe);
wipeWidgetRep->GetProperty()->SetLineWidth(2.0);
wipeWidgetRep->GetProperty()->SetOpacity(0.75);

vtkSeedWidget. The vtkSeedWidget can be used to place
multiple seed points. These are typically used for operations
such as connectivity, segmentation, region growing, fiducials
for image registration. This widget works in conjunction with
an instance of a vtkSeedRepresentation (a subclass of vtk-
SeedRepresentation). The widget internally contains
instances of vtkHandleWidget, to represent each seed. The
handle widgets can, in turn, be represented by any subclass of
vtkHandleRepresentation. vtkPointHandleRepresentation2D
can be used to define seeds on a 2D overlay plane.
vtkPointHandleRepresentation3D can be used to represent

vtkRectilinearWipeWidget
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seeds in a 3D scene. One can set the appropriate handle representation using the SetHandleRepresen-
tation method in vtkSeedRepresentation.

Once a vtkSeedWidget is enabled, the user can drop seed points by pressing the left mouse but-
ton. After the user has finished dropping seeds, a click of the right button terminates placing and
sends the widget into a “manipulate” mode. In this mode, the user can select a seed by clicking on it
with the left mouse button and drag it around with the button depressed, to translate it. Much like the
handle widget, the seeds responds to translation along an axis, by dragging it with the shift key
depressed; the axes being determined as the one most aligned with the mouse motion vector. One can
delete the currently selected handle by pressing the “Delete” key. If no seed was selected, pressing the
delete key, removes the last added seed. 

When a seed is placed, the widget invokes an PlacePointEvent, that observers can watch for.
Much like the other widgets, the vtkSeedWidget also invokes StartInteractionEvent, InteractionEvent
and EndInteractionEvent before, during and after user interaction. The following excerpt from VTK/
Widgets/Testing/Cxx/TestSeedWidget2.cxx illustrates a typical usage.

vtkPointHandleRepresentation2D *handle = 
vtkPointHandleRepresentation2D::New();
handle->GetProperty()->SetColor(1,0,0);

vtkSeedRepresentation *rep = vtkSeedRepresentation::New();
rep->SetHandleRepresentation(handle);

vtkSeedWidget *widget = vtkSeedWidget::New();
widget->SetInteractor(iren);
widget->SetRepresentation(rep); .

Miscellaneous

vtkXYPlotWidget. The vtkXYPlotWidget provides support
for interactively manipulating the position, size, and orienta-
tion of a XY Plot. The widget is typically used to generate
XY plots from one or more input data sets or field data. It
internally contains an instance of a vtkXYPlotActor to per-
form to plotting functionality. One can retrieve this instance
via GetXYPlotActor(). The x-axis values in vtkXYPlotActor
are generated by taking the point ids, computing a cumula-
tive arc length, or a normalized arc length. More than one
input data set can be specified to generate multiple plots.
Alternatively, if field data is supplied as input, the class plots one component against another. The
user must specify which component to use as the x-axis and which for the y-axis.

To use this class to plot dataset(s), the user specifies one or more input datasets containing sca-
lar and point data. To use this class to plot field data, the user specifies one or more input data objects
with its associated field data. When plotting field data, the x and y values are used directly (i.e., there
are no options to normalize the components). Users have the ability to specify axes labels, label for-
mat and plot title, using the methods SetTitle, SetXTitle and SetYTitle. One can also manually specify
the x and y plot ranges (by default they are computed automatically) using the methods SetXRange
and SetYRange. Data outside the specified range is clipped. One can also specify the number of spec-
ify the number of annotation labels along the axes using SetNumberOfXLabels and SetNumberOfY-
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Labels methods. Similarly the number of X and Y minor ticks can be controlled using the methods
SetNumberOfXMinorTicks and SetNumberOfYMinorTicks. The Border instance variable is used to
create space between the boundary of the plot window, the region that can be resized interactively.
The font property of the plot title can be modified using SetTitleTextProperty. The font property of
the axes titles and labels can also be modified using SetAxisTitleTextProperty and SetAxisLabelText-
Property. Users can also use the GetXAxisActor2D or GetYAxisActor2D methods to access each
individual axis actor to modify their font properties. This returns instances of vtkAxisActor2D. In the
same way, the GetLegendBoxActor method can be used to access the legend box actor to modify its
font properties.

Users can also assign per curve properties (such as color and a plot symbol). Users may choose
to is to add a plot legend that graphically indicates the correspondence between the curve, curve sym-
bols, and the data source. The legend can be turned on/off using LegendOn/Off(). Users can also
exchange the x and y axes to re-orient the plot by using the method ExchangeAxis. Users can also
reverse the X and Y axis by using the method ReverseXAxis and ReverseYAxis. Users can plot on a
log scale with LogXOn().

The widget allows the actor to be interactively resized and repositioned. It listens to Left mouse
events and mouse movement. It will change the cursor shape based on its location. If the cursor is
over an edge of the plot it will change the cursor shape to the appropriate resize edge shape. Users can
then left click and drag to resize. If the cursor hovers near the center, the cursor will change to a four
way translate shape. Users can then left click and drag to reposition the plot. If the position of a XY
plot is moved to be close to the center of one of the four edges of the viewport, then the XY plot will
change its orientation to align with that edge. This orientation is sticky in that it will stay that orienta-
tion until the position is moved close to another edge. The following code excerpt shows how one
may use this widget.

vtkXYPlotWidget * widget = vtkXYPlotWidget::New();
widget->SetInteractor(iren);

// Get the plot actor so we can adjust properties on the actor.
vtkXYPlotActor *plotActor = widget->GetXYPlotActor();
xyplot->AddInput(probe->GetOutput());
xyplot->AddInput(probe2->GetOutput());
xyplot->AddInput(probe3->GetOutput());
xyplot->GetPositionCoordinate()->SetValue(0.0, 0.67, 0);
xyplot->GetPosition2Coordinate()->SetValue(1.0, 0.33, 0); 

// relative to Position
xyplot->SetXValuesToArcLength();
xyplot->SetNumberOfXLabels(6);
xyplot->SetTitle("Pressure vs. Arc Length - Zoomed View");
xyplot->SetXTitle(""); // no X title
xyplot->SetYTitle("P");
xyplot->SetXRange(.1, .35);
xyplot->SetYRange(.2, .4);
xyplot->GetProperty()->SetColor(0, 0, 0);
xyplot->GetProperty()->SetLineWidth(2);

vtkTextProperty *tprop = xyplot->GetTitleTextProperty();
tprop->SetColor(xyplot->GetProperty()->GetColor());
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xyplot->SetAxisTitleTextProperty(tprop);
xyplot->SetAxisLabelTextProperty(tprop);
xyplot->SetLabelFormat("%-#6.2f");
widget->SetEnabled(1);

vtkCompassWidget. The compass widget provides sup-
port for interactively annotating and manipulating the orien-
tation of a geo-spatial scene. The class also features zoom
and tilt controls to position oneself in a geospatial view.
This widget is used in the GeoVis views of VTK (“Geospa-
tial Visualization” on page 207). You may drag the heading
wheel to change the widget's heading, and may pull the slid-
ers to animate the zoom level or tilt of the widget. The wid-
get is most readily used in conjunction with a
vtkGeoCamera, which retains camera positions in terms of the three parameters heading, tilt, and
zoom. The following code shows how the widget's properties can be linked to a vtkGeoCamera in the
event handler of the widget's InteractionEvent.

vtkGeoCamera* camera = vtkGeoCamera::New();
vtkCompassWidget* widget = vtkCompassWidget::New();
widget->CreateDefaultRepresentation();

// In callback for InteractionEvent:
camera->SetHeading(widget->GetHeading()*360.0);
camera->SetTilt(widget->GetTilt());
camera->SetDistance(widget->GetDistance());

vtkSliderWidget. This widget provides functionality to
manipulate a slider along a 1D range. The widget is meant
to be used in conjunction with an instance of vtkSlider-
Representation. Two concrete representations are pro-
vided with the toolkit: vtkSliderRepresentation2D and
vtkSliderRepresentation3D. vtkSliderRepresentation2D,
renders the slider on the overlay plane, while vtkSliderRepresentation3D renders the slider in 3D
space. The range is represented by a tube, with a bead for the slider, and two caps at the ends delineat-
ing the lower and upper bounds. These properties may be changed by using the methods SetSlider-
Width(), SetSliderLength(), SetTubeWidth(), SetEndCapLength() and SetEndCapWidth() on
vtkSliderRepresentation. The properties of the caps / tubes, etc. can also be retrieved and modified.
Similarly, the slider properties can also be modified both when its selected and when its not.

One optionally can display a title next to the slider using the methods SetTitleText(). One can
also display the current slider value next to it using the method ShowSliderLabelOn(). 

Lower and upper bounds on the slider value may be set using SetMinimumValue() and SetMax-
imumValue(). The SetValue() method itself can be used to programmatically set the current value of
the slider. 

The slider is selected using the left button. A drag with the left button depressed moves the
slider along the tube. If the tube or one of the two endcaps is selected, the slider jumps or animates to
the selected location. The user may choose the desired behavior by using the methods, SetAnimation-
ModeToJump() or SetAnimationModeToAnimate(). The number of steps used for animation (if the
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mode is animate) may be controlled using SetNumberOfAnimationSteps(). Alternatively, one may
disable this behavior altogether by using SetAnimationModeToOff(). 

The widget invokes StartInteractionEvent, InteractionEvent and EndInteractionEvent before,
during and after user interaction. The following excerpt from VTK/Widgets/Testing/Cxx/TestSlider-
Widget.cxx illustrates the usage of the vtkSliderWidget in conjunction with a
vtkSliderRepresentation3D.

vtkSliderRepresentation3D *sliderRep = 
vtkSliderRepresentation3D::New();
sliderRep->SetValue(0.25);
sliderRep->SetTitleText("Spike Size");
sliderRep->GetPoint1Coordinate()->SetCoordinateSystemToWorld();
sliderRep->GetPoint1Coordinate()->SetValue(0,0,0);
sliderRep->GetPoint2Coordinate()->SetCoordinateSystemToWorld();
sliderRep->GetPoint2Coordinate()->SetValue(2,0,0);
sliderRep->SetSliderLength(0.075);
sliderRep->SetSliderWidth(0.05);
sliderRep->SetEndCapLength(0.05);

vtkSliderWidget *sliderWidget = vtkSliderWidget::New();
sliderWidget->SetInteractor(iren);
sliderWidget->SetRepresentation(sliderRep);
sliderWidget->SetAnimationModeToAnimate();
sliderWidget->EnabledOn();

The following excerpt from VTK/Widgets/Testing/Cxx/TestSliderWidget2D illustrates the usage of
vtkSliderWidget in conjunction with vtkSliderRepresentation2D to render the slider on the overlay
plane.

vtkSliderRepresentation2D *sliderRep = 
vtkSliderRepresentation2D::New();
sliderRep->SetValue(0.25);
sliderRep->SetTitleText("Spike Size");
sliderRep->GetPoint1Coordinate()->
SetCoordinateSystemToNormalizedDisplay();

sliderRep->GetPoint1Coordinate()->SetValue(0.2,0.1);
sliderRep->GetPoint2Coordinate()->
SetCoordinateSystemToNormalizedDisplay();

sliderRep->GetPoint2Coordinate()->SetValue(0.8,0.1);
sliderRep->SetSliderLength(0.02);
sliderRep->SetSliderWidth(0.03);
sliderRep->SetEndCapLength(0.01);
sliderRep->SetEndCapWidth(0.03);
sliderRep->SetTubeWidth(0.005);

vtkSliderWidget *sliderWidget = vtkSliderWidget::New();
sliderWidget->SetInteractor(iren);
sliderWidget->SetRepresentation(sliderRep);
sliderWidget->SetAnimationModeToAnimate();
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vtkCenteredSliderWidget. PThe vtkCenteredSliderWidget is sim-
ilar to the vtkSliderWidget. Its interactions however provide joy-
stick based control on the slider. The widget is meant to be used in
conjunction with an instance of vtkCenteredSliderRepresentation.
When unselected, the slider always stays at the center. The user can
select the slider by pressing the left button. The user can then drag
and move the slider upwards or downwards with the button
depressed, thereby increasing or decreasing the value the slider rep-
resents. The increase (or decrease) is proportional to both the time
the the slider is depressed and held away from the center and to the
magnitude of deviation of the slider from its center. Upon releasing,
the slider returns to the midpoint. The representation is used internally in vtkCompassRepresentation
to represent the tilt and the distance values of the compass. Thus one can move the slider gently
upwards to watch the camera tilt slowly forward. Alternatively one can yank the slider upwards to tilt
the camera rapidly forward. The vtkCenteredSliderWidget like other widgets invokes StartInterac-
tionEvent, InteractionEvent and EndInteractionEvent before, during and after user interaction. Usage
of the centered slider widget is very similar to vtkSliderWidget. The GetValue() method on the widget
can be used to query the value at any instant.

vtkCameraWidget. The vtkCameraWidget provides support
for interactively saving and playing a series of camera views
into an interpolated path. The interpolation itself is done using
an instance of vtkCameraInterpolator. The user can use the
widget to record a series of views and then play back interpo-
lated camera views using the vtkCameraInterpolator. To use this widget, the user specifies a camera to
interpolate, and then starts recording by hitting the "record" button. Then one manipulates the camera
(by using an interactor, direct scripting, or any other means). After completion of interaction, one then
saves the camera view. One can repeat this process to record a series of views. 

The widget is meant to be used in conjunction with an instance of vtkCameraRepresentation.
The representation’s geometry consists of a camera icon, a play-stop icon and a delete icon. These are
rendered on the overlay plane. Pressing the camera icon adds the view defined by the current camera
parameters to the interpolated camera path. Pressing the play button interpolates frames along the cur-
rent path. The camera interpolator can be retrieved by using the method GetCameraInterpolator on
the representation. One can use the interpolator to set the interpolation type (linear or spline). The
SetNumberOfFrames method on the representation can be used to control the number of frames used
for interpolation between two camera nodes while animating the camera path. The following excerpt
from VTK/Widgets/Testing/Cxx/TestCameraWidget.cxx illustrates a typical usage.

vtkCameraRepresentation *rep = vtkCameraRepresentation::New();
rep->SetNumberOfFrames(2400);

vtkCameraWidget *widget = vtkCameraWidget::New();
widget->SetInteractor(iren);
widget->SetRepresentation(rep);

vtkCenteredSliderWidget

vtkCameraWidget
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vtkPlaybackWidget. pThe vtkPlaybackWidget pro-
vides support for interactively controlling the playback
of a serial stream of information (e.g., animation
sequence, video). Controls for play, stop, advance one
step forward, advance one step backward, jump to begin-
ning, and jump to end are available. The widget works in conjunction with an instance of vtkPlay-
backRepresentation. The representation exists on the overlay plane and derives from
vtkBorderWidget. It can be interactively resized or repositioned using the corners/edges or near the
center. Six controls, in the form of icons, are provided by the playback widget. These controls allow
for (a) Jumping to the beginning of the frame (b) Reverting one frame (c) Stop playback (d) Play (e)
Jump forward one frame (f) Jump to the end. The implementation is left to the subclass. ie. Users are
expected to subclass vtkPlaybackRepresentation to provide their own implementations for the 6 con-
trols above. The following excerpt from VTK/Widgets/Testing/Cxx/TestPlaybackWidget.cxx illus-
trates a typical usage.

class vtkSubclassPlaybackRepresentation : public 
vtkPlaybackRepresentation
{
public:
static vtkSubclassPlaybackRepresentation *New() 
{return new vtkSubclassPlaybackRepresentation;}

virtual void Play() {cout << "play\n";}
virtual void Stop() {cout << "stop\n";}
virtual void ForwardOneFrame() {cout << "forward one frame\n";}
virtual void BackwardOneFrame() {cout << "backward one frame\n";}
virtual void JumpToBeginning() {cout << "jump to beginning\n";}
virtual void JumpToEnd() {cout << "jump to end\n";}
};

...

vtkSubclassPlaybackRepresentation *rep = 
vtkSubclassPlaybackRepresentation::New();

vtkPlaybackWidget *widget = vtkPlaybackWidget::New();
widget->SetInteractor(iren);
widget->SetRepresentation(rep);

An Example
The following example from Widgets/Testing/Cxx/TestAffineWidget.cxx uses a vtkAffineWidget to
transform (shear / rotate / translate / scale) a 2D image interactively. We will observe the widget for
interactions with the class vtkAffineCallback in order to update the transform on the image actor.

class vtkAffineCallback : public vtkCommand
{
public:
static vtkAffineCallback *New() 

  { return new vtkAffineCallback; }
 virtual void Execute(vtkObject *caller, unsigned long, void*);
 vtkAffineCallback():ImageActor(0),AffineRep(0) 

vtkPlaybackWidget
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  {this->Transform = vtkTransform::New();}
 ~vtkAffineCallback()
  {this->Transform->Delete();}
 vtkImageActor *ImageActor;
 vtkAffineRepresentation2D *AffineRep;
 vtkTransform *Transform;
};

void vtkAffineCallback::Execute(vtkObject*, unsigned long, void*)
{
this->AffineRep->GetTransform(this->Transform);
this->ImageActor->SetUserTransform(this->Transform);
}

int TestAffineWidget( int argc, char *argv[] )
{

 // Create the pipeline
 char* fname = vtkTestUtilities::ExpandDataFileName(

argc, argv, "Data/headsq/quarter");
  
vtkVolume16Reader* v16 = vtkVolume16Reader::New();
 v16->SetDataDimensions(64, 64);
 v16->SetDataByteOrderToLittleEndian();
 v16->SetImageRange(1, 93);
 v16->SetDataSpacing(3.2, 3.2, 1.5);
 v16->SetFilePrefix(fname);
 v16->ReleaseDataFlagOn();
 v16->SetDataMask(0x7fff);
 v16->Update();
delete[] fname;

double range[2];
v16->GetOutput()->GetScalarRange(range);

vtkImageShiftScale* shifter = vtkImageShiftScale::New();
 shifter->SetShift(-1.0*range[0]);
 shifter->SetScale(255.0/(range[1]-range[0]));
 shifter->SetOutputScalarTypeToUnsignedChar();
 shifter->SetInputConnection(v16->GetOutputPort());
 shifter->ReleaseDataFlagOff();
 shifter->Update();
 
vtkImageActor* imageActor = vtkImageActor::New();
 imageActor->SetInput(shifter->GetOutput());
 imageActor->VisibilityOn();
 imageActor->SetDisplayExtent(0, 63, 0, 63, 46, 46);
 imageActor->InterpolateOn();

double bounds[6];
imageActor->GetBounds(bounds);
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// Create the RenderWindow, Renderer and both Actors
vtkRenderer *ren1 = vtkRenderer::New();
vtkRenderWindow *renWin = vtkRenderWindow::New();
renWin->AddRenderer(ren1);

vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renWin);

vtkInteractorStyleImage *style = vtkInteractorStyleImage::New();
iren->SetInteractorStyle(style);

// VTK widgets consist of two parts: event processing and the
// representation that defines how the widget appears in the scene 
vtkAffineRepresentation2D *rep = vtkAffineRepresentation2D::New();
rep->SetBoxWidth(100);

 rep->SetCircleWidth(75);
 rep->SetAxesWidth(60);
 rep->DisplayTextOn();
 rep->PlaceWidget(bounds);

vtkAffineWidget *widget = vtkAffineWidget::New();
 widget->SetInteractor(iren);
 widget->SetRepresentation(rep);

vtkAffineCallback *acbk = vtkAffineCallback::New();
 acbk->AffineRep = rep;
 acbk->ImageActor = imageActor;
widget->AddObserver(vtkCommand::InteractionEvent,acbk);
widget->AddObserver(vtkCommand::EndInteractionEvent,acbk);

// Add the actors to the renderer, set the background and size
 ren1->AddActor(imageActor);
 ren1->SetBackground(0.1, 0.2, 0.4);
 renWin->SetSize(300, 300);

 iren->Initialize();
 renWin->Render();
 iren->Start();
}

13.4 Selections
In its most general sense, a selection is a data structure that specifies a subset of something else. This
subset may be highlighted to show a feature in the data, or may be extracted to analyze a portion of
the data in more detail. VTK provides a framework for generating, processing, and sharing selections
in applications using the vtkSelection class, along with related selection sources, filters, and views.

vtkSelection is a container class holding one or more vtkSelectionNode objects. Each node con-
tains information indicating what part of the data is selected. A compound selection is interpreted as
the union of the individual node selections. We allow selections to consist of multiple nodes so that in
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one place we can represent selections on multiple parts of the data. For example, a selection on geom-
etry may contain a vtkSelectionNode for both points and cells. Another use case is to collect selec-
tions from multiple datasets in the same renderer into one place.

13.5 Types of selections

Each vtkSelectionNode has a selection type which indicates how the selection is to be interpreted.
The selection types are constants defined in vtkSelectionNode.h. Values associated with a selection
are stored in an array retrieved by GetSelectionList(). For convenience, we will use the term “ele-
ment” to refer to the basic building-blocks of datasets to which attributes may be assigned. For vtkDa-
taSet subclasses, the elements are points and cells. The elements of vtkGraph subclasses are vertices
and edges. For vtkTable, the elements are the rows of the table.

Index selections

This is the most basic type of selection. An index selection's selection list is a vtkIdTypeArray con-
taining the raw zero-based indices of the selected elements in a dataset, using the dataset's internal
ordering. Since these indices may change as a dataset is processed or filtered, an index selection is
generally only applicable to a single data set. You should not share an index selection between datas-
ets with different topologies.

Pedigree ID selections

A pedigree ID is an identifier assigned to each element in a dataset at its source, and is propagated
down the pipeline. You specify pedigree IDs on a dataset in the same way that other special attributes
like scalars and vectors are specified, by calling SetPedigreeIds() on a dataset's attributes. Pedigree ID
arrays may be of any type, including vtkStringArray and vtkVariantArray. A pedigree ID selection
contains a list of values from a dataset's pedigree ID array. Both pedigree ID and global ID selections
refer to elements by name, instead of by a dataset-specific offset used in index selections, which
makes them more robust across different datasets which originate from the same source.

Global ID selections

Global ID selections are much like pedigree ID selections, except that they refer to the global ID attri-
bute (set with SetGlobalIds()). Global IDs are used in a way similar to pedigree IDs, except that they
must be numeric, and some filters re-assign global IDs to ensure that IDs are never repeated.

Frustum selections

Frustum selections simply store the geometry of a frustum in the selection. All elements within the
frustum are considered selected. This is most useful in the case that the user drag-selects a region in a
3D scene. The rectangular region on the screen translates into a frustum in the 3D scene. The selec-
tion list for this type of selection must be a vtkDoubleArray with eight four-component tuples. The
points, in the form (x,y,z,1), should be in the following order:
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1. near lower left
2. far lower left
3. near upper left
4. far upper left
5. near lower right
6. far lower right
7. near upper right
8. far upper right

Value selections
A value selection is a selection that refers to elements in an arbitrary array. In a value selection you
must set the name of the selection list to the name of the array that you want to select. For example, if
you have a dataset where the points contain an integer attribute “type” which varies from 0 to 10. To
select only points with values 1, 3, and 7, create a vtkIntArray, add the desired values to it, then set the
name of the array to “type”. Finally, call node->SetSelectionList(arr) with the array you created.

Threshold selections
Threshold selections work just like value selections, except you indicate value ranges with each pair
of elements in the array. While value selections may be of any type, threshold selections only work on
numeric arrays, and the selection list must be a vtkDoubleArray. To select points with type in the
range 0-5, create a vtkDoubleArray and add the elements 0 and 5. You may add additional ranges to
the threshold selection by adding more pairs of numbers.

Location selections
As the name suggests, you provide this type of selection with the 3D locations that you want selected.
A location selection must be a vtkDoubleArray with 3 components per tuple. A location selection is
often used to select cells that contain a point. For location selections referring to the points of a data-
set, there is a way to specify the maximum distance a selected dataset point can be to a point in the
selection list:

n->GetProperties()->Set(vtkSelectionNode::EPSILON(), distance);

Block selections
The VTK data object, vtkMultiBlockDataset, can store a collection of datasets. A block selection
allows you to specify which blocks to select. The selection list must be a vtkUnsignedIntArray.

Using the hardware selector. VTK provides the class vtkHardwareSelector to assist you in generat-
ing selections from a rectangular region of the screen. This process is similar to AreaPicking (“Pick-
ing” on page 59), but is able to return finer grained details about what is picked.

vtkHardwareSelector* hs = vtkHardwareSelector::New();

Figure 13–1  The expected order of the
points in a view frustum selection.
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 hs->SetRenderer(ren);
  hs->SetArea(xmin, ymin, xmax, ymax);
vtkSelection* s = hs->Select();

The hardware selector performs special rendering passes in
order to determine which datasets in the renderer are selected,
and which cells within those datasests are selected. Any cell
that is rendered to at least one pixel within the selection area is
inserted into the output selection. The output selection con-
tains one vtkSelectionNode for each selected actor. These
nodes are cell index selections by default, although the hard-
ware selector can also be configured to select points. You can
retrieve the pointer to the associated actor in the scene by
accessing the PROP property of the selection node.

Extracting selections. Now that we know how to define a selection, we must use it in some way. One
of the most common tasks is to extract the selection from a dataset. To do this, use the vtkExtractSe-
lection filter for vtkDataSets or vtkMultiBlockDataSets, or use vtkExtractSelectedGraph for vtk-
Graphs. Both filters work in similar ways, and accept a selection of any type. To extract a selection
from a vtkPolyData, we can do the following:

  
vtkPolyData* pd = vtkPolyData::New();
// Populate the poly data here
vtkSelection* s = vtkSelection::New();
// Populate the selection here
vtkExtractSelection* ex = vtkExtractSelection::New();
ex->SetInput(0, pd);
ex->SetInput(1, s);
ex->Update();

vtkUnstructuredGrid* extracted = ex->GetOutput();

Note that because vtkExtractSelection accepts any vtk-
DataSet subclass, the output is the most general dataset,
vtkUnstructuredGrid. The output type cannot match the
input type because, for example, a selection, which
denotes an arbitrary subset, on a structured type like
vtkImageData might no longer be structured. If you
desire to simply mark selected elements of a dataset, call
ex->PreserveTopologyOn() before updating the filter.
This will pass the data structurally unchanged to the out-
put, with the same data type. Instead of culling away
rejected elements, the filter adds a boolean flag to each
element indicating whether it is selected or not.

Figure 13–2  The result of a hard-
ware cell selection on two actors.

Figure 13–3  A portion of a vtkImage-
Data extracted by a frustum selection.
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Chapter 14

Contributing Code 14

The previous chapters offered an introduction to VTK by
way of example. By now it should be apparent that VTK offers the functionality to create powerful
graphics, imaging, and visualization applications. In addition, because you have access to the source
code, you can extend VTK by adding your own classes. In Part III of the User’s Guide, we show how
to extend VTK to suit the needs of your application. We begin in this chapter by introducing coding
conventions that you may consider adopting—especially if you wish to contribute code to the VTK
community. We also describe standard conventions and methods that your objects must implement to
be incorporated into VTK. Later in Part III we describe implementation details for algorithm and data
objects, as well as methods for controlling the execution of the visualization pipeline; we also discuss
ways to interface VTK to various windowing systems.

14.1 Coding Considerations
If you develop your own filter or other addition to the Visualization Toolkit, we encourage you to con-
tribute the source code. You will have to consider what it means to contribute code from a legal point
of view, what coding styles and conventions to use, and how to go about contributing code.

Conditions on Contributing Code To VTK

When you contribute code to VTK, two things are bound to happen. First, many people will see the
code—dissecting, improving, and modifying it; second, you will in some sense “lose control” of the
code due to the modifications that will inevitably occur to it. You will not want to release proprietary
code or code you cannot relinquish control over (also, patented code is not allowed), and you’ll want
to carefully craft the code so that others can understand and improve it.

VTK’s copyright is an open-source copyright (refer to VTK/Copyright.txt to see the copy-
right in its entirety). The copyright is stated as follows:
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VTK is an open-source toolkit licensed under the BSD license.
Copyright (c) 1993-2008 Ken Martin, Will Schroeder, Bill Lorensen 
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the fol-
lowing disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither name of Ken Martin, Will Schroeder, or Bill Lorensen nor the names of any contributors may be
used to endorse or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Conditions on the copyright are derived from the BSD license (see www.opensource.org) and
places no constraints on modifying, copying, and redistributing source or binary code, with the excep-
tion of the three bulleted clauses, warranty, and indemnification clauses shown above. Other than
respecting these three clauses, and observing the usual indemnification clause, you can use VTK in
any way whatsoever, including in commercial applications.

If these restrictions are acceptable, you can consider contributing code. However, you will need
to meet other criteria before your code is accepted. These criteria are not formalized, but have to do
with the usefulness, simplicity, and compatibility with the rest of the system. Important questions to
ask are:

• Does the code meet the VTK coding standards (also see “Coding Style” on page 299)?

• Is the code documented and commented?

• Is the code general? Or is it specific to a narrow application?

• Does it require extensive modification to the system? (For example, modifications to widely-
used object APIs.)

• Does the code duplicate existing functionality?

• Is the code robust?

• Does the code belong in a visualization toolkit?

If you can answer these questions favorably, chances are that the code is a good candidate for inclu-
sion in VTK.

http://en.wikipedia.org/wiki/BSD_licenses
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Coding Style

There are many useful coding styles, but we insist that you follow just one. We know this is a conten-
tious issue, but we have found that it is very important to maintain a consistent style. Consistent style
means that the code is easier to read, debug, maintain, test, and extend. It also means that the auto-
mated documentation facilities operate correctly, and other automated functions are available to all
users of VTK.

Here’s a summary of the coding style. You may wish to examine VTK source code to see what
it looks like.

• Variables, methods, and class names use changing capitalization to indicate separate words.
Instance variables and methods always begin with a capital letter. Static variables are discour-
aged, but should also begin with a capital letter. Local variables begin with a lower-case letter.
SetNumberOfPoints() or PickList are examples of a method name and instance variable.

• Class names are prefixed with vtk followed by the class name starting with a capital letter. For
example, vtkActor or vtkPolyData are class names. The vtk prefix allows the VTK class
library to be mixed with other libraries.

• Class names and files names are the same. For example, vtkObject.h and vtkObject.cxx
are the source files for vtkObject.

• Explicit this-> pointers are used in methods. Examples include this->Visibility and
this->Property and this->Update(). We have found that the use of explicit this->
pointers improves code understanding and readability.

• Variable, method, and class names should be spelled out. Common abbreviations can be used,
but the abbreviation should be entirely in capital letters. For example,
vtkPolyDataConnectivityFilter and vtkLODActor are acceptable class names.

• Preprocessor variables are written in capital letters. These variables are the only one to use the
underscore “_” to separate words. Preprocessor variables should also begin with VTK_ as in
VTK_LARGE_FLOAT.

• Instance variables are typically protected or private class members. Access to instance
variables is through Set/Get methods. Note that VTK provides Set/Get macros which
should be used whenever possible. (Look in VTK/Common/vtkSetGet.h for the implementa-
tion, and .h header files for example usage.)

• The indentation style can be characterized as the “indented brace” style. Indentations are two
spaces, and the curly brace (scope delimiter) is placed on the following line and indented along
with the code (i.e., the curly brace lines up with the code).

• Use // to comment code. Methods are commented by adding // Description: followed by
lines each beginning with //.

How To Contribute Code

Contributing code is fairly easy once you’ve created your class or classes following the coding con-
vention described above. First, include the copyright notice in both the .cxx and .h source files. You
may wish to place your name, organization, and/or other identifying information in the “Thanks:”
field of the copyright notice. (See VTK/Graphics/vtkCurvatures.h for an example). Next, send
e-mail to kitware@kitware.com with an explanation of what the code does, sample data (if
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needed), test code (in either C++, Tcl, or Python), and the source code (a single .h and .cxx file per
class). Another method is to send the same information to the vtkusers mailing list. (See “Addi-
tional Resources” on page 6 for information about joining the list.) The advantage of sending contrib-
uted code to the mailing list is that users can take advantage of the code immediately.

There is no guarantee that contributed code will be incorporated into official VTK releases.
This depends upon the quality, usefulness, and generality of the code as outlined in “Conditions on
Contributing Code To VTK” on page 297.

14.2 Standard Methods: Creating and Deleting Objects
Almost every object in VTK responds to a set of standard methods. Many of these methods are imple-
mented in vtkObject or vtkObjectBase, from which most VTK classes are derived. However, sub-
classes typically require that you extend or implement the inherited methods for proper behavior. For
example, the New() method should be implemented by every concrete (i.e., non-abstract, instantiable)
class, while the Delete() method is generally inherited from its superclass’s vtkObject. Before you
develop any code you should become familiar with these standard methods, and make sure your own
classes support them.

New()
This static class method is used to instantiate objects. We refer to this method as an
“object factory” since it is used to create instances of a class. In VTK, every New()
method should be paired with a Delete() method. (See also “Object Factories” on
page 307.)

instance = NewInstance()
This method is a virtual constructor. That is, invoking this method causes an object to cre-
ate an instance of the same type as itself and then return a pointer to the new object. (The
macro vtkTypeMacro found in VTK/Common/vtkSetGet.h defines this method.)

Delete()
Use this method to delete a VTK object created with the New() or NewInstance() method.
Depending upon the nature of the object being deleted, this may or may not actually
delete the object. For example, reference-counted objects will only be deleted if their ref-
erence count goes to zero.

DebugOn()/DebugOff()
Turn debugging information on or off. These methods are inherited from vtkObject.

Print()
Print out the object including superclass information. The Print() method, which is
defined in vtkObjectBase, requires implementation of a PrintSelf() method for each class.
The PrintSelf() method is invoked in a chain, each subclass calling its superclass’s
PrintSelf() and then printing its own instance variables.

PrintSelf(ostream, indent)
Each class should implement this method. The method invokes its parent’s PrintSelf(),
followed by the code required to print itself.

name = GetClassName()
Return the name of the class as a character string. This method is used for debugging
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information. (The macro vtkTypeMacro found in VTK/Common/tkSetGet.h defines
this method.)

flag = IsA(className)
Return non-zero if the named class is a superclass of, or the same type as, this class. (The
macro vtkTypeMacro found in VTK/Common/vtkSetGet.h defines this method.)

<class> *ptr = <class>::SafeDownCast(vtkObject *o)
This static class method is available in C++ for performing safe down casts (i.e., casting a
general class to a more specialized class). If ptr is returned NULL, then the down cast
failed, otherwise ptr points to an instance of the class <class>. For example,
ptr=vtkActor::SafeDownCast(prop) will return non-NULL if prop is a vtkActor or
a subclass of vtkActor. (The macro vtkTypeMacro found in VTK/Common/vtkSetGet.h
defines this method.)

void Modified()
This updates the internal modification time stamp for the object. The value is guaranteed
to be unique and monotonically increasing.

mtime = GetMTime()
Return the last modification time of an object. Normally this method is inherited from
vtkObject, however in some cases you’ll want to overload it. See “Compute Modified
Time” on page 391 for more information.

The most important information you can take from this section is this: instances should be created
with the New() method and destroyed with the Delete() method, and for every New() there should be
a Delete() method. For example, to create an instance of an actor do the following

vtkActor *anActor = vtkActor::New();
... (more stuff)
anActor->Delete();

In addition to ::New and ::Delete, VTK provides a smart pointer class that can be used to manage
VTK objects. The smart pointer will automatically increment and decrement the reference count of
the object being pointed to. This can make the code more less likely to leak VTK objects. The smart
pointer class is a template class and is used as follows:

#include <vtkSmartPointer.h>
…
vtkSmartPointer<vtkActor> anActor = vtkSmartPointer<vtkActor>::New();
... (more stuff)
// when anActor goes out of scope the reference count for that 
// vtkActor will be decremented.

The New() method is called an object factory: it’s a class method used to create instances of the class.
Typically, the New() method first asks the vtkObjectFactory to create an instance of the object, and if
that fails, it simply invokes the C++ new operator. This is done by adding the vtkStandardNewMacro
(found in VTK/Common/vtkSetGet.h) to a .cxx file as is shown below for vtkSphereSource.

vtkStandardNewMacro(vtkSphereSource);



302 Contributing Code

However, the New() method can be more complex, for example, to instantiate device-independent
classes. For example, in vtkGraphicsFactory.cxx, the code used to instantiate a vtkActor looks
like the following.

if(strcmp(vtkclassname, "vtkActor") == 0)
{
return vtkOpenGLActor::New();
}

Here the New() method is used to create a device-dependent subclass of vtkActor (i.e., OpenGL),
which is then returned as a pointer to a device-independent vtkActor. For example, depending on the
compile-time flags (e.g., VTK_USE_OGLR) and possibly other information such as environment vari-
ables, different actor types corresponding to the rendering libraries (e.g., OpenGL, Mesa, et.c) are
created transparently to the user. Using this mechanism we can create device-independent applica-
tions, or at run-time select different classes to use in the application. (See “Object Factories” on
page 307 for more information.)

14.3 Copying Objects and Protected Methods
The constructor, destructor, operator=, and copy constructor methods are either protected or private
members of most every VTK class. This means that for VTK class vtkX, the methods

• vtkX() — constructor
• ~vtkX() — destructor

are protected, and the methods 

• operator=(const vtkX &) — equivalence operator, and
• vtkX(const vtkX &) — copy constructor

are private. In addition, the assignment operator and copy constructors should be declared only, and
not implemented. This prevents the compiler from creating one automatically, and does not generate
code that cannot be covered in the testing process. This means that you cannot use these methods in
your application. (The reason for this is to prevent potentially dangerous misuse of these methods.
For example, reference counting can be broken by using the constructor and destructor rather than the
standard New() and Delete() methods described in the previous section.)

Since the copy constructor and operator= methods are private, other methods must be used to
copy instances of an object. The methods to use are DeepCopy() and/or ShallowCopy() as shown
below.

vtkActor *a1 = vtkActor::New();
vtkActor *a2 = vtkActor::New();
a2->ShallowCopy(a1);

A shallow copy is a copy of an object that copies references to objects (via reference counting) rather
than the objects themselves. For example, instances of the class vtkActor refer to a vtkMapper
object (the mapper represents the geometry for the actor). In a shallow copy, replication of data is
avoided, and just the reference to the vtkMapper is copied. However, any changes to the shared map-
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per indirectly affects all instances of vtkActor that refer to it. Alternatively, a DeepCopy() can be
used to copy an instance, including any data it represents, without any references to other objects.
Here’s an examples:

vtkIntArray *ia1 = vtkIntArray::New();
vtkIntArray *ia2 = vtkIntArray::New();
ia1->DeepCopy(ia2);

In this example, the data in ia2 is copied into ia1. From this point on, ia1 and ia2 can be modified
without affecting each other.

At the current time, VTK does not support DeepCopy() and ShallowCopy() in all classes.
This will be added in the future.

14.4 Using STL
The Standard Template Library (STL) is a C++ library that provides a set of easily composable C++
container classes and generic algorithms (templated functions). 

• The container classes include vectors, lists, deques, sets, multisets, maps, multimaps, stacks,
queues, and priority queues. 

• The generic algorithms include a broad range of fundamental algorithms for the most common
kinds of data manipulations, such as searching, sorting, merging, copying, and transforming. 

While STL definitely has a lot to offer C++ programmers, it suffers several implementation issues
(especially in cross-platform use) requiring VTK programmers to be careful when using STL. Some
of these issues including namespace management, DLL (dynamic link library) boundary problems,
and threading issues. To address these issues, VTK has a policy in place describing how STL is to be
used in conjunction with VTK. Here are the tenets of the policy.

1. STL is for implementation, not interface. All STL references should be contained in a .cxx 
class implementation file, never in the .h header file.

2. Use the PIMPL idiom to forward reference/contain STL classes. STL-derived classes should be 
private, not protected or public, to avoid dll boundary issues. DLL boundary issues would arise 
if a subclass of a class using the PIMPL idiom is in a different VTK kit than the parent class. In 
some VTK classes that have no subclasses are using the PIMPL idiom, the STL-derived classes 
are in the protected section instead of the private one. (The PIMPL idiom is a technique 
for private implementation of class members. Search the Web for “pimpl idiom C++” for more 
information.)

3. Use the vtkstd:: namespace to refer to STL classes and functions.

Here's an example (from the class vtkInterpolatedVelocityField). In the class .h file create the PIMPL
by forward declaring a class and using it to define a data member as follows.

class vtkInterpolatedVelocityFieldDataSetsType; 
class VTK_FILTERING_EXPORT vtkInterpolatedVelocityField : public 
vtkFunctionSet 
{ 
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protected:
vtkInterpolatedVelocityFieldDataSetsType* DataSets; 

};

In the .cxx file define the class (here deriving from the STL vector container).

typedef vtkstd::vector< vtkDataSet* > DataSetsTypeBase;
class vtkInterpolatedVelocityFieldDataSetsType: 

public DataSetsTypeBase {};

(The first typedef is used as a convenience to shorten the definition of the class.) Next, in the .cxx
file construct and destruct the class as follows:

vtkInterpolatedVelocityField::vtkInterpolatedVelocityField() 
{ 

this->DataSets = new vtkInterpolatedVelocityFieldDataSetsType; 
}
vtkInterpolatedVelocityField::~vtkInterpolatedVelocityField() 
{ 

delete this->DataSets;
}

Since the class is derived from a STL container, it can be used as that type of container.

for ( DataSetsTypeBase::iterator i = this->DataSets->begin();
i != this->DataSets->end(); ++i)

{
ds = *i;
....
}

14.5 Managing Include Files
Software systems have inherent inter-module dependencies. In C++ this occurs because subclasses
depend on their superclasses, or access to structures or classes requires knowledge of the API and
data offsets. These dependencies show up in implementation as #include statements that include
header files defining classes, structures, and interfaces. In the build process, whenever any one of the
header files changes, all the code that depends on that file must be recompiled. By including header
files within header files that are in turn included in other files, this can result in excessive inter-code
dependencies resulting in prolonged compilation time when code changes. In some compilers, too
many include files will even cause the compiler to fail. In order to address these issues, the VTK
developer community has developed a policy regarding include files. The basic rule is simple: a class
definition (.h) file should include at most one other #include file—its superclass definition file. All
other #include’s should be placed in the class implementation (.cxx) file. However, the policy
requires following particular coding conventions.

First, classes must contain pointers to other classes or structures, and not instances of them.
And second, in-line code that invokes class methods (other than the superclass) must be avoided. All
of these operations require access to the class definition and hence the associated #include file. In
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particular, the older VTK macro vtkSetObjectMacro() is no longer used. This macro invokes sev-
eral methods on any class used as a data member and thereby required including its class definition
file. The current approved procedure is to declare the set method, and implement the method in the
.cxx file using the vtkCxxSetObjectMacro(). For example, the class vtkCutter has a data mem-
ber that is a pointer to a vtkImplicitFunction. In the definition file VTK/Graphics/vtkCutter.h
the SetCutFunction() is declared

virtual void SetCutFunction(vtkImplicitFunction*);

and in the .cxx file the method is implemented

vtkCxxSetObjectMacro(vtkCutter,CutFunction,vtkImplicitFunction);

Of course, all rules are made to be broken. In some cases performance concerns or other issues may
require additional #include files. However, this is to be avoided whenever possible. When it cannot
be avoided, put a comment on the line with the #include explaining why it is required. See the
example below from VTK/Graphics/vtkSynchronizedTemplates3D.h

#include “vtkPolyDataAlgorithm.h”
#include “vtkContourValues.h” // Passes calls through

14.6 Writing A VTK Class: An Overview
In this section we give a broad overview of how to write a VTK class. If you are writing a new filter,
you’ll also want to refer to Chapter 17 “How To Write an Algorithm for VTK” on page 385, and of
course, you should read the previous portion of this chapter.

Probably the hardest part about writing a VTK class is figuring out if you need it, and if so,
where it fits into the system. These decisions come easier with experience. In the mean time, you
probably want to start by working with other VTK developers, or posting to the vtkusers mailing
list. (See “Additional Resources” on page 6.) If you determine that a class is needed, you’ll want to
look at the following issues.

Find A Similar Class

The best place to start is to find a class that does something similar to what you want to do. This will
often guide the creation of the object API, and/or the selection of a superclass.

Identify A Superclass

Most classes should derive from vtkObject or one of vtkObject’s descendants. Exceptions to this rule
are few, since vtkObject (or its superclass, vtkObjectBase) implements important functionality such
as reference counting, command/observer user methods, print methods, and debugging flags. All
VTK classes use single inheritance. While this is a contentious issue, there are good reasons for this
policy including Java support (Java allows only single inheritance) and simplification of the wrapping
process as well as the code. You may wish to refer to the object diagrams found in “Object Diagrams”
on page 437. These provide a succinct overview of many inheritance relationships found in VTK.
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Single Class Per .h File

Classes in VTK are implemented one class per .h header file, along with any associated .cxx imple-
mentation file. There are some exceptions to this rule—for example, when you have to define internal
helper classes. However, in these exceptions the helper class is not visible outside of the principle
class. If it is, it should placed into its own .h/.cxx files.

Required Methods

Several methods and macros must be defined by every VTK class as follows. See “Standard Methods:
Creating and Deleting Objects” on page 300 for a description of these methods.

• New() — Every non-abstract class (i.e., a class that does not implement a pure virtual function)
must define the New() method.

• vtkTypeMacro(className,superclassName) — This macro is a convenient way to
define methods used at run-time to determine the type of an instance, or to perform safe down
casting. vtkTypeMacro is defined in the file vtkSetGet.h. The macro defines the methods
IsTypeOf(), IsA(), GetClassName(), SafeDownCast(), and the virtual constructor
NewInstance().

• PrintSelf() — Print out instance variables in an intelligent manner.

• Constructor (must be protected)

• Destructor (must be protected)

• Copy Constructor (must be private and not implemented)

• operator= (must be private and not implemented)

The constructor, copy constructor, destructor, and operator= must not be public. The New() method
should use the procedure outlined in “Object Factories” on page 307. Of course, depending upon the
superclass(es) of your class, there may be additional methods to implement to satisfy the class API
(i.e., fill in pure virtual functions).

Document Code

The documentation of VTK classes depends upon proper use of documentation directives. Each .h
class file should have a // .NAME description, which includes the class name and a single-line
description of what the class does. In addition, the header file should have a // .SECTION
Description section, which is a multi-paragraph description (delimited with the C++ comment
indicator //) giving detailed information about the class and how it works. Other possible informa-
tion is contained in the // .SECTION Caveats section, which describes quirks and limitations of the
class, and the // .SECTION See Also section, which refers to other, related classes.

Methods should also be documented. If a method satisfies a superclass API, or overloads a
superclass method, you may not need to document the method. Those methods that you do document
use the following construct:

// Description:
// This is a description...
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Of course, you may want to embed other documentation, comments, etc. into the code to help other
developers and users understand what you’ve done.

Use SetGet Macros

Whenever possible, use the SetGet macros found in VTK/Common/vtkSetGet.h to define access
methods to instance variables. Also, you’ll want to use the debugging macros and additional
#defines (e.g., VTK_LARGE_FLOAT) in your code, as necessary.

Add Class To VTK

Once you’ve created your class, you’ll want to decide whether you want it to be incorporated into the
VTK build or separated in your own application. If you add your class to VTK, modify the CMakeL-
ists.txt file in the appropriate subdirectory. You’ll then have to re-run CMake (as described in
“CMake” on page 10), and then recompile. You can add an entire new library by creating a file called
LocalUser.cmake in the top level of your VTK source tree. This file is used only if it exits. You can
put a CMake add_subdirectory command into the file, telling CMake to go into the new library’s
directory. Inside the directory, you will need to create a new CMakeLists.txt file that contains
CMake commands for building your library. If you are using one of the wrapped languages like Tcl,
you can either add your library into the VTK executable with another LocalUser.cmake file in the
Wrapping/Tcl directory, or you will have to build shared libraries, and load the new library at run
time into the Tcl environment. To add classes that simply use VTK, see “C++” on page 30 for exam-
ple CMakeLists.txt files.

14.7 Object Factories
VTK Version 3.0 and later has a potent capability that allows you to extend VTK at run time. Using
object factories, you can replace a VTK object with one of your own creation. For example, if you
have special hardware, you can use your own special high-performance filter at run-time by replacing
object(s) in VTK with your own objects. So, if you wanted to replace the vtkImageFFT filter with a
filter that performed FFT in hardware, or replace the cell vtkTetra with a high-performance, assembly
code implementation, you could do this. Here are the benefits of using object factories.

• Allow sub-classes to be used in place of parent classes in existing code.

• Your application can dynamically load new object implementations.

• You can extend VTK at run-time.

• Proprietary extensions can be isolated from the public VTK builds.

• Removes the need for many #ifdefs in C++ code; for example, an OpenGL factory could
replace all of the #ifdefs in vtkRenderer and vtkRenderWindow.

• An object factory can be used as a debugging aid. For example, a factory can be created that
does nothing except track the invocation of New() for each class.

• Implementation of accelerated or alternative VTK objects on different hardware similar to the
plug-in model of Netscape and Photoshop is easier.
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Overview

The key class when implementing an object factory is vtkObjectFactory. vtkObjectFactory maintains
a list of “registered” factories. It also defines a static class method used to create VTK objects by
string name—the method CreateInstance()—which takes as an argument a const char*. The create
method iterates over the registered factories asking each one in turn to create the object. If the factory
returns an object, that object is returned as the created instance. Thus, the first factory returning an
object is the one used to create the object.

An example will help illustrate how the object factory is used. The New() method from the
class vtkVertex is shown below (after expansion of the vtkStandardNewMacro defined in VTK/Com-
mon/vtkSetGet.h).

vtkVertex* vtkVertex::New() 
{ 

// First try to create the object from the vtkObjectFactory
vtkObject* ret = vtkObjectFactory::CreateInstance("vtkVertex"); 
if(ret) 

{ 
return static_cast<vtkVertex*>(ret); 
} 

// If the factory was unable to create the object, then create it 
return new vtkVertex; 

}

The implementation of this New() method is similar to most all other New() methods found in VTK.
If the object factory does not return an instance of class vtkVertex, then the constructor for vtkVertex
is used. Note that the factory must return an instance of a class that is a subclass of the invoking class
(i.e., vtkVertex).

How To Write A Factory

The first thing you need to do is to create a subclass of vtkObjectFactory. You must implement two
virtual functions in your factory: GetVTKSourceVersion() and GetDescription().

virtual const char* GetVTKSourceVersion();
virtual const char* GetDescription();

GetDescription() returns a string defining the functionality of the object factory. The method
GetVTKSourceVersion() should return VTK_SOURCE_VERSION and should NOT call
vtkVersion::GetVTKSourceVersion(). You cannot call vtkVersion functions, because the version must
be compiled into your factory, if you did call vtkVersion functions, it would just use the VTK version
that the factory was loaded into and not the one it was built with. This method is used to check the
version numbers of the factory and the objects it creates against the installed VTK. If the software
versions are different, a warning will be produced and there's a good chance that a serious program
error will follow.

There are two ways for a factory to create objects. The most convenient method is to use the
protected method of vtkObjectFactory called RegisterOverride().
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void RegisterOverride(const char* classOverride,
const char* overrideClassName,
const char* description,
int enableFlag,
CreateFunction createFunction); 

This method should be called in your constructor once for each object your factory provides. The fol-
lowing are descriptions of the arguments.

• classOverride — This is the name of the class you are replacing.
• overrideClassName — This is the name of the class that will replace classOverride
• description — This is a text based description of what your replacement class does. This can be

useful from a GUI if you want to select which object to use at run-time.
• enableFlag — This is a Boolean flag that should be 0 or 1. If it is 0, this override will not be

used. Note, it is possible to change these flags at run-time from the vtkObjectFactory class
interface.

• createFunction — This is a pointer to a function that will create your class. The function must
look like this:

vtkObject* createFunction();

You can write your own function or use the VTK_CREATE_CREATE_FUNCTION macro provided
in vtkObjectFactory.h. (See VTK/Parallel/vtkParallelFactory.cxx for an example if
using this macro.)

The second way in which an object factory can create objects is the virtual function CreateObject():

virtual vtkObject* CreateObject(const char* vtkclassname);

The function should return NULL if your factory does not want to handle the class name it is being
asked to create. It should return a sub-class of the named VTK class if it wants to override the class.
Since the CreateObject() method returns a vtkObject* there is not much type safety other than that the
object must be a vtkObject, so be careful to only return sub-classes of the object to avoid run-time
errors. A factory can handle as many objects as it wants. If many objects are to be created, it would be
best to use a hash table to map from the string names to the object creation. The method should be as
fast as possible since it may be invoked frequently. Also note that this method will not allow a GUI to
selectively enable and disable individual objects like the RegisterOverride() method does.

How To Install A Factory
How factories are installed depends on whether they are compiled into your VTK library or applica-
tion or whether they are dynamically loaded DLLs or shared libraries. Compiled-in factories need
only call 

vtkObjectFactory::RegisterFactory ( MyFactory::New() );

For dynamically loaded factories, a shared library or DLL must be created that contains the object
factory subclass. The library should include the macro VTK_FACTORY_INTER-
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FACE_IMPLEMENT(factoryName). This macro defines three external “C” linkage functions named
vtkGetFactoryCompilerUsed(), vtkGetFactoryVersion(), and vtkLoad() that returns an instance of the
factory provided by the library.

#define VTK_FACTORY_INTERFACE_IMPLEMENT(factoryName) \
extern "C"                   \
VTK_FACTORY_INTERFACE_EXPORT          \
const char* vtkGetFactoryCompilerUsed()     \
{                        \
 return VTK_CXX_COMPILER;           \
}                        \
extern "C"                   \
VTK_FACTORY_INTERFACE_EXPORT          \
const char* vtkGetFactoryVersion()       \
{                        \
 return VTK_SOURCE_VERSION;          \
}                        \
extern "C"                   \
VTK_FACTORY_INTERFACE_EXPORT          \
vtkObjectFactory* vtkLoad()           \
{                        \
 return factoryName ::New();          \
}

The library must then be put in the VTK_AUTOLOAD_PATH. This variable follows the convention
of PATH on your machine using the separation delimiters ";" on Windows, and ":" on Unix. The first
time the vtkObjectFactory is asked to create an object, it loads all shared libraries or DLLs in the
VTK_AUTOLOAD_PATH. For each library in the path, vtkLoad() is called to create an instance of
vtkObjectFactory. This is only done the first time to avoid performance problems. However, it is pos-
sible to re-check the path for new factories at run time by calling 

vtkObjectFactory::ReHash();

(Note that the VTK class vtkDynamicLoader handles operating system independent loading of shared
libraries or DLLs.)

Example Factory
Here is a simple factory that uses OLE automation on the Windows operating system to redirect all
VTK debug output to a Microsoft Word document. To use this factory, just compile the code into a
DLL, and put it in your VTK_AUTOLOAD_PATH.

#include "vtkOutputWindow.h"
#include "vtkObjectFactory.h"
#pragma warning (disable:4146)
#import "mso9.dll"
#pragma warning (default:4146)
#import "vbe6ext.olb"
#import "msword9.olb" rename("ExitWindows", "WordExitWindows")
// This class is exported from the vtkWordOutputWindow.dll
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class vtkWordOutputWindow : public vtkOutputWindow {
public:
 vtkWordOutputWindow();
 virtual void DisplayText(const char*);
 virtual void PrintSelf(vtkOstream& os, vtkIndent indent);
 static vtkWordOutputWindow* New() { return new vtkWordOutputWindow;}
protected:
 Word::_ApplicationPtr m_pWord;
 Word::_DocumentPtr m_pDoc;
};

class vtkWordOutputWindowFactory : public vtkObjectFactory
{
public:
 vtkWordOutputWindowFactory();
 virtual const char* GetVTKSourceVersion();
 virtual const char* GetDescription();
};

// vtkWordOutputWindow.cpp : the entry point for the DLL application.
//
#include "vtkWordOutputWindow.h"
#include "vtkVersion.h"
BOOL APIENTRY DllMain( HANDLE hModule, 
            DWORD ul_reason_for_call, 
            LPVOID lpReserved )
{

if(ul_reason_for_call == DLL_PROCESS_ATTACH)
  {
 CoInitialize(NULL);
  }
  return TRUE;
}

void vtkWordOutputWindow::PrintSelf(vtkOstream& os, vtkIndent indent)
{
 vtkOutputWindow::PrintSelf(os, indent);
 os << indent << "vtkWordOutputWindow " << endl;
}

// This is the constructor of a class that has been exported.
// see vtkWordOutputWindow.h for the class definition
vtkWordOutputWindow::vtkWordOutputWindow()
{ 
  try
   {
   HRESULT hr = m_pWord.CreateInstance(__uuidof(Word::Application));
   if(hr != 0) throw _com_error(hr);
   
   m_pWord->Visible = VARIANT_TRUE;
   m_pDoc = m_pWord->Documents->Add();
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   }
  catch (_com_error& ComError)
   {
   cerr << ComError.ErrorMessage() << endl;
   }
}

void vtkWordOutputWindow::DisplayText(const char* text)
{
 m_pDoc->Content->InsertAfter(text);
}

// Use the macro to create a function to return a vtkWordOutputWindow
VTK_CREATE_CREATE_FUNCTION(vtkWordOutputWindow);

// Register the one override in the constructor of the factory
vtkWordOutputWindowFactory::vtkWordOutputWindowFactory()
{

this->RegisterOverride("vtkOutputWindow",
 "vtkWordOutputWindow",
 "OLE Word Window",
 1,
 vtkObjectFactoryCreatevtkWordOutputWindow);
}

// Methods to load and insure factory compatibility.
VTK_FACTORY_INTERFACE_IMPLEMENT(vtkWordOutputWindowFactory);

// return the version of VTK that the factory was built with
const char* vtkWordOutputWindowFactory::GetVTKSourceVersion()
{
 return VTK_SOURCE_VERSION;
}

// return a text description of the factory
const char* vtkWordOutputWindowFactory::GetDescription()
{
 return "vtk debug output to Word via OLE factory";
}

14.8 Kitware’s Quality Software Process
An outstanding feature of VTK is the software process used to develop, maintain, and test the toolkit.
The Visualization Toolkit software continues to evolve rapidly due to the efforts of developers and
users located around the world, so the software process is essential to maintaining its quality. If you
are planning to contribute to VTK or to use the CVS source code repository, you need to know some-
thing about this process. (See “Obtaining The Software” on page 5.) This information will help you
know when and how to update and work with the software as it changes. The following sections
describe key elements of the process.
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CVS Source Code Repository

VTK source code, data, and examples are maintained in a source code version control system called
CVS (Concurrent Versions System). The primary purpose of CVS is to keep track of changes to soft-
ware. CVS date- and version-stamps every addition to the repository—also providing for special
user-specified tags—so that it is possible to return to a particular state or point of time whenever
desired. The differences between any two points is represented by a “diff” file, which is a compact,
incremental representation of change. CVS supports concurrent development so that two developers
can edit the same file at the same time; these edits are then (usually) merged together without incident
(and marked if there is a conflict). In addition, branches off of the main development trunk provide
parallel development of software.

The principal advantage of a system like CVS is that it frees developers to try new ideas and
changes without fear of losing a previous working version of the software. It also provides a simple
way to incrementally update code as new features are added to the repository.

CDash Regression Testing System

One of the unique features of the VTK software process is the CDash regression testing system
(http://www.cdash.org). In a nutshell, what CDash does is to provide quantifiable feedback to
developers as they check in new code and make changes. The feedback consists of the results of a
variety of tests, and the results are posted on a publicly-accessible Web page (to which we refer as a
dashboard as shown in Figure 14–1); VTK’s dashboard is accessible from http://
www.cdash.org/CDash/index.php?project=VTK. All users and developers of VTK can view
the dashboard which produces considerable peer-pressure on developers who check in code with
problems. The Dart dashboard serves as the vehicle for developer communication and should be
viewed whenever you consider updating software via CVS.

CDash supports a variety of test types. These include the following.

• Compilation. All source code is compiled and linked. Any resulting errors and warnings are
reported.

• Regression. Most VTK tests produce images as output. Testing requires comparing each test’s
output against a valid image. If the images match then the test passes. The comparison must be
performed carefully since many 3D graphics systems (e.g., OpenGL) produce slightly different
results on different platforms.

• Memory. One of the nastiest of problems to find in any computer program are those related to
memory. Memory leakage, uninitialized memory, and reads and writes beyond allocated space
are all examples of this sort of problem. VTK checks memory using Purify (a commercial pack-
age produced by Rational) or Valgrind (an open-source memory debugger for x86-Linux pro-
grams).

• PrintSelf. All classes in VTK are expected to print out all their instance variables correctly.
This test checks to make sure that this is the case.

• SetGet. Often developers make assumptions about the values of instance variables; i.e., they
assume that they are non-NULL, etc. The SetGet tests perform a Get on all instance variables
with a Get__() method, followed by a Set method on the instance variable with the value
returned from the Get__() method. It’s surprising how many times this test identifies problems.
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• TestEmptyInput. This deceptively simple test catches many problems due to developers
assuming that the input to an algorithm is non-NULL, or that the input data object contains
some data. TestEmptyInput simply exercises these two conditions on each subclass of
vtkAlgorithm and reports problems if encountered.

• Coverage. There is a saying among VTK developers: “If it isn’t covered, then it’s broken.”
What this means is that code that is not executed during testing is likely to be wrong. The cov-
erage tests identify lines that are not executed in the Visualization Toolkit test suite, reporting a
total percentage covered at the end of the test. While it is nearly impossible to bring the cover-
age to 100% because of error handling code and similar constructs that are rarely encountered
in practice, the coverage numbers should be 75% or higher. Code that is not covered well
enough requires additional tests.

Another nice feature of CDash is that it maintains a history of changes to the source code (by coordi-
nating with CVS) and summarizes the changes as part of the dashboard. This is useful for tracking
problems and keeping up to date with new additions to VTK.

Working The Process

The VTK software process functions across three cycles—the continuous cycle, the daily cycle, and
the release cycle.

Figure 14–1  CDash regression testing dashboard. Tests are submitted from client sites around the
world. The dashboard summarizes the results of hundreds of tests, and makes those results available
as hyperlinked Web pages that is publicly viewable.
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The continuous cycle revolves around
the actions of developers as they check code
into CVS. When changed or new code is
checked into CVS, the CDash continuous
testing process kicks in. A small number of
tests are performed (including compilation),
and if something breaks, email is sent to all
developers who checked code in during the
continuous cycle. Developers are expected to
fix the problem immediately.

The daily cycle occurs over a 24-hour
period. Changes to the source base made dur-
ing the day are extensively tested by the
nightly CDash regression testing sequence.
These tests occur on different combinations
of computers and operating systems located around the world, and the results are posted every day to
the CDash dashboard. Developers who checked in code are expected to visit the dashboard and
ensure their changes are acceptable—that is, they do not introduce compilation errors or warnings or
break any other tests including regression, memory, print self, and Set/Get. Developers are expected
to fix problems immediately.

The release cycle occurs a small number of times a year. This requires tagging and branching
the CVS repository, updating documentation, and producing new release packages. Although addi-
tional testing is performed to insure the consistency of the package, keeping the daily releases error
free minimizes the work required to cut a release.

VTK users typically work with releases, since they are the most stable. Developers work with
the CVS repository, or sometimes with periodic snapshots (a particular daily release) in order to take
advantage of a newly-added feature. It is extremely important that developers watch the dashboard
carefully, and update their software only when the dashboard is in good condition (i.e., is “green”).
Failure to do so can cause significant disruption if a particular day’s software release is unstable.

The Effectiveness of the Process
The effectiveness of this process is profound. By providing immediate feedback to developers
through email and Web pages (i.e., the dashboard), the quality of VTK is exceptionally high, espe-
cially considering the complexity of the algorithms and system. Errors, when accidently introduced,
are caught quickly, as compared to catching them at the point of release. To wait to the point of
release is to wait too long, since the causal relationship between a code change or addition and a bug
is lost. The process is so powerful that it routinely catches errors in vendor’s graphics drivers (e.g.,
OpenGL drivers) or changes to external subsystems such as the Mesa OpenGL software library. All
of these tools that make up the process (CMake, CVS, and CDash are open-source). Many large and
small systems such as ITK (the Insight Segmentation and Registration Toolkit http://
www.itk.org) use the same process with similar results. We encourage the adoption of the process
in your environment. (Note: Commercial support, consulting, and training for this process is available
from Kitware, Inc. at kitware@kitware.com.)
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The Visualization Toolkit uses a very general execution
mechanism. Filters are divided into two basic parts: algorithm and executive objects. An algorithm
object, whose class is derived from vtkAlgorithm, is responsible for processing information and data.
An executive object, whose class is derived from vtkExecutive, is responsible for telling an algorithm
when to execute and what information and data to process. The executive component of a filter may
be created independently of the algorithm component allowing custom pipeline execution mecha-
nisms without modifying core VTK classes.

Information and data produced by a filter are stored in one or more output ports. An output port
corresponds to one logical output of the filter. For example, a filter producing a color image and a
corresponding binary mask image would define two output ports each holding one of the images.
Pipeline-related information is stored in an instance of vtkInformation on each output port. The data
for an output port is stored in an instance of a class derived from vtkDataObject.

Information and data consumed by a filter are retrieved through one or more input ports. An
input port corresponds to one logical input of the filter. For example, a glyph filter would define one
input port for the glyph itself and another input port providing the geometry specifying glyph place-
ment. Input ports store input connections which reference the output ports of other filters providing
information and data. Each input connection provides one data object and its corresponding informa-
tion obtained from the output port to which the connection is made. Since connections are stored
through logical ports and not in the data flowing through those ports the data type need not be known
when the connection is made. This is particularly useful for creation of pipelines whose source is a
reader that does not know its output data type until the file is read.

Figure 15–1 depicts the layout of a filter from two viewpoints. The top diagram shows the filter
as viewed from the algorithm object. This view of the filter is independent of the pipeline and con-
tains all the information about the interface of the algorithm. The second diagram shows the filter as
viewed from the executive object. This view of the filter is independent of the details of the algorithm
and contains all the information about pipeline connections and the data sent through them.
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15.1 Information Objects
Information objects are the basic containers used throughout a VTK pipeline to hold a wide variety of
information. All information objects are instances of the class vtkInformation. They are heteroge-
neous key-to-value maps in which the type of the key determines the type of the value. The following
is an enumeration of the places information objects are used.

• Pipeline Information objects hold information for pipeline execution. They are stored in
instances of vtkExecutive or a subclass and are accessible via the method vtkExecutive::Get-
OutputInformation(). There is one pipeline information object per output port. It contains an
entry pointing to the output vtkDataObject on the corresponding port (if it has been created).

Figure 15–1  Filter layout as seen from (a)
the algorithm’s perspective and (b) the exec-
utive’s perspective.

(a) algorithm object’s view of the filter

(b) executive object’s view of the filter
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The vtkDataObject contains a pointer back to its corresponding pipeline information object,
accessible via vtkDataObject::GetPipelineInformation(). The pipeline information object also
holds information about what will populate the data object when the filter executes and gener-
ates the output. The actual information contained is determined by the output data type and the
execution model in use. Pipeline information objects for input connections are accessible via
the method vtkExecutive::GetInputInformation(), and they are the pipeline information objects
on the output ports to which the input ports are connected.

• Port Information objects hold information about the data types produced on output ports and
consumed by input ports. They are stored by instances of vtkAlgorithm. There is one input port
information object per input port and one output port information object per output port. They
are accessible via the methods vtkAlgorithm::GetInputPortInformation() and vtkAlgo-
rithm::GetOutputPortInformation(). Port information objects are usually created and populated
by subclasses of vtkAlgorithm in order to specify the interface of the filter.

• Request Information objects hold information about a specific request being sent to an execu-
tive or algorithm. There is one entry indicating what request is being sent and possibly other
entries giving additional details about the specific request. These information objects are not
accessible via any public method but are passed to ProcessRequest() methods that implement
the requests.

• Data Information objects hold information about what is currently stored in a vtkDataObject.
There is one data information object in each data object, accessible via vtkDataObject::GetIn-
formation(). The actual information contained is determined by the data object type.

• Algorithm Information objects hold information about an instance of vtkAlgorithm. There is
one algorithm information object per algorithm object, accessible via vtkAlgorithm::GetInfor-
mation(). The actual information contained is determined by the algorithm object type.

15.2 Pipeline Execution Models
The fundamental pipeline update mechanism is the request. A request is the basic pipeline operation
(or "pipeline pass") which generally asks for certain information to be propagated through the pipe-
line. An execution model is a set of requests defined by a specific executive.

Requests are generated by the executive object of a filter that has been explicitly asked to
update by its algorithm due to some user call. For example, when the Write() method of a writer is
called, the algorithm object asks its executive to update the pipeline, and execute the writer, by calling
this->GetExecutive()->Update(). Several requests may be sent through the pipeline in order to bring it
up to date.

A request is implemented as an information object. There is one key of type vtkInformationRe-
questKey specifying the request itself. This key is typically defined by the executive's class. Addi-
tional information about the request may also be stored in the request information object.

Requests are propagated through the pipeline by the executives of each filter. The vtkExecu-
tive::ProcessRequest() method is invoked on an executive and given the request information object.
This method is implemented by each executive and is responsible for fulfilling the request as it sees
fit. Many requests may be fulfilled for a filter only after it has been fulfilled for the filters providing
its inputs. For these requests the executive will pass the request on to the executives of these upstream
filters and then handle the request itself.
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An executive often asks its algorithm object for help in fulfilling a request. It sends the request
to the algorithm object by invoking the vtkAlgorithm::ProcessRequest() method. This method is
implemented by all algorithms and is responsible for handling the request. Input and output pipeline
information objects are provided as arguments to the method. The algorithm must handle the request
using only its own filter parameter settings and the pipeline information objects given. An algorithm
is not allowed to ask its executive for any additional information.

Figure 15–2 shows a typical path taken by a request as it is sent through a pipeline. Typically
the request originates in a consumer at the end of the pipeline. It is sent back through the pipeline by
the executives. Each executive asks its algorithm to help handle the request.

15.3 Pipeline Information Flow
Information flows through VTK pipelines one filter at a time. While handling a request a filter may
modify the pipeline information given with the request. Modification of the output pipeline informa-
tion is known as downstream flow because information is sent down the pipeline toward the consum-
ers, terminating at a mapper. Similarly, modification of the input pipeline information is known as
upstream flow because information is sent up the pipeline toward the producers, terminating with the
sources at the beginning of the pipeline.

Each request defined by an executive asks for certain information to be propagated through the
pipeline. Requests that ask filters to send information downstream are known as downstream
requests, and those that ask filters to send information upstream are known as upstream requests. For
example, an image processing filter might be given a downstream request for information about the
geometry of the image. If the filter does not modify this geometry it may simply copy the image ori-
gin and spacing (using the keys vtkDataObject::ORIGIN() and vtkDataObject::SPACING()) from its
input pipeline information to its output pipeline information. Similarly, a filter may be given an
upstream request for information about the region of the image required to satisfy a consumer. The

Executive
ProcessRequest()

ProcessRequest()
Algorithm

Figure 15–2  Path of a request sent through a pipeline. For example, assume the consumer (at the far right)
needs only a single piece of this data (e.g., piece 1 of 4); also assume that the producer (on the far left) is a reader
that can partition its data into pieces. The consumer passes this request upstream, and it continues upstream (via
executives) until it reaches a producer which can fulfill the request. When the reader algorithm is asked for a
piece of the data, it provides it, and passes the new data back (with the information that it is piece 1 of 4) down
the pipeline. It stops when it reaches the consumer who made the request.
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filter may simply copy the requested image extent from its output pipeline information to its input
pipeline information or it may change the extent if it needs extra input to complete its computation.

Information about the data being processed by a filter is usually handled by the filter implemen-
tation simply because it would not otherwise function. Some algorithms may wish to send additional
information through a pipeline. For example, a mapper might decide that it needs information about
the number of timesteps available from the source. This mapper can modify the default information
request by overriding a virtual method and asking for additional information. This extended request is
propagated to the source without the knowledge of intermediate filters. The source is then free to gen-
erate the information and if it does so, the pipeline will propagate it downstream.

15.4 Interface of Information Objects
The vtkInformation class provides a heterogeneous key-to-value map. Keys to this map are instances
of the abstract class vtkInformationKey. The address of a key object is used to store and retrieve val-
ues in the map, and the type of a key object is used to interpret the values. A key is named by the
static class method that returns it. An interface for storing and retrieving values with a key is provided
by the key itself. For example, consider these information keys defined by vtkDataObject:

vtkInformationStringKey* FIELD_NAME();
vtkInformationDoubleVectorKey* ORIGIN();

We can create an vtkInformation instance with which to work.

vtkSmartPointer<vtkInformation> info =
vtkSmartPointer<vtkInformation>::New();

FIELD_NAME is a key accessing a value with type "String":

vtkInformationStringKey* FIELD_NAME = vtkDataObject::FIELD_NAME();
FIELD_NAME->Has(info);    // returns 0
FIELD_NAME->Set(info, "ABC"); // sets info{FIELD_NAME} to "ABC"
FIELD_NAME->Has(info);    // returns 1
FIELD_NAME->Get(info);    // returns a pointer to "ABC"
FIELD_NAME->Remove(info);   // removes info{FIELD_NAME}
FIELD_NAME->Has(info);    // returns 0

ORIGIN is a key accessing a value with type "DoubleVector":

double origin[3] = {1,2,3};
vtkInformationDoubleVectorKey* ORIGIN = vtkDataObject::ORIGIN();
ORIGIN->Has(info);       // returns 0
ORIGIN->Set(info, origin, 3); // sets info{ORIGIN} to {1,2,3}
ORIGIN->Has(info);       // returns 1
ORIGIN->Get(info);       // returns a pointer to {1,2,3}
ORIGIN->Get(info, origin);   // stores {1,2,3} in origin
ORIGIN->Length(info);     // returns 3
ORIGIN->Remove(info);     // removes info{ORIGIN}
ORIGIN->Has(info);       // returns 0
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Since the access interface is provided by the key new key types may be defined without modifying
the class vtkInformation itself. However, the syntax is somewhat unintuitive because the key object is
not modified but instead modifies the given information object. In order to simplify access to infor-
mation objects in the common case, vtkInformation provides a convenience interface for most of the
key types defined in VTK. The above examples may instead be written

vtkInformationStringKey* FIELD_NAME = vtkDataObject::FIELD_NAME();
info->Has(FIELD_NAME);    // returns 0
info->Set(FIELD_NAME, "ABC"); // sets info{FIELD_NAME} to "ABC"
info->Has(FIELD_NAME);    // returns 1
info->Get(FIELD_NAME);    // returns a pointer to "ABC"
info->Remove(FIELD_NAME);   // removes info{FIELD_NAME}
info->Has(FIELD_NAME);    // returns 0

double origin[3] = {1,2,3};
vtkInformationDoubleVectorKey* ORIGIN = vtkDataObject::ORIGIN();
info->Has(ORIGIN);       // returns 0
info->Set(ORIGIN, origin, 3); // sets info{ORIGIN} to {1,2,3}
info->Has(ORIGIN);       // returns 1
info->Get(ORIGIN);       // returns a pointer to {1,2,3}
info->Get(ORIGIN, origin);   // stores {1,2,3} in origin
info->Length(ORIGIN);     // returns 3
info->Remove(ORIGIN);     // removes info{ORIGIN}
info->Has(ORIGIN);       // returns 0

Key instances may be defined by classes by creating a static method naming the key and implement-
ing the method using the vtkInformationKeyMacro or vtkInformationKeyRestrictedMacro. The latter
form may be used for key types whose constructors accept an additional argument that specifies some
restriction on the values allowed. For example, vtkDataObject implements its static methods
FIELD_NAME() and ORIGIN() using this code:

#include "vtkInformationStringKey.h"
#include "vtkInformationDoubleVectorKey.h"
vtkInformationKeyMacro(vtkDataObject, FIELD_NAME, String);
vtkInformationKeyRestrictedMacro(vtkDataObject, ORIGIN, DoubleVector, 

3);

The first line states that FIELD_NAME is a key with type "String", and the second line states that
ORIGIN is a key with type "DoubleVector" whose length must always be 3. Key type names are
transformed to information key class names by adding the prefix "vtkInformation" and suffix "Key".
In the above example FIELD_NAME has key type vtkInformationStringKey. Class authors must
include the header for each key type used in key definitions.

Debugging pipeline execution and algorithm implementations may be simplified if the "watch"
feature available in most debuggers is used to break when a particular information entry changes.
Since most information entries are not stored in instance variables getting the proper memory address
to watch is non-obvious. Some information key types provide a protected method GetWatchAddress()
which returns the proper address to watch. Every key instance is stored by a global variable whose
name is constructed from the name of the class defining the key, followed by an underscore, followed
by the name of the key. For example, in order to watch the WHOLE_EXTENT entry in a pipeline
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information object one may obtain the memory address from the following expression in the debug-
ger.

vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT()
->GetWatchAddress(info)

In this example the argument "info" may be a local variable in the scope at which the debugger
has stopped the program. The returned address may be used to automatically break when the whole
extent changes.

15.5 Standard Executives
VTK provides some standard extremely powerful executives. Most applications can achieve desired
pipeline update behavior using one of the executives reviewed here.

vtkDemandDrivenPipeline
This executive implements a basic demand-driven implicit execution model. Each filter maintains a
modification time as its parameters change. The executive tracks the time at which the information
and data on each output port of its filter were last generated. Filters are executed on-demand when
their output is requested and is out of date.

The following requests are defined by this executive. All of them are downstream requests. A
default implementation is provided for each request that simplifies filters in the common case. The
burden of maintaining pipeline information is removed from filters that do not change it.

ComputePipelineMTime asks that the pipeline modification time be computed for a filter.
This is the highest (most recent) modification time of all the filter parameters and its inputs. The time
computed will be compared to that of any output requested from the filter to determine whether it is
up to date. Since the request is sent through the entire pipeline on every update no matter what filters
will execute, it must be fast. The implementation is optimized in a special way: the request is imple-
mented by the ComputePipelineMTime() method instead of ProcessRequest(). Common information
needed for the request is passed directly in arguments to the method. Both executives and algorithms
that wish to replace the default implementation of this request should override the ComputePipe-
lineMTime() method. The special design of this request is purely an optimization for its performance-
critical nature and should not be used as a model for the design of other requests.

REQUEST_DATA_OBJECT asks for a vtkDataObject to be created, but not populated, and
stored in the output pipeline information of all output ports. The data objects will be populated later
by REQUEST_DATA. A default implementation is provided by vtkDemandDrivenPipeline which
uses the data object type specified by the key vtkDataObject::DATA_TYPE_NAME() in the corre-
sponding output port information. Filters that vary their output type based on input type and parame-
ter settings must implement this request and compute the proper type. The data object should be
stored in the output pipeline information using the key vtkDataObject::DATA_OBJECT().

REQUEST_INFORMATION asks for output pipeline information about the data object in
each output port. This is information about what will be stored in the data object, not what is currently
in the data object. An example of this information is the origin and spacing of an image or uniform
grid, stored with the keys vtkDataObject::ORIGIN() and vtkDataObject::SPACING() respectively. A
default implementation is provided by vtkDemandDrivenPipeline which copies information from
each output data object's data information to the corresponding pipeline information by calling vtk-
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DataObject::CopyInformationToPipeline(). Then if any input connection exists information is copied
from the first connection to each output pipeline information object. Sources that have no input or fil-
ters that change this information from that in the input must implement this request to compute the
proper information.

REQUEST_DATA asks for the output data object to be populated with the actual output data
on the output port through which the request arrived. This output port number is given by the key
vtkExecutive::FROM_OUTPUT_PORT() in the request information object. The data object in the
output port given in the request must be populated, but data objects in other output ports may option-
ally be populated also. (Most filters always populate all outputs.) When processing a
REQUEST_DATA the vtkDemandDrivenPipeline proceeds with the following steps.

• Send a vtkDemandDrivenPipeline::REQUEST_DATA_NOT_GENERATED() request to the
algorithm part of the filter. The request contains all the information in the original
REQUEST_DATA, including the vtkExecutive::FROM_OUTPUT_PORT() key. Filters that do
not always populate all outputs must implement this request to store a vtkDemandDrivenPipe-
line::DATA_NOT_GENERATED() with value 1 in the pipeline information of all output ports
whose data will not be populated. This tells the executive that those outputs will not be gener-
ated by this REQUEST_DATA. Most filters can ignore this request.

• For output ports whose pipeline information does not contain the vtkDemandDrivenPipe-
line::DATA_NOT_GENERATED() mark, the output data objects are initialized by calling vtk-
DataObject::PrepareForNewData. These objects were previously created by a
REQUEST_DATA_OBJECT and are re-initialized to an empty state by this step. Pipeline
information that was previously set by a REQUEST_INFORMATION and corresponding to
each data object is copied to the objects' data information by calling vtkDataObject::CopyInfor-
mationFromPipeline.

• Invoke the StartEvent on the algorithm object, clear the AbortExecute flag, and update the
progress to 0.

• Send REQUEST_DATA to the algorithm. All algorithms must implement this request to popu-
late the data objects in output pipeline information for ports not marked by vtkDemandDriven-
Pipeline::DATA_NOT_GENERATED().

• Update the progress to 1 if the AbortExecute flag is not set and then always invoke the EndE-
vent on the algorithm object.

• For output ports whose pipeline information does not contain the vtkDemandDrivenPipe-
line::DATA_NOT_GENERATED() mark, the output data objects are marked as generated by
calling vtkDataObject::DataHasBeenGenerated().

• Remove vtkDemandDrivenPipeline::DATA_NOT_GENERATED() marks from all output
pipeline information.

• For any input connections whose pipeline information contains a vtkDemandDrivenPipe-
line::RELEASE_DATA() mark, data are released by calling vtkDataObject::ReleaseData().

This default sequence of events handles most of the pipeline-related part of filter execution. The algo-
rithm implementation needs only to process the actual data and compute information about the data
that it is changing from input to output.
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vtkStreamingDemandDrivenPipeline

This executive is a subclass of vtkDemandDrivenPipeline that adds streaming capability to pipelines.
It implements the traditional VTK pipeline update rules and is the default executive assigned to algo-
rithms not explicitly given one by the user.

The following requests are defined by this executive in addition to those defined by vtkDe-
mandDrivenPipeline. All of them are downstream requests except for
REQUEST_UPDATE_EXTENT, which is an upstream request.

REQUEST_INFORMATION is extended from that defined by vtkDemandDrivenPipeline. It
asks for information about the amount of data available to be stored in the pipeline information of
each output port. In the case of structured data this would be the whole extent, stored by vtkStream-
ingDemandDrivenPipeline::WHOLE_EXTENT(). In the case of unstructured data this would be the
maximum number of pieces and the bounding box of the whole data set, stored by vtkStreamingDe-
mandDrivenPipeline::MAXIMUM_NUMBER_OF_PIECES() and vtkStreamingDemandDriven-
Pipeline::WHOLE_BOUNDING_BOX() respectively. For filters that can produce data with time, the
information includes information about the number of discrete time steps available or the continuous
time range stored by vtkStreamingDemandDrivenPipeline::TIME_STEPS() or vtkStreamingDe-
mandDrivenPipeline::TIME_RANGE() resepectively. A default implementation is provided by vtk-
StreamingDemandDrivenPipeline that copies this information first from the data object currently in
the output and then from the first input connection if it exists. If the pipeline information on a port
does not have a key vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT_INITIALIZED()
storing a non-zero value, the vtkStreamingDemandDrivenPipeline will initialize the update extent to
the whole extent. This will cause all data to be processed if no consumer requests a specific update
extent.

REQUEST_UPDATE_EXTENT asks for the input update extent necessary to produce a
given output update extent stored in the input pipeline information. The output update extent to be
satisfied must be obtained from the output pipeline information on the port through which the request
arrived. This port number is given by vtkExecutive::FROM_OUTPUT_PORT() in the request infor-
mation object. The update extent is stored using vtkStreamingDemandDrivenPipe-
line::UPDATE_EXTENT() for structured data and
vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER(), vtkStreamingDemandDriven-
Pipeline::UPDATE_NUMBER_OF_PIECES(), and vtkStreamingDemandDrivenPipe-
line::UPDATE_NUMBER_OF_GHOST_LEVELS() for unstructured data. If a filter requires the
exact extent it requests from an input connection to execute properly, it must store the key vtkStream-
ingDemandDrivenPipeline::EXACT_EXTENT() with value 1 in that input pipeline information for
that connection. The time request is stored using vtkStreamingDemanDrivenPipe-
line::UPDATE_TIME_STEPS(). A default implementation is provided by vtkStreamingDemand-
DrivenPipeline that will copy the update extent from the output pipeline information to all input
connections. If the output is unstructured data and an input connection is structured data, the extent
translator stored in the output pipeline information with the key vtkStreamingDemandDrivenPipe-
line::EXTENT_TRANSLATOR() is used.

REQUEST_UPDATE_EXTENT_INFORMATION asks for information about the data that
will be generated within the update extent. This is an advanced feature used to help the pipeline do
extra analysis for choosing how to execute certain filters.

REQUEST_DATA is extended from that defined by vtkDemandDrivenPipeline. It enables
streaming by giving algorithms the option of executing the request multiple times with different
update extents requested of its input. When a streaming filter first receives a



326 Managing Pipeline Execution

REQUEST_UPDATE_EXTENT it stores only the update extent of the first piece of input data it will
process. Then when it receives a REQUEST_DATA it processes the current piece and stores the key
vtkStreamingDemandDrivenPipeline::CONTINUE_EXECUTING() with value 1 in the request
information object itself. This tells the vtkStreamingDemandDrivenPipeline to send additional pairs
of REQUEST_UPDATE_EXTENT and REQUEST_DATA. The filter responds to these subsequent
requests by requesting and processing the remaining pieces of input data one at a time. After process-
ing the last piece it removes the vtkStreamingDemandDrivenPipeline::CONTINUE_EXECUTING()
mark from the request information object.

vtkCompositeDataPipeline
This executive is a subclass of vtkStreamingDemandDrivenPipeline that adds support for processing
composite datasets. Composite datasets are datasets that comprise of other datasets e.g. multi-block
datasets, AMR (adaptive mesh refinement) datasets. This executive supports algorithms that are
aware of composite datasets as well as those that aren't. Algorithms that are not composite dataset
aware need to support all the dataset types that can be part of the input composite dataset otherwise
incompatible input type errors will be thrown at run-time.

For composite dataset aware algorithms i.e. those algorithms that indicate that they can accept
vtkCompositeDataSet or any of its subclass as an input dataset, this executive behaves exactly like
vtkStreamingDemandDrivenPipeline. Extra complication comes only when handling noncomposite
aware algorithms. Due to the nature of composite datasets, typically correct result can be obtained by
simply executing the noncomposite aware filter on each dataset in the input composite dataset and
then combining the result produced by each execution into an output composite dataset with structure
similar to that of the input. That's exactly how vtkCompositeDataPipeline deals with such algorithms.

REQUEST_DATA is extended to call REQUEST_DATA on the superclass vtkStreamingDe-
mandDrivePipeline in a loop, passing a different noncomposite block from the input composite data-
set as the current input and then collecting the results in a composite dataset with a structure similar to
the input.

15.6 Choosing the Default Executive
A vtkAlgorithm subclass can override CreateDefaultExecute() to create the executive suitable for that
algorithm. By default, vtkStreamingDeamandDrivenPipeline is used as the executive. One can use
vtkAlgorithm::SetDefaultExecutivePrototype() to set the prototype for the executive to use by
default. For example, if the application deals with composite datasets, one would want to change the
executive to vtkCompositeDataPipeline so that non-composite aware filters can be used.
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In this section we provide detailed information describing
the interface to the many data objects in VTK. This ranges from datasets, which are processed by the
filter objects in visualization pipelines, to data arrays, which are used to represent a portion of a data-
set (e.g., the scalar data). 

To understand the relationship of data objects in VTK,
refer to the diagrams in Figure 19–1 through Figure 19–5.

16.1 Data Arrays
Data arrays, implemented in the superclass vtkDataArray and
its many subclasses, are the foundation upon which many of
the VTK data objects are built. For example, vtkPolyData, the
data structure that VTK uses to represent polygonal graphics
data, contains data arrays that store geometric (within vtk-
Points), topological (within vtkCellArray) and attribute
(within vtkField, vtkPointData and vtkCellData) information.
It is essential then to learn how to manipulate vtkDataArrays
in order to manipulate VTK Data Objects. vtkDataArrays are
primarily used to store numerical information, and always for
information that is not heterogeneous. They also assume that
the information content that will be stored in the array is not
sparse. VTK also provides vtkAbstractArrays (the superclass
of vtkDataArray), and vtkArrays (reference section 12.16
vtkArray) later on in chapter) for working with less rigidly
defined contents. Data arrays inherit from their vtkAbstrac-
tArray superclass an interfacebased on a tuple abstraction

Figure 16–1  Data array
structure. In this example,
each tuple consists of three
components.

tuple 0

tuple 1

tuple n-1



328 Interfacing To VTK Data Objects

(refer to Figure 16–1). Data arrays have the ability to manage internal memory by dynamic allocation
and yet also provide raw pointer based access to their contents for efficiency. 

In the tuple abstraction, vtkDataArray represents data as an array of tuples, each tuple consist-
ing of the same number of components and each of the same native data type. In implementation, the
tuples are actually subarrays within a contiguous array of data, as shown in the figure. 

The power of data arrays and the tuple abstraction is that data can be represented in native type,
and visualization data can be represented as a tuple. For example, we can represent vector data of
native type float by creating a vtkFloatArray (a subclass of vtkDataArray) of tuple size (i.e., num-
ber of components) equal to 3. In this case, the number of vectors is simply the number of tuples; or
alternatively, the number of float values divided by the number of components (for a vector, the num-
ber of components is always three).

vtkDataArray Methods
The following is a summary of the methods of vtkDataArray. Note that these are the methods required
by all subclasses of vtkDataArray; there are several other methods specialized to each subclass. The
special methods (which deal mainly with pointers and data specific information) for one subclass,
vtkFloatArray, are shown immediately following the vtkDataArray method summary.

dataArray = NewInstance()
Create an instance (dataArray) of the same type as the current data array. Also referred
to as a “virtual” constructor.

type = GetDataType()
Return the native type of data as an integer token (tokens are defined in vtkType.h). The
possible types are VTK_VOID, VTK_BIT, VTK_CHAR, VTK_SIGNED_CHAR,
VTK_UNSIGNED_CHAR, VTK_SHORT, VTK_UNSIGNED_SHORT, VTK_INT,
VTK_UNSIGNED_INT, VTK_LONG, VTK_UNSIGNED_LONG, VTK_LONG_LONG,
VTK_UNSIGNED_LONG_LONG, VTK___INT64, VTK_UNSIGNED___INT64,
VTK_FLOAT, VTK_DOUBLE, and VTK_ID_TYPE.

size = GetDataTypeSize()
Return the size of the underlying data type. 1 is returned for VTK_BIT.

size = GetDataType(type)
Return the size of the specified data type. 1 is returned for VTK_BIT.

SetNumberOfComponents(numComp)
Specify the number of components per tuple.

GetNumberOfComponents()
Get the number of components per tuple.

SetNumberOfTuples(number)
Set the number of tuples in the data array. This method allocates storage, and depends on
prior invocation of the method SetNumberOfComponents() for proper allocation.

numTuples = GetNumberOfTuples()
Return the number of tuples in the data array.

tuple = GetTuple(i)
Return a pointer to an array that represents a particular tuple in the data array. This
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method is not thread-safe, and data may be cast to a common type (i.e., double).

GetTuple(i, tuple)
Fill in a user-provided tuple (previously allocated) with data.

GetTuples(ids, output)
Given a list of ids (indices), return an array of corresponding tuples in the user-provided
output array. The output array must be allocated (by the user) with enough memory for
the data.

GetTuples(id1, id2, output)
Fill the user-provided output array with the tuples for the ranges of ids (indices) specified
(id1 to id2, inclusive). The output array must be allocated (by the user) with enough
memory for the data.

SetTuple(i, tuple)
Specify the tuple at array location i. This method does not do range checking, and is
faster than methods that do (e.g., InsertTuple()). You must invoke SetNumberOfTuples()
prior to inserting data with this method.

InsertTuple(i, tuple)
Insert data at the tuple location i. This method performs range checking, and will allocate
memory if necessary.

i = InsertNextTuple(tuple)
Insert data at the end of the data array, and return its position in the array. This method
performs range checking, and will allocate memory if necessary.

c = GetComponent(i, j)
Get the component value as a double at tuple location i and component j (of the ith

tuple).

SetComponent(i, j, c)
Set the jth component value at tuple location i. This method does not perform range
checking, you must have previously allocated memory with the method SetNumberOfTu-
ples().

InsertComponent(i, j, c)
Insert the jth component value at tuple location i. This method performs range checking
and will allocate memory as necessary.

FillComponent(j, c)
Fill the jth component of a data array with the specified value (c) for all tuples. This can
be used to initialize a single component of a multi-component array.

CopyComponent(j, array, c)
Fill the jth component of a data array with the value from the cth component of array.
This can be used to copy a component (column) from one data array to another.

GetData(tupleMin, tupleMax, compMin, compMax, data)
Extract a rectangular array of data (into data). The array data must have been pre-allo-
cated. The rectangle is defined from the minimum and maximum ranges of the compo-
nents and tuples.
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DeepCopy(dataArray)
Perform a deep copy of another object. Deep copy means that the data is actually copied,
not reference counted.

ptr = GetVoidPointer(id)
Return a pointer to the data as a void * pointer. This can be used, in conjunction with the
method GetDataType(), to cast data to and from the appropriate type.

ptr = WriteVoidPointer(id, number)
Prepare the array for number writes starting at location id. Return the address of a partic-
ular data index (id). Make sure memory is allocated for number items. Set the MaxId
instance variable according to the number of values requested.

Allocate(size)
Allocate memory for this array.

Squeeze()
Reclaim any unused memory the data array may have allocated. This method is typically
used when you use Insert() methods and cannot exactly specify the amount of data at ini-
tial allocation.

Resize(numTuples)
Resize the array to the size specified by numTuples. Any data contained in the array will
be preserved.

Reset()
Modify the data array so it looks empty but retains allocated storage. Useful to avoid
excessive allocation and deallocation.

size = GetSize()
Return the size (number of elements) of the array.

Initialize()
Reset the data array to its initial state and release allocated storage.

CreateDefaultLookupTable()
If no lookup table is specified, and a lookup table is needed, then a default table is cre-
ated.

SetLookupTable(lut)
Specify a lookup table to use for mapping array values to colors.

lut = GetLookupTable()
Return the lookup table to use for mapping array values to colors.

GetTuples(ids, array)
Given a list of ids, fill the user-provided array with tuples corresponding to those ids. For
example, the ids might be the ids defining a cell and the return list contains the point sca-
lars.

id = GetMaxId()
Return the maximum id currently in the array (number of elements - 1).

SetVoidArray(array, size, save)
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Directly set the data array (specified as a void*) from an outside source. This method is
useful when you are interfacing to data and want to pass the data into VTK's pipeline. The
save flag indicates whether the array passed in should be deleted when the data array is
destructed. A value of 1 indicates that VTK should not delete the data array when it is
done using it.

ExportToVoidPointer(ptr)
Copy the data array to the void pointer specified by the user. It is the user's responsibility
to allocate enough memory for the void pointer.

sz = GetActualMemorySize()
Return the memory (in kilobytes) used by this data array.

SetName(name)
Specify a name for the data array.

name = GetName()
Return the name of the data array.

ComputeRange(comp)
Determine the range of values contained in the specified component (comp) of the data
array.

range = GetRange(i)
Return the range (min,max) of the ith component. This method is not thread safe.

GetRange(range, i)
Fill in the minimum/maximum values of the ith component in a user-provided array. 

range = GetRange()
Return the range (min, max) of the 0th component. This method is not thread safe.

GetRange(range)
Fill in the minimum/maximum values of the 0th component in a user-provided array.

GetDataTypeRange(range)
Fill in the minimum/maximum values that can be specified using the underlying data
type.

GetDataTypeRange(type, range)
Fill in the minimum/maximum values that can be specified using the data type indicated
by type.

min = GetDataTypeMin()
Return the minimum value that can be specified using the underlying data type.

min = GetDataTypeMin(type)
Return the minimum value that can be specified using the data type indicated by type.

max = GetDataTypeMax()
Return the maximum value that can be specified using the underlying
data type.

max = GetDataTypeMax(type)
Return the maximum value that can be specified using the data type indicated by type.

norm = GetMaxNorm()
Return the maximum norm value over all the tuples. This value is computed each time
GetMaxNorm() is called.
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array = CreateDataArray(type)
Create an array of the specified data type. The user is responsible for deleting the data
array returned.

The following methods are from vtkFloatArray, which is a subclass of vtkDataArray. Note that there
is overlap between the functionality available from the superclass vtkDataArray and its concrete sub-
classes. The is because the superclass provides some generic functionality useful for quick/compact
coding, while the subclasses let you get at the data directly, which can be manipulated via pointer
manipulation and/or templated functions.

v = GetValue(i)
Return the value at the ith data location in the array.

SetNumberOfValues(number)
Set the number of values in the array. This method performs memory allocation.

SetValue(i, value)
Set the value at the ith data location in the array. This method requires prior invocation of
SetNumberOfValues() or WritePointer(). The method is faster than the insertion methods
because no range checking is performed.

InsertValue(i, f)
Insert the value at the ith data location in the array. This method perform range checking
and allocates memory as necessary.

id = InsertNextValue(f)
Insert the value f at the end of the data array, and return its position in the array. This
method performs range checking, and will allocate memory if necessary.

void GetTupleValue(i, tuple)
Copy the ith tuple into the user-provided array.

SetTupleValue(i, tuple)
Set the tuple at the ith position in the data array.

InsertTupleValue(i, tuple)
Insert the tuple into the ith position in the data array. Memory allocation is performed if
necessary.

InsertNextTupleValue(tuple)
Insert the tuple at the end of the data array. Memory allocation is performed if necessary.

ptr = GetPointer(i)
Return the pointer to the data array. The pointer is returned from the ith data location
(usually i=0 and the method returns the pointer at the beginning of the array).

ptr = WritePointer(i, number)
Allocate memory and prepare the array for number direct writes starting at data location
i. A pointer to the data starting at location i is returned.

SetArray(array, size, save)
Directly set the data array from an outside source. This method is useful when you are
interfacing to data and want to pass the data into VTK’s pipeline. The save flag indicates
whether the array passed in should be deleted when the data array is destructed. A value
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of one indicates that VTK should not delete the data array when it is done using it.

16.2 Datasets
Often times the hardest part about writing a filter is interfacing to the VTK data objects. Chances are
that as a filter developer, you are intimately familiar with the algorithm. It’s learning how to manipu-
late VTK datasets—reading the input and creating the output—that is the key to writing an efficient,
robust, and useful filter. Probably the single most important step in learning how to manipulate datas-
ets is understanding the data model. Figure 16–2 summarizes the dataset types in VTK. If you’re not
familiar with these objects, you’ll want to read The Visualization Toolkit text, and/or spend some time
reading the code to understand the data model. The following paragraphs highlight some of the
important features of the data model.

One important aspect of VTK's data model is the relationship between the structure and the
data attributes of a dataset. vtkDataSet is a subclass of vtkDataObject. The difference between the
two classes is that data objects represent completely arbitrary data (see the “The Visualization Pipe-
line” on page 25) and datasets represent data that has an inherent spatial structure. Several vtkDataO-
bject types that are not vtkDataSet including vtkSelection, vtkGraph, and vtkTable are described later
in this chapter. The dataset structure then describes the geometric and topological relationship of
points and cells to one another. When we refer to dataset type, we are actually referring to the struc-
ture of the data, that is how the geometry and topology is defined, stored and manipulated.

This spatial structure is the framework to which the dataset attributes are attached. Whereas a
vtkDataObject will contain information in one instance of vtkFieldData, vtkDataSet has three
instances. One for data set wide, general purpose information, one for values that are associated with
each point and the last for values that are associated with each cell. These point and cell associated
values are called dataset attributes and store information such as scalars, vectors, tensors, normals,
texture coordinates, and ids. Regardless of the type of dataset, these topologically and geometrically
associated data attributes are created and manipulated in the same way.

Another important feature of VTK’s data model is the relationship of datasets to cells, and
whether cells are represented implicitly or explicitly. Cells can be thought of as the atoms that form a
dataset. Cells are a topological organization of the dataset points (x-y-z positions) into an ordered list,
or connectivity array. For example, in a polygonal dataset (vtkPolyData), the polygons are the cells of
the dataset, and each polygonal cell is represented as an ordered list of points (i.e., the vertices of the
polygon). Some datasets represent points and cells explicitly (e.g., a list of points and cells in vtk-
PolyData), while others represent the points and cells implicitly (e.g., an image represented in vtkIm-
ageData by its dimensions, spacing, and origin). Implicit representation means that we do not
explicitly store point coordinates or cell connectivity. Instead, this information is derived as neces-
sary. You may wish to refer to Figure 19–20 to view the cell types found in VTK.

Assuming that you have a thorough understanding of VTK’s data model, you’ll need to know
how to get data from the datasets, and how to create and put data into the datasets. These activities are
dependent on the type of dataset—different datasets have different preferred ways to interface to
them. Also, datasets can be accessed at different levels of abstraction corresponding to the inheritance
hierarchy. For example, to get the coordinates of a point in a vtkPolyData, we can invoke the super-
class method vtkDataSet::GetPoint(), or we can retrieve the points array in vtkPolyData with
pts=vtkPolyData::GetPoints(), followed by access to the point coordinates via pts->GetPoint(). Both
approaches are valid, and both are used, depending on the circumstances. As a filter writer, you’ll
have to determine the correct level of abstraction by which to interface with the datasets. 
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Note: for the fastest access, you could get the pointer to the points array and then use templated
methods to process the data. For example:

void *ptr = pts->GetData()->GetVoidPointer(0);

switch (pts->GetData()->GetDataType())

(a) Image Data
(vtkImageData)

(e) Polygonal Data
(vtkPolyData)

(c) Structured Grid
(vtkStructuredGrid)

(f) Unstructured Grid
(vtkUnstructuredGrid)

(b) Rectilinear Grid
(vtkRectilinearGrid)

(d) Unstructured Points
(use vtkPolyData)

Figure 16–2  Fundamental dataset types found in VTK. Note that unstructured points can be represented by
either polygonal data or unstructured grids, so are not explicitly represented in the system.



16.2  Datasets 335

{
case VTK_FLOAT:

float *fptr = static_cast<float*>ptr;
...etc...

}

The next sections summarize how to manipulate the various types of datasets. You’ll need this infor-
mation if you’re going to write a filter. Once you understand the interface to vtkDataSet, the actual
construction of a graphics filter is relatively straightforward. As you read this material, you may wish
to refer to the inheritance hierarchy (Figure 19–4). The summary information for each dataset is bro-
ken into three parts: 

1. a general description of the dataset,
2. methods to create, manipulate, and extract information from the dataset,
3. one or more examples demonstrating important concepts.

vtkDataSet is an abstract dataset type. vtkDataSet exists to define a set of accessor methods that all of
its concrete dataset sub-classes inherit. Abstract objects are used as to refer to concrete objects in gen-
eral settings, in which the specific concrete type is unknown or unimportant. 

Note that abstract objects cannot be (directly) instantiated. Therefore it is common practice to
use vtkDataSet's NewInstance() method to create a new instance of a concrete class given a pre-exist-
ing vtkDataSet object. This is almost always followed by the CopyStructure() method, which makes a
copy of the geometric and topological structure of the dataset. (You may also wish to copy the dataset
attributes, see “Field and Attribute Data” on page 362 for more information.)

vtkDataSet Methods
In practice, the accessor methods that vtkDataSet defines are used within general filters that operate
on any type of dataset, without regard for their specific structural characteristics. The following meth-
ods can be called on any vtkDataSet subclass.

dataSet = NewInstance()
Create an instance of the same type as the current dataset. Also referred to as a “virtual”
constructor.

CopyStructure(dataSet)
Update the current structure definition (i.e., geometry and topology) with the supplied
dataset. Note that copying is done using reference counting.

type = GetDataObjectType()
Return the type of data object (e.g., vtkDataObject, vtkPolyData, vtkImageData, vtk-
StructuredGrid, vtkRectilinearGrid, or vtkUnstructuredGrid). 

numPoints = GetNumberOfPoints()
Return the number of points in the dataset.

numCells = GetNumberOfCells()
Return the number of cells in the dataset.

x = GetPoint(ptId)
Given a point id, return a pointer to the (x,y,z) coordinates of the point.
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GetPoint(ptId,x)
Given a point id, copy the (x,y,z) coordinates of the point into the array x provided. This is
a thread-safe variant of the previous method.

cell = GetCell(cellId)
Given a cell id, return a pointer to a cell object.

GetCell(cellId, genericCell)
Given a cell id, return a cell in the user-provided instance of type vtkGenericCell. This is
a thread-safe variant of the previous GetCell() method.

type = GetCellType(cellId)
Return the type of the cell given by cell id. The type is an integer flag defined in the
include file vtkCellType.h.

GetCellTypes(types)
Generate a list of types of cells (supplied in types) that compose the dataset.

GetPointCells(ptId, cellIds)
Given a point id, return a list of cells that use this point.

GetCellPoints(cellId, ptIds)
Given a cell id, return the point ids (e.g., connectivity list) defining the cell.

GetCellNeighbors(cellId, ptIds, neighbors)
Given a cell id and a list of points composing a boundary face or edge of the cell, return
the neighbor(s) of that cell sharing the points.

pointId = FindPoint(x)
Locate the closest point to the global coordinate x. Return the closest point or -1 if the
point x is outside of the dataset.

foundCellId = FindCell(x, cell, cellId, tol2, subId, 
pcoords, weights)
Given a coordinate value x, an initial search cell defined by cell and cellId, and a tol-
erance measure (squared), return the cell id and sub-id of the cell containing the point and
its interpolation function weights. The initial search cell (if cellId>=0) is used to speed
up the search process when the position x is known to be near the cell. If no cell is found,
foundCellId < 0 is returned.

foundCellId = FindCell(x, cell, genericCell, cellId, tol2, subIc,
pcoords, weights)
Same as previous, but the user-provided instance of vtkGenericCell is used in any inter-
nal calls to GetCell().

cell = FindAndGetCell(x, cell, cellId, tol2, subId, pcoords, weights)
This is a variation of the previous method (FindCell()) that returns a pointer to the cell
instead of the cell id.

pointData = GetPointData()
Return a pointer to the object maintaining point attribute data. This includes scalars, vec-
tors, normals, tensors, texture coordinates, and field data.

cellData = GetCellData()
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Return a pointer to the object maintaining cell attribute data. This includes scalars, vec-
tors, normals, tensors, texture coordinates, and field data.

bounds = GetBounds()
Get the bounding box of the dataset. The return value is an array of (xmin, xmax, ymin,
ymax, zmin, zmax).

GetBounds(bounds)
Get the bounding box of the dataset. The return value is an array of (xmin, xmax, ymin,
ymax, zmin, zmax). This is a thread-safe variant of the previous method.

length = GetLength()
Return the length of the diagonal of the bounding box of the dataset.

center = GetCenter()
Get the center of the bounding box of the dataset.

GetCenter(center)
Get the center of the bounding box of the dataset. This is a thread-safe variant of the pre-
vious method.

range = GetScalarRange()
A convenience method to return the (minimum, maximum) range of the scalar attribute
data associated with the dataset.

GetScalarRange(range)
A thread-safe variant of the previous method.

Squeeze()
Reclaim any extra memory used to store data. Typically used after creating and inserting
data into the dataset.

GetCellBounds(cellId, bounds)
Store the bounds of the cell with the given cellId in the user-provided array.

ComputeBounds()
Determine the bounding box of the dataset.

Initialize()
Return the dataset to its initial state.

size = GetMaxCellSize()
Return the size (defined by number of points in the cell) of the largest cell in the dataset.

size = GetActualMemorySize()
Return the size of the dataset in kilobytes.

ShallowCopy(src)
Copy the src dataset to this dataset using reference counting.

DeepCopy(src)
Copy the src dataset to this dataset, making a second copy of the data.

mismatch = CheckAttributes()
Check whether the length of the cell and point attribute arrays matches the number of
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points/cells in the geometry. Return 1 if there is a mismatch; return 0 otherwise.

GenerateGhostLevelArray()
This method computes the ghost arrays for the points of a given dataset.

vtkDataSet Examples
Here’s a typical example of using the vtkDataSet API. The code fragment is modified from vtkProbe-
Filter. vtkProbeFilter samples data attribute values from one dataset onto the points of another (the fil-
ter has two inputs). Please ignore the references to point data attributes for now; these methods will be
explained in “Field and Attribute Data” on page 362.

numPts = input->GetNumberOfPoints();
pd = source->GetPointData();

// Allocate storage for output PointData
outPD = output->GetPointData();
outPD->InterpolateAllocate(pd);

// Use tolerance as a function of size of source data
tol2 = source->GetLength();
tol2 = tol2*tol2 / 1000.0;

// Loop over all input points, interpolating source data
for (ptId=0; ptId < numPts; ptId++)

{
// Get the xyz coordinate of the point in the input dataset
x = input->GetPoint(ptId);
// Find the cell that contains xyz and get it
cell = source->FindAndGetCell(x,NULL,

-1,tol2,subId,pcoords,weights);
if (cell)

{
// Interpolate the point data
outPD->InterpolatePoint(pd,ptId,

cell->PointIds,weights);
}

else
{
outPD->NullPoint(ptId);
}

}
 delete [] weights;

The following example shows how to create a reference-counted copy of a dataset using the vtkData-
Set API. Both the variables newDataSet and dataSet are pointers to vtkDataSet.

newDataSet = dataSet->NewInstance();
newDataSet->CopyStructure(dataSet);
newDataSet->GetPointData()->

PassData(dataSet->GetPointData());
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newDataSet->GetCellData()->
PassData(dataSet->GetCellData());

Now that we’ve covered the abstract API to vtkDataSet, we move to the concrete dataset types.
Remember, every concrete subclass inherits the methods of its superclasses, including vtkDataSet.

16.3 Image Data
vtkImageData is a concrete dataset type representing a regular, x-y-z axis-aligned array of points.
vtkImageData can represent 1D arrays, 2D images, and 3D volumes. Both the geometry and topology
of the dataset structure are regular, and both are represented implicitly. A vtkImageData dataset is
defined by data dimensions, interpoint spacing, and the origin (i.e., lower-left corner) of the dataset. If
the dimension of the dataset is two, then we call the vtkImageData dataset an image, and it is com-
posed of vtkPixel cell types. If the dimension of the dataset is three, then we call the vtkImageData
dataset a volume, and it is composed of vtkVoxel cells.

vtkImageData Methods

SetExtent(x1, x2, y1, y2, z1, z2)
Set the extent of the image dataset. On each axis, the extent is defined by the index of the
first point and the index of the last point.

SetExtent(extent)
An alternative to the previous method where extent is an integer array of size 6.

ext = GetExtent()
Return a pointer to an integer array of size 6 containing the extent (xmin, xmax, ymin, ymax,
zmin, zmax) of the image dataset

GetExtent(ext)
A thread-safe alternative to the previous method.

SetDimensions(i, j, k)
Set the dimensions of the image dataset in terms of number of points, not cells. This is
shorthand for the common case when the data starts at 0, 0, 0 and is equivalent to SetEx-
tent(0, i-1, 0, j-1, 0, k-1).

SetDimensions(dim)
An alternative form of the previous method where dim is an array of size three.

dims = GetDimensions()
Return a pointer to an array of size three containing the i-j-k dimensions of the image
dataset.

GetDimensions(dims)
Thread-safe form of previous method.

SetSpacing(sx, sy, sz)
Set the spacing of the image dataset.

SetSpacing(spacing)
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An alternative form of the previous method where spacing is an array of size three.

spacing = GetSpacing()
Return a pointer to an array of size three containing the spacing of the dataset.

GetSpacing(spacing)
Thread-safe form of previous method.

SetOrigin(x, y, z)
Set the origin of the image dataset.

SetOrigin(origin)
An alternative form of the previous method where origin is an array of size three.

origin = GetOrigin()
Return a pointer to an array of size three containing the origin of the image dataset.

GetOrigin(origin)
Thread-safe form of previous method.

ComputeStructuredCoordinates(x, ijk, pcoords)
Given a point x in the 3D modeling coordinate system, determine the structured coordi-
nates i-j-k specifying which cell the point is in, as well as the parametric coordinates
inside the cell.

GetVoxelGradient(i, j, k, scalars, gradient)
Given a cell specified by i-j-k structured coordinates, and the scalar data for the image
data dataset, compute the gradient at each of the eight points defining the voxel.

GetPointGradient(i, j, k, scalars, gradient)
Given a point specified by i-j-k structured coordinates, and the scalar data for the image
data dataset, compute the gradient at the point (an array of size three).

d = GetDataDimension()
Return the dimensionality of the dataset ranging from (0,3).

pointId = ComputePointId(int ijk[3])
Given a point specified by i-j-k structured coordinates, return the point id.

cellId = ComputeCellId(int ijk[3])
Given a cell specified by i-j-k structured coordinates, return the cell id of the point.

size = GetEstimatedMemorySize()
Return the estimated memory size of the vtkImageData dataset in kilobytes.

vtkImageData Example
In this example, which is taken from the filter vtkExtractVOI, we subsample the input data to gener-
ate output data. In the initial portion of the filter (not shown), the dimensions, spacing, and origin of
the output are determined and then set (shown). We then configure the output and copy the associated
point attribute data.

int *inExt = input->GetExtent();
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output->SetDimensions(outDims);
 output->SetSpacing(outAR);
 output->SetOrigin(outOrigin);

// If output same as input, just pass data through
//

 if ( outDims[0] == dims[0] && outDims[1] == dims[1] &&
outDims[2] == dims[2] &&

 rate[0] == 1 && rate[1] == 1 && rate[2] == 1 )
  {
  output->GetPointData()->PassData(input->GetPointData());

output->GetCellData()->PassData(input->GetCellData());
  vtkDebugMacro(<<"Passed data through bacause input 

and output are the same");
  return;
  }

// Allocate necessary objects
 outPD->CopyAllocate(pd,outSize,outSize);

outCD->CopyAllocate(cd, outSize, outSize);
 sliceSize = dims[0]*dims[1];

// Traverse input data and copy point attributes to output
//

 newIdx = 0;
 for ( k=voi[4]; k <= voi[5]; k += rate[2] )
  {
  kOffset = (k-inExt[4]) * sliceSize;
  for ( j=voi[2]; j <= voi[3]; j += rate[1] )
   {
   jOffset = (j-inExt[2]) * dims[0];
   for ( i=voi[0]; i <= voi[1]; i += rate[0] )
    {
    idx = (i-inExt[0]) + jOffset + kOffset;
    outPD->CopyData(pd, idx, newIdx++);
    }
   }
  }

16.4 Rectilinear Grids
vtkRectilinearGrid is a concrete dataset that represents information arranged on a topologically regu-
lar and geometrically semi-regular array of points. The points are defined by three vectors that con-
tain coordinate values for the x, y, and z axes—thus the points are axis-aligned and only partially
represented. The cells that make up vtkRectilinearGrid are implicitly represented and are of type
vtkVoxel (3D) or vtkPixel (2D).

Creating a vtkRectilinearGrid requires specifying the dataset dimensions and three arrays defin-
ing the coordinates in the x, y, z directions. (These arrays are represented by the XCoordinates,
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YCoordinates, and ZCoordinates instance variables.) Make sure that the number of coordinate values
is consistent with the dimensions specified.

vtkRectilinearGrid Methods

The class vtkRectilinearGrid defines several methods beyond the methods inherited from vtkDataSet.

SetExtent(x1, x2, y1, y2, z1, z2)
Set the extent of the vtkRectilinearGrid dataset. On each axis, the extent is defined by the
index of the first point and the index of the last point. Note that the ranges must match the
number of values found in the XCoordinates, YCoordinates, and ZCoordinates arrays.

SetExtent(extent)
An alternative to the previous method where extent is an integer array of size 6.

extent = GetExtent()
Return a pointer to an integer array of size 6 containing the extent (xmin, xmax, ymin, ymax,
zmin, zmax) of the vtkRectilinearGrid dataset.

GetExtent(extent)
A thread-safe alternative to the previous method.

SetDimensions(i, j, k)
Set the dimensions of the rectilinear grid dataset. This is shorthand for the common case
when the data starts at 0, 0, 0 and is equivalent to SetExtent (0, i-1, 0, j-1, 0, k-1).

SetDimensions(dim)
An alternative form of the previous method where dim is an array of size 3.

dims = GetDimensions()
Return a pointer to an array of size 3 containing the i-j-k dimensions of the dataset.

GetDimensions(dims)
Thread-safe form of previous method.

ComputeStructuredCoordinates(x, ijk, pcoords)
Given a point in the 3D modeling coordinate system, determine the structured coordi-
nates i-j-k specifying which cell the point is in, as well as the parametric coordinates
inside the cell.

d = GetDataDimension()
Return the dimensionality of the dataset ranging from (0,3).

pointId = ComputePointId(int ijk[3])
Given a point specified by i-j-k structured coordinates, return the point id of the point.

cellId = ComputeCellId(int ijk[3])
Given a cell specified by i-j-k structured coordinates, return the cell id of the cell.

SetXCoordinates(xcoords)
Specify the array of values which define the x coordinate values. The array xcoords is of
type vtkDataArray.

SetYCoordinates(ycoords)
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Specify the array of values which define the y coordinate values. The array ycoords is of
type vtkDataArray.

SetZCoordinates(zcoords)
Specify the array of values which define the z coordinate values.The array zcoords is of
type vtkDataArray.

xCoord = GetXCoordinates()
Get the vtkDataArray specifying the values which define the x coordinate values.

GetXCoordinates(xCoord)
A thread-safe alternative to the previous method.

yCoord = GetYCoordinates()
Get the vtkDataArray specifying the values which define the y coordinate values.

GetYCoordinates(yCoord)
A thread-safe alternative to the previous method.

zCoord = GetZCoordinates()
Get the vtkDataArray specifying the values which define the z coordinate values.

GetZCoordinates(zCoord)
A thread-safe alternative to the previous method.

16.5 Point Sets
vtkPointSet is an abstract superclass for those classes that explicitly represent points (i.e., vtkPoly-
Data, vtkStructuredGrid, vtkUnstructuredGrid). The basic function of vtkPointSet is to implement
those vtkDataSet methods that access or manipulate points (e.g., GetPoint() or FindPoint()).

vtkPointSet Methods

There are several access methods defined, but most overload vtkDataSet’s API. Note that because this
object is abstract, there are no direct creation methods. Refer to the vtkDataSet::NewInstance() cre-
ation method (see “vtkDataSet Methods” on page 335 for more information).

points = GetPoints()
Return a pointer to an object of type vtkPoints. This class explicitly represents the points
in the dataset.

SetPoints(points)
Specify the explicit point representation for this object. The parameter points is an
instance of vtkPoints.

vtkPointSet Example

Here’s an example of a filter that exercises the vtkPointSet API. The following code performs the
operation defined by the class vtkWarpVector. (Note: vtkWarpVector has been templated for perfor-
mance.)
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inPts = input->GetPoints();
 pd = input->GetPointData();
 if ( !pd->GetVectors() || !inPts )
  {
  vtkErrorMacro(<<"No input data");
  return;
  }
 inVectors = pd->GetVectors();
 numPts = inPts->GetNumberOfPoints();
 newPts = vtkPoints::New();
 newPts->SetNumberOfPoints(numPts);

// Loop over all points, adjusting locations
 for (ptId=0; ptId < numPts; ptId++)
  {
  x = inPts->GetPoint(ptId);
  v = inVectors->GetTuple(ptId);
  for (i=0; i<3; i++)
   {
   newX[i] = x[i] + this->ScaleFactor * v[i];
   }
  newPts->SetPoint(ptId, newX);
  }

The method to focus on is vtkPointSet::GetPoints(), which returns a pointer to a vtkPoints instance
(inPts). Also, notice that we use the invocation vtkPoints::GetPoint() to return the point coordinates
of a particular point. We could replace this call with vtkPointSet::GetPoint() and achieve the same
result.

16.6 Structured Grids
vtkStructuredGrid is a concrete dataset that represents information arranged on a topologically regu-
lar but geometrically irregular array of points. The cells are of type vtkHexahedron (in 3D) and of
type vtkQuad (in 2D), and are represented implicitly with the Dimensions instance variable. The
points are represented explicitly by the superclass vtkPointSet.

vtkStructuredGrid Methods
Most of vtkStructuredGrid’s methods are inherited from its superclasses vtkPointSet and vtkDataSet.

SetExtent(x1, x2, y1, y2, z1, z2)
Set the extent of the vtkStructuredGrid dataset. On each axis, the extent is defined by the
index of the first point and the index of the last point.

SetExtent(extent)
An alternative to the previous method where extent is an integer array of size 6.

ext = GetExtent()
Return a pointer to an integer array of size 6 containing the extent (xmin, xmax, ymin, ymax,
zmin, zmax) of the vtkStructuredGrid dataset.
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GetExtent(ext)
A thread-safe alternative to the previous method.

SetDimensions(i, j, k)
Specify the i-j-k dimensions of the structured grid. The number of points for the grid,
specified by the product i*j*k, must match the number of points returned from
vtkPointSet::GetNumberOfPoints().This is shorthand for the common case when the data
starts at 0, 0, 0 and is equivalent to SetExtent(0, i-1, 0, j-1, 0, k-1).

SetDimensions(dim)
An alternative form of the previous method. Dimensions are specified with an array of
three integer values.

dims = GetDimensions()
Return a pointer to an array of size three containing i-j-k dimensions of dataset.

GetDimensions(dims)
Thread-safe form of the previous method.

dim = GetDataDimension() 
Return the dimension of the dataset, i.e., whether the dataset is 0, 1, 2, or 3-dimensional.

16.7 Polygonal Data
vtkPolyData is a concrete dataset type that represents rendering primitives such as vertices, lines,
polygons, and triangle strips. The data is completely unstructured: points are represented in the super-
class vtkPointSet, and the cells are represented using four instances of vtkCellArray, which is a con-
nectivity list (Figure 16–3). The four vtkCellArrays represent vertices and polyvertices; lines and
polylines; triangles, quads, and polygons; and triangle strips, respectively.

Because vtkPolyData is unstructured, cells and points must be explicitly represented. In order
to support some of the required methods of its superclass vtkDataSet (mainly topological methods
such as GetPointCells() and GetCellNeighbors()), vtkPolyData has a complex internal data structure
as shown in Figure 16–3. Besides vtkPoints and the vtkCellArrays, the data structure consists of a list
of cell types (vtkCellTypes) and cell links (vtkCellLinks). The cell types array allows random access
into the cells. This is necessary because vtkCellArray cannot support random access due to the fact
that individual cells may vary in size. The cell links array supports topological operations by main-
taining references to all cells that use a particular vertex. (See The Visualization Toolkit text for more
information.) Instances of these two classes, vtkCellTypes and vtkCellLinks, are only instantiated if
needed. That is, if random access to cells is required vtkCellTypes is instantiated; or if topological
information is required, vtkCellLinks is instantiated.

While this structure is fairly complex, the good news is that for the most part the management
of the internal structure is taken care of for you. Normally you’ll never need to directly manipulate the
structure as long as you use vtkDataSet’s API to interface the information. In some cases, writing a
filter or using some of the vtkPolyData or vtkUnstructuredGrid methods, you may have to explicitly
create the cell types and/or cell links arrays using the BuildCells() and BuildLinks() methods. In rare
cases you may want to directly manipulate the structure—deleting points or cells, and/or modifying
the link array to reflect changing topology. Refer to section “Supporting Objects for Data Sets” on
page 355 for more information. Examples of code demonstrating the use these complex operators
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include the classes Graphics/vtkDecimatePro, Graphics/vtkDelaunay2D, and Graphics/
vtkDelaunay3D.

vtkPolyData Methods

The class vtkPolyData is fairly complex, overloading many of the methods inherited from its super-
classes vtkDataSet and vtkPointSet. Most of the complexity is due to the definition of vertices, lines,
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Figure 16–3  Representing unstructured data. This structure is used to represent polygonal and
unstructured grid datasets.

(b) Unstructured data is represented by points (geometry and position in 3D space), a cell 
array (cell connectivity), cell types (provides random access to cells), and cell links (pro-

vides topological information). The cell types and cell links arrays are created on demand.
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polygons, and triangle strips in separate vtkCellArrays, and special (geometric) methods for operating
on the mesh.

SetVerts (verts)
Specify the list of vertices, verts. The parameter verts is an instance of vtkCellArray.
Note: the difference between vertices and points are that Points define geometry; while
vertices represent cells that contain a single point. Cells are directly renderable in VTK
and points are not.

verts = GetVerts()
Get the list of vertices. The list is an instance of vtkCellArray.

SetLines (lines)
Specify the list of lines, lines. The parameter lines is an instance of vtkCellArray.

lines = GetLines()
Get the list of lines. The list is an instance of vtkCellArray.

SetPolys(polys)
Specify the list of polygons, polys. The parameter polys is an instance of vtkCellArray.

polys = GetPolys()
Get the list of polygons. The list is an instance of vtkCellArray.

SetStrips(strips)
Specify the list of triangle strips, strips. The parameter strips is an instance of vtk-
CellArray.

strips = GetStrips()
Get the list of triangle strips. The list is an instance of vtkCellArray.

numVerts = GetNumberOfVerts()
Return the number of vertices.

numLines = GetNumberOfLines()
Return the number of lines.

numPolys = GetNumberOfPolys()
Return the number of polygons.

numStrips = GetNumberOfStrips()
Return the number of triangle strips.

Allocate(numCells, extend)
Perform initial memory allocation prior to invoking the InsertNextCell() methods
(described in next two items). The parameter numCells is an estimate of the number of
cells to be inserted; extend is the size by which to extend the internal structure (if
needed).

Allocate(inPolyData, numCells, extend)
Similar to the above method, this method allocates initial storage for vertex, line, poly-
gon, and triangle strip arrays. However, it examines the supplied inPolyData to determine
which of these arrays to allocate; they are only allocated if there is data in the correspond-
ing arrays in inPolyData.
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cellId = InsertNextCell(type, npts, pts)
Given a cell type, type, number of points in the cell, npts, and an integer list of point
ids, pts, insert a cell and return its cell id. See Figure 19–20 for a definition of type val-
ues. Make sure to invoke Allocate() prior to invoking this method.

cellId = InsertNextCell(type, pts)
Given a cell type, type and instance of vtkIdList, pts, insert a cell and return its cell id.
Make sure to invoke Allocate() prior to invoking this method.

Reset()
Restores this instance of vtkPolyData to its initial condition without releasing allocated
memory.

BuildCells()
Build the internal vtkCellTypes array. This allows random access to cells (e.g., GetCell()
and other special vtkPolyData methods). Normally you don’t need to invoke this method
unless you are doing specialized operations on vtkPolyData.

BuildLinks()
Build the internal vtkCellLinks array. This enables access to topological information such
as neighborhoods (e.g., vertex, edge, face neighbors). Normally you don’t need to invoke
this method unless you are doing special operations on vtkPolyData.

DeleteCells()
Release the memory for the internal vtkCellTypes array which allows random access of
the cells. This method implicitly deletes the cell links too since they are no longer valid.

DeleteLinks()
Release the memory for the internal vtkCellLinks array.

GetPointCells(ptId, ncells, cells)
Given a point id (ptId), return the number of cells using the point (ncells), and an inte-
ger array of cell ids that use the point (cells).

GetCellEdgeNeighbors(cellId, p1, p2, cellIds)
Given a cell (cellId) and two points (p1 and p2) forming an edge of the cell, fill in a
user-supplied list of all cells using the edge (p1,p2).

GetCellPoints(cellId, npts, pts)
Given a cell (cellId), return the number of points (npts) and an integer list of point ids
which define the cell connectivity. This is a specialized version of the method GetCell-
Points(npts, ptIds) inherited from its superclass vtkDataSet.

flag = IsTriangle(p1, p2, p3)
A special method meant for triangle meshes. Returns a 0/1 flag indicating whether the
three points listed (p1,p2,p3) form a triangle in the mesh.

flag = IsEdge(p1, p2)
Returns a 0/1 flag indicating whether the two points listed (p1,p2) form an edge in the
mesh.

flag = IsPointUsedByCell(ptId,cellId)
Return a 0/1 flag indicating whether a particular point given by ptId is used by a partic-



16.7  Polygonal Data 349

ular cell (cellId).

ReplaceCell(cellId, npts, pts)
Redefine a cell (cellId) with a new connectivity list (pts). Note that the number of
points (npts) must be equal to the original number of points in the cell.

ReplaceCellPoint(cellId, oldPtId, newPtId)
Redefine a cell’s connectivity list by replacing one point id (oldPtId) with a new point
id (newPtId).

ReverseCell(cellId)
Reverse the order of the connectivity list definition for the cell (cellId). For example, if
a triangle is defined (p1,p2,p3), after invocation of this method it will be defined by the
points (p3,p2,p1).

DeletePoint(ptId)
Delete the point by removing all links from it to cells using it. This method does not actu-
ally remove the point from the vtkPoints object.

DeleteCell(cellId)
Delete a cell by marking its type as VTK_EMPTY_CELL. This operator only modifies the
vtkCellTypes array, it does not actually remove the cell’s connectivity from the vtkCell-
Array object.

ptId = InsertNextLinkedPoint(x, numLinks)
If the instance of vtkCellLinks has been built, and you wish to insert a new point into the
mesh, use this method. The parameter numLinks is the initial size of the list of cells
using the point.

ptId = InsertNextLinkedPoint(numLinks)
Similar to the above method, this method is used for allocating memory to add a new
point in vtkCellLinks. However, this method only allocates memory; it does not insert the
point.

cellId = InsertNextLinkedCell(type, npts, pts)
Insert a new cell into the vtkPolyData after the cell links and cell types structures have
been built (i.e., BuildCells() and BuildLinks() have been invoked).

ReplaceLinkedCell(cellId, npts, pts)
Replace one linked cell with another cell. Note that npts must be the same size for the
replaced and replacing cell.

RemoveCellReference(cellId)
Remove all references to the cell cellId from the cell links structure. This effectively
topologically disconnects the cell from the data structure.

AddCellReference(cellId)
Add references to the cell cellId into the cell links structure. That is, the links from all
points are modified to reflect the use by the cell cellId.

RemoveReferenceToCell(ptId,cellId)
Remove the reference from the links of ptId to the cell cellId.
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AddReferenceToCell(ptId,cellId)
Add a reference to the cell cellId into the point ptId’s link list.

ResizeCellList(ptId, size)
Resize the link list for the point ptId and make it of size size.

CopyCells(pd, idList, locator)
Copy cells listed in idList (a vtkIdList) from pd (a vtkPolyData), including points, point
data, and cell data. This method assumes that point and cell data have been allocated. If a
point locator is passed in, then the points will not be duplicated in the output.

RemoveGhostCells(level)
Remove any cell that has a ghost level array value at least as large as the level indicated.
This method does not remove unused points. Ghost levels represent partition boundaries
in parallel processing applications.

16.8 Unstructured Grids
vtkUnstructuredGrid is a concrete dataset type that represents all possible combinations of VTK cells
(i.e., all those shown on Figure 19–20). The data is completely unstructured. Points are represented
by the superclass vtkPointSet, and cells are represented by a combinations of objects including vtk-
CellArray, vtkCellTypes, and vtkCellLinks. Typically, these objects (excluding vtkPoints) are used
internally, and you do not directly manipulate them. Refer to the previous section “Polygonal Data”
on page 345 for additional information about the unstructured data structure in VTK. Also, see “Sup-
porting Objects for Data Sets” on page 355 for detailed interface information about vtkCellArray, vtk-
CellTypes, and vtkCellLinks.

Although vtkUnstructuredGrid and vtkPolyData are similar, there are substantial differences.
vtkPolyData can only represent cells of topological dimension 2 or less (i.e., triangle strips, polygons,
lines, vertices) while vtkUnstructuredGrid can represent cells of dimension 3 and less. Also, vtkUn-
structuredGrid maintains an internal instance of vtkCellTypes to allow random access to its cells,
while vtkPolyData instantiates vtkCellTypes only when random access is required. Finally, vtkUn-
structuredGrid maintains a single internal instance of vtkCellArray to represent cell connectivity; vtk-
PolyData maintains four arrays corresponding to triangle strips, polygons, lines, and vertices.

vtkUnstructuredGrid Methods

Allocate(numCells, extend)
Perform initial memory allocation prior to invoking the InsertNextCell() methods
(described in the following two items). The parameter numCells is an estimate of the
number of cells to be inserted; extend is the size by which to extend the internal struc-
ture (if needed).

cellId = InsertNextCell(type, npts, pts)
Given a cell type (type), number of points in the cell (npts), and an integer list of point
ids (pts), insert a cell and return its cell id. See Figure 19–20 for a definition of type val-
ues. Make sure to invoke Allocate() prior to invoking this method.

cellId = InsertNextCell(type, ptIds)
Given a cell type (type) and instance of vtkIdList, ptIds, insert a cell and return its cell
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id. Make sure to invoke Allocate() prior to invoking this method.

Reset()
Restores this instance of vtkUnstructuredGrid to its initial condition without releasing
allocated memory.

SetCells(types, cells)
This is a high performance method that allows you to define a set of cells all at once. You
specify an integer list of cell types, types, followed by an instance of vtkCellArray.

SetCells(type, cells)
This method is similar to the one above, but you specify a single cell type instead of a list
of them.

SetCells(cellTypes, cellLocations, cells)
This method is similar to the two above, but in addition to specifying a list of cell types, a
list of cell locations (a vtkIdTypeArray) is provided as well.

cells = GetCells()
Return a pointer to the cell connectivity list. The return value cells is of type vtkCellAr-
ray.

types = GetCellTypesArray()
Return a pointer to the cell types array. The return value, types, is of type vtkUnsigned-
CharArray.

locs = GetCellLocationsArray()
Return a pointer to the cell locations array used for indexing into the Connectivity array.
The return value, locs, is of type vtkIdTypeArray.

links = GetCellLinks()
Return a pointer to the cell links array. The return value, links, is of type vtkCellLinks.

BuildLinks()
Build the internal vtkCellLinks array. This enables access to topological information such
as neighborhoods (e.g., vertex, edge, face neighbors). Normally you don’t need to invoke
this method unless you are doing specialized operations on vtkUnstructuredGrid.

GetCellPoints(cellId, npts, pts)
Given a cell (cellId), return the number of points (npts) and an integer list of point ids
that define the cell connectivity. This is a specialized version of the method inherited
from vtkUnstructuredGrid’s superclass GetCellPoints(npts, ptIds) method. 

ReplaceCell(cellId, npts, pts)
Redefine the cell cellId with a new connectivity list pts. Note that the number of
points npts must be equal to the original number of points in the cell.

cellId = InsertNextLinkedCell(type, npts, pts)
Insert a new cell into the vtkUnstructuredGrid after the cell links structure has been built
(i.e., the method BuildLinks() has been invoked).

RemoveReferenceToCell(ptId, cellId)
Remove the reference from the links of ptId to the cell cellId.
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AddReferenceToCell(ptId, cellId)
Add a reference to the cell cellId into the point ptId’s link list.

ResizeCellList(ptId, size)
Resize the link list for the point ptId and make it of size size.

GetIdsOfCellsOfType(type, array)
Fill the specified array (a vtkIdTypeArray) with the ids of all the cells with the specified
type.

stat = IsHomogeneous()
Determine whether the vtkUnstructuredGrid dataset is composed only of cells of a single
type. Return 1 if this is true; return 0 otherwise.

RemoveGhostCells(level)
Remove any cell that has a ghost level array value at least as large as the level indicated.
Ghost levels represent partition boundaries in parallel processing applications.

16.9 Cells
Cells are the atoms of datasets. They are used to perform local operations within the dataset such as
interpolation, coordinate transformation and searching, and various geometric operations. Cells are
often used as a “handle” into a dataset, returning local information necessary to the execution of an
algorithm. To obtain a cell from a dataset, the method GetCell(int cellId) is used, and the returned cell
can then be processed.

The class vtkCell represents data using an instance of vtkPoints and vtkIdList (representing
point coordinates and point ids, respectively). These two instance variables are publicly accessible,
one of the few exceptions in VTK where instance variables are public. The following methods are
available to all subclasses of vtkCell.

vtkCell Methods

type = GetCellType()
Return the type of the cell as defined in vtkCellType.h.

dim = GetCellDimension()
Return the topological dimensional of the cell (0,1,2, or 3).

flag = IsLinear()
Return whether the cell interpolation is linear or not. Usually linear (=1).

points = GetPoints()
Get the point coordinates for the cell.

numPts = GetNumberOfPoints()
Return the number of points in the cell.

numEdges = GetNumberOfEdges()
Return the number of edges in the cell.

numFaces = GetNumberOfFaces()
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Return the number of faces in the cell. 

ptIds = GetPointIds()
Return the list of point ids defining the cell.

id = GetPointId(ptId)
For cell point ptId, return the actual point id.

edge = GetEdge(edgeId)
Return the edge cell from the edgeId of the cell.

cell = GetFace(faceId)
Return the face cell from the faceId of the cell.

status = CellBoundary(subId, pcoords[3], pts)
Given parametric coordinates of a point, return the closest cell boundary, and whether the
point is inside or outside of the cell. The cell boundary is defined by a list of points (pts)
that specify a face (3D cell), edge (2D cell), or vertex (1D cell). If the return value of the
method is != 0, then the point is inside the cell.

status = EvaluatePosition(x[3], closestPoint[3], subId, 
pcoords[3], dist2, weights[])
Given a point x[3] return inside(=1) or outside(=0) cell; evaluate parametric coordi-
nates, sub-cell id (!=0 only if cell is composite), distance squared of point x[3] to cell (in
particular, the sub-cell indicated), closest point on cell to x[3], and interpolation weights
in cell. (The number of weights is equal to the number of points defining the cell). Note:
on rare occasions a -1 is returned from the method. This means that numerical error has
occurred and all data returned from this method should be ignored.

EvaluateLocation(subId, pcoords[3], x[3], weights[])
Determine global coordinates (x[3]) from subId and parametric coordinates. Also
returns interpolation weights. (The number of weights is equal to the number of points in
the cell.)

Contour(value, cellScalars, locator, verts, lines, polys, inPd, outPd,
inCd, cellId, outCd)
Generate contouring primitives. The scalar list cellScalars contains scalar values at
each cell point. The locator is essentially a points list that merges points as they are
inserted (i.e., prevents duplicates). Contouring primitives can be vertices, lines, or poly-
gons. It is possible to interpolate point data along the edge by providing input and output
point data; if outPd is NULL, then no interpolation is performed. Also, if the output cell
data (outCd) is non-NULL, the cell data from the contoured cell is passed to the gener-
ated contouring primitives.

Clip(value, cellScalars, locator, connectivity, inPd, outPd, inCd, cel-
lId, outCd, insideOut)
Cut (or clip) the cell based on the input cellScalars and the specified value. The out-
put of the clip operation will be one or more cells of the same topological dimension as
the original cell. The flag insideOut controls what part of the cell is considered inside -
normally cell points whose scalar value is greater than "value" are considered inside. If
insideOut is on, this is reversed. Also, if the output cell data (outCd) is non-NULL, the
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cell data from the clipped cell is passed to the generated clipped primitives.

status = IntersectWithLine(p1[3], p2[3], tol, t, x[3], pcoords[3],
subId) 
Intersect with the ray defined by p1 and p2. Return parametric coordinates (both line and
cell). A non-zero return value indicates that an intersection has occurred. You can specify
a tolerance tol on the intersection operation.

status = Triangulate(index, ptIds, pts)
Generate simplices of the appropriate dimension that approximate the geometry of this
cell. 3D cells will generate tetrahedra,; 2D cells triangles; and so on. If triangulation fail-
ure occurs, a zero is returned.

Derivatives(subId, pcoords[3], values, dim, derivs)
Compute the derivatives of the values given for this cell.

GetBounds(bounds[6])
Set the (xmin, xmax, ymin, ymax, zmin, zmax) bounding box values of the cell.

bounds = GetBounds()
Return a pointer to the bounds of the cell.

length2 = GetLength2()
Return the length squared of the cell (the length is the diagonal of the cell’s bounding
box).

status = GetParametricCenter(pcoords[3])
Return the parametric coordinates of the center of the cell. If the cell is a composite cell,
the particular subId that the center is in is returned.

pcoords = GetParametricCoords()
Return the parametric coordinates for the points that define this cell.

distance = GetParametricDistance(pcoords[3])
Return the distance to the cell given a parametric value.

void ShallowCopy(cell)
Perform shallow (reference counted) copy of the cell.

void DeepCopy(cell)
Perform deep (copy of all data) copy of the cell.

Initialize(npts, pts, p)
Initialize the cell from outside with the point ids (pts) and point coordinates (p, an
instance of vtkPoints) specified. The npts parameter indicates the number of points in
the cell.

req = RequiresInitialization()
Returns whether a cell requires initialization prior to access. (For example, the cell may
need to triangulate itself or set up internal data structures.)

Initialize()
Allow the cell to initialize itself as mentioned in the description for the previous method.
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exp = IsExplicitCell()
Returns whether a cell is explicit (i.e., whether it requires additional representational
information beyond cell type and connectivity). Most cells in VTK are implicit rather
than explicit.

pri = IsPrimaryCell()
Returns whether a cell has a fixed topology. For example, a vtkTriangle is a primary cell,
but a vtkTriangleStrip is not.

16.10 Supporting Objects for Data Sets
We saw earlier that some dataset types required instantiation and manipulation of component objects.
For example, vtkStructuredGrid requires the creation of an instance of vtkPoints to define its point
locations, and vtkPolyData requires the instantiation of vtkCellArray to define cell connectivity. In
this section we describe the interface to these supporting objects. Refer to Figure 16–3 for additional
information describing the relationship of these objects.

vtkPoints Methods

vtkPoints represents x-y-z point coordinate information. Instances of vtkPoints are used to explicitly
represent points. vtkPoints depends on an internal instance of vtkDataArray, thereby supporting data
of different native types (i.e., int, float, etc.) The methods for creating and manipulating vtk-
Points are shown below.

num = GetNumberOfPoints()
Return the number of points in the array.

x = GetPoint(int id)
Return a pointer to an array of three doubles: the x-y-z coordinate position. This method is
not thread safe.

GetPoint(id, x)
Given a point id id, fill in a user-provided double array of length three with the x-y-z
coordinate position.

SetNumberOfPoints(number)
Specify the number of points in the array, allocating memory if necessary. Use this
method in conjunction with SetPoint() to put data into the vtkPoints array.

SetPoint(id, x)
Directly set the point coordinate x at the location id specified. Range checking is not per-
formed, and as a result this method is faster than the insertion methods. Make sure
SetNumberOfPoints() is invoked prior to using this method.

SetPoint(id, x, y, z)
Directly set the point coordinate (x, y, z) at the location id specified. Range checking is
not performed and as a result, this method is faster than the insertion methods. Make sure
SetNumberOfPoints() is invoked prior to using this method.

InsertPoint(id, x)
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Insert the point coordinate x at the location id specified. Range checking is performed,
and memory is allocated as necessary. 

InsertPoint(id, x, y, z)
Insert the point coordinate (x,y,z) at the location id specified. Range checking is per-
formed and memory allocated as necessary.

pointId = InsertNextPoint(x)
Insert the point coordinate x at the end of the array, returning its point id. Range checking
is performed and memory allocated as necessary. 

pointId = InsertNextPoint(x, y, z)
Insert the point coordinate (x,y,z) at the end of the array, returning its point id. Range
checking is performed and memory allocated as necessary. 

GetPoints(ptIds, pts)
Given a list of points ptIds, fill-in a user-provided vtkPoints instance with correspond-
ing coordinate values.

bounds = GetBounds()
Return a pointer to an array of size six containing the (xmin,xmax, ymin,ymax, zmin,zmax)
bounds of the points. This method is not thread-safe.

GetBounds(bounds)
Fill in a user-provided array of size six with the (xmin,xmax, ymin,ymax, zmin,zmax) bounds of
the points.

Allocate(size, extend)
Perform initial memory allocation. The parameter size is an estimate of the number of
points to be inserted; extend is the size by which to extend the internal structure (if
needed).

Initialize()
Return the object to its state at instantiation, including freeing memory.

SetData(pts)
Set the underlying vtkDataArray (pts) specifying the point coordinates. The number of
components in the vtkDataArray must be 3.

pts = GetData()
Return the underlying vtkDataArray containing the point coordinates.

dType = GetDataType()
Return an integer indicating the data type of the point coordinates.

SetDataType(dType)
Set the data type of the point coordinates. See vtkType.h for a list of possible types.

ptr = GetVoidPointer(id)
Return a void pointer to the data contained in the underlying data array starting at the
indicated index (id).

Squeeze()
Reclaim any extra memory in the data structure.
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Reset()
Set the object to its initial state, but do not free memory.

DeepCopy(pts)
Copy the given vtkPoints (pts) to this instance of vtkPoints, making a second copy of the
data.

ShallowCopy(pts)
Copy the given vtkPoints (pts) to this instance of vtkPoints using reference counting.

size = GetActualMemorySize()
Return the size of this instance of vtkPoints in kilobytes.

ComputeBounds()
Determine the bounding box of the point coordinates contained in this instance of vtk-
Points.

vtkCellArray Methods

vtkCellArray represents the topology (i.e., connectivity) information of cells. The connectivity of a
cell is defined by an ordered integer list of point ids. The methods for creating and manipulating
vtkCellArrays are shown below.

Allocate(size, extend)
Perform initial memory allocation prior to invoking the InsertNextCell() methods. The
parameter size is the number of entries in the list to be inserted; extend is the size by
which to extend the internal structure (if needed).

Initialize()
Set the object to its original state, releasing memory that may have been allocated.

size = EstimateSize(numCells, PtsPerCell)
Estimate the size of the data to insert based on the number of cells, and the expected num-
ber of points per cell. This method returns an estimate; use it in conjunction with the
Allocate() method to perform the initial memory allocation.

void InitTraversal()
Initialize the traversal of the connectivity array. Used in conjunction with GetNextCell().

nonEmpty = GetNextCell(npts, pts)
Get the next cell in the list, returning the number of points npts and an integer array of
point ids pts. If the list is empty, return 0; return non-zero otherwise.

size = GetSize()
Return the number of entries allocated in the list. 

numEntries = GetNumberOfConnectivityEntries()
Return the total number of data values added to the list thus far. 

GetCell(loc, npts, pts)
A special method to return the cell at location offset loc. This method is typically used
by unstructured data for random access into the cell array. Note that loc is not the same
as a cell id, it is a offset into the cell array. See GetCellLocation(id) on page 360 
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cellId = InsertNextCell(cell)
Insert a cell into the array. The parameter cell is of type vtkCell. Return the cell id.

cellId = InsertNextCell(npts, pts)
Insert a cell into the array by specifying the number of points npts and an integer list of
cell ids. Return the cell id.

cellId = InsertNextCell(pts)
Insert a cell into the array by supplying an id list (vtkIdList). Return the cell id.

cellId = InsertNextCell(npts)
Insert a cell into the cell array by specifying the number of cell points. This method is
generally followed by multiple invocations of InsertCellPoint() to define the cell points,
and possibly UpdateCellCount() to specify the final number of points.

InsertCellPoint(id)
Insert a cell point into the cell array. This method requires prior invocation of InsertNext-
Cell(npts).

UpdateCellCount(npts)
Specify the final number of points defining a cell after invoking InsertNextCell(npts) and
InsertCellPoint(). This method allows you to adjust the number of points after estimating
an initial point count with InsertNextCell(npts).

location = GetInsertLocation(npts)
Return the current insertion location in the cell array. The insertion location is used by
methods such as InsertNextCell(). The location is an offset into the cell array.

location = GetTraversalLocation(npts)
Return the current traversal location in the cell array. The insertion location is used by
methods such as GetCell(). The location is an offset into the cell array.

ReverseCell(loc)
Reverse the order of the connectivity list definition for the cell cellId. For example, if a
triangle is defined (p1,p2,p3), after invocation of this method it will be defined by the
points (p3,p2,p1).

ReplaceCell(loc, npts, pts)
Redefine the cell at offset location loc with a new connectivity list pts. Note that the
number of points npts must be equal to the original number of points in the cell array.

maxSize = GetMaxCellSize()
Return the maximum size, in terms of the number of points which definte it, of any cell in
the cell array connectivity list.

ptr = GetPointer()
Return an integer pointer to the cell array. The structure of the data in the returned data is
the number of points in a cell, followed by its connectivity list, which repeats for each
cell: (npts, p0, p1, p2,..., pnpts-1; npts, p0, p1, p2, ..., pnpts-1, ...).

ptr = WritePointer(ncells, size)
Allocate memory for a cell array with ncells cells and of size specified. The size
includes the connectivity entries as well as the count for each cell.
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Reset()
Restore the object to its initial state with the exception that previously allocated memory
is not released.

Squeeze()
Recover any unused space in the array.

SetNumberOfCells(numCells)
Set the number of cells in the array. This method does not allocate memory.

numCells = GetNumberOfCells()
Return the number of cells in the cell array.

SetTraversalLocation(loc)
Set the current traversal location within the array. The traversal location is an offset into
the cell array; it is used by the GetNextCell() method.

loc = GetTraversalLocation()
Get the current traversal location within the array.

SetCells(ncells, cells)
Define multiple cells (number given by ncells) by providing a connectivity list (cells,
a vtkIdTypeArray). The cells array is in the form (npts, p0, p1, …, p(npts-1)), repeated for
each cell. When this method is used, it overwrites anything that was previously stored in
this array, so anything referring to these cells becomes invalid. The traversal location is
set to the beginning of the list, and the insertion location is set to the end of the list.

DeepCopy(ca)
Copy the given vtkCellArray (ca) to this vtkCellArray, making a second copy of the data.

array = GetData()
Return a pointer to the underlying data array (a vtkIdTypeArray).

size = GetActualMemorySize()
Return the memory in kilobytes used by this cell array.

vtkCellTypes Methods

The class vtkCellTypes provides random access to cells. Instances of vtkCellTypes are always associ-
ated with at least one instance of vtkCellArray, which actually defines the connectivity list for the
cells. The information contained in the vtkCellTypes is (for each cell) the cell type specified (an inte-
ger flag as defined in Figure 19–20) and a location offset, which is an integer value representing an
offset into the associated vtkCellArray.

Allocate(size, extend)
Perform initial memory allocation prior to invoking the InsertNextCell() methods. The
parameter size is an estimate of the number of cells to be inserted; extend is the size by
which to extend the internal structure (if needed).

InsertCell(id, type, loc)
Given a cell type type and its location offset in an associated vtkCellArray, insert the cell
type at the location (id) specified. 
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cellId = InsertNextCell(type, loc)
Given a cell type type and its location offset in an associated vtkCellArray, insert the cell
type at the end of the array and return its cell id.

DeleteCell(cellId)
Delete a cell by marking its type as VTK_EMPTY_CELL.

numTypes = GetNumberOfTypes()
Return the number of entries (i.e., cell types) in the list.

IsType(type)
Return 1 if the type specified is contained in the vtkCellTypes array; return zero other-
wise.

cellId = InsertNextType(type)
Add the type specified to the end of the list, returning its cell id.

type = GetCellType(id)
Return the type of the cell give by id.

loc = GetCellLocation(id)
Get the offset location into an associated vtkCellArray instance for the cell given by id.

Squeeze()
Recover any unused space in the array.

Reset()
Restore the object to its initial state with the exception that previously allocated memory
is not released.

SetCellTypes(ncells, cellTypes, cellLocations)
Specify a group of cell types (number given by ncells) by providing a cell type list
(cellTypes, a vtkUnsignedCharArray) and a cell location list (cellLocations, a
vtkIntArray). When this method is used, it overwrites anything that was previously stored
in this array.

size = GetActualMemorySize()
Return the memory in kilobytes used by this instance of vtkCellTypes.

DeepCopy(ct)
Copy the vtkCellTypes instance (ct) to this vtkCellTypes instance, making a second copy
of the data.

vtkCellLinks Methods

The class vtkCellLinks provides topological information describing the use of points by cells. Think
of the vtkCellLinks object as a list of lists of cells using a particular point. (See Figure 16–3.) This
information is used to derive secondary topological information such as face, edge, and vertex neigh-
bors. Instances of vtkCellLinks are always associated with a vtkPoints instance, and access to the
cells is through vtkCellTypes and vtkCellArray objects.

link_s = GetLink(ptId)
Return a pointer to a structure containing the number of cells using the point pointId
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and a pointer to a list of cells using the point.

ncells = GetNcells(pointId)
Return the number of cells using the point pointId.

BuildLinks(dataset)
Given a pointer to a VTK dataset, build the link topological structure.

BuildLinks(dataset, connectivity)
Given a pointer to a VTK dataset and a vtkCellArray (connectivity), build the link
topological structure. Use the connectivity array to determine which cells reference
which points.

cellList = GetCells(ptId)
Return a pointer to the list of cells using the point ptId.

ptId = InsertNextPoint(numLinks)
Allocate (if necessary) and insert space for a link at the end of the cell links array. The
parameter numLinks is the initial size of the list.

InsertNextCellReference(ptId, cellId)
Insert a reference to the cell cellId for the point ptId. This implies that cellId uses
the point ptId in its definition.

DeletePoint(ptId)
Delete the point by removing all links from it to cells using it. This method does not actu-
ally remove the point from the vtkPoints object.

RemoveCellReference(cellId, ptId)
Remove all references to the cell cellId from the point ptId’s list of cells using it.

AddCellReference(cellId, ptId)
Add a reference to the cell cellId in the point ptId’s list of cells using it.

ResizeCellList(ptId, size)
Allocate (if necessary) and resize the list of cells using the point ptId to the size given.

Squeeze()
Recover any unused space in the array.

Reset()
Restore the object to its initial state with the exception that previously allocated memory
is not released.

Allocate(numLinks, extend)
Perform initial memory allocation. The number of links specified by numLinks will be
allocated. The extend parameter is not used.

size = GetActualMemorySize()
Return the memory in kilobytes used by this instance of vtkCellLinks.

DeepCopy(cl)
Copy the given vtkCellLinks (cl) to this vtkCellLinks, making a second copy of the data.
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16.11 Field and Attribute Data
The previous sections described how to create, access, and generate the structure of datasets, includ-
ing underlying objects such as vtkPoints and vtkCellArray. In this section we describe vtkFieldData
and vtkDataSetAttributes, two classes used to manage the processing of data values (scalars, vectors,
tensors, normals, and texture coordinates) and arbitrary information. Those classes provide a number
of convenience methods for copying, interpolating, and passing data from a filter’s input to its output.
vtkDataSets contain 3 instances of these classes, one field data to store non aligned values, and one
dataset attribute for the point and cell associated values.

vtkFieldData Methods
vtkFieldData is a container for arrays. As of VTK 4.0, vtkFieldData is the superclass of vtkDataSe-
tAttributes (and therefore of vtkPointData and vtkCellData which inherit from vtkDataSetAttributes).
Therefore, all fields and attributes (scalars, vectors, normals, tensors, and texture coordinates) are
stored in the field data and can be easily interchanged (see “Working With Field Data” on page 249for
more information on manipulating fields). It is now possible to associate a field (vtkDataArray) to,
for example, vtkPointData and label it as the active vector array afterwards.

PassData(fromData)
Copy the field data from the input (fromData) to the output. Reference counting is used,
and the copy flags (e.g., CopyFieldOn/Off) control which fields are copied or omitted.

num = GetNumberOfArrays()
Get the number of arrays currently in the field data.

array = GetArray(index)
Given an index, return the corresponding array.

array = GetArray(name)
Given a name, return the corresponding array.

array = GetArray(name, index)
Given a name, return the corresponding array. Return the index of the array in the index
parameter provided. This parameter is set to -1 if the array is not found.

val = HasArray(name)
If an array with the given name exists in this vtkFieldData, return 1. Otherwise return 0.

name = GetArrayName(index)
Return the name of the array at the given index.

AddArray(array)
Add a field (vtkDataArray).

RemoveArray(name)
Remove the array with the given name.

DeepCopy(data)
Copy the input data (a vtkFieldData). Performs a deep copy, which means duplicating
allocated memory.

ShallowCopy(data)
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Copy the input data (a vtkFieldData). Performs a shallow copy, which means reference
counting underlying data objects.

Squeeze()
Recover any extra space in each data array.

mtime = GetMTime()
Return the modified time of this object by examining its own modified time as well as the
modified time of the associated fields (arrays).

CopyFieldOn/Off(name)
These methods are used to control the copying and interpolation of individual fields from
the input to the output. If off, the field with the given name is not copied or interpolated.

CopyAllOn/Off()
Control whether all of the arrays in this vtkFieldData are copied and interpolated from the
input to the output. If off, no arrays will be copied or interpolated; if on, all will be. The
flags set by CopyFieldOn/Off override this.

Initialize()
Set this instance of vtkFieldData to its initial state, including releasing allocated memory.

Allocate(size, extend)
Allocate memory for each vtkDataArray in this instance of vtkFieldData. The size and
extend parameters are passed to each vtkDataArray.

CopyStructure(fd)
Set the structure of this instance of vtkFieldData from the one given (fd). Any existing
data arrays are removed. The arrays from the input vtkFieldData will be created in this
vtkFieldData, and they will have the same types, names, and widths, but they will contain
no data.

AllocateArrays(num)
Specify the number of data arrays contained in this vtkFieldData.

Reset()
Reset each data array in this vtkFieldData, but do not release memory.

size = GetActualMemorySize()
Return the amount of memory in kilobytes used by this vtkFieldData.

GetField(ptIds, f)
Fill the provided instance of vtkFieldData (f) with the tuples at the ids specified in ptIds
(a vtkIdList). The provided vtkFieldData should have the same number and type of vtk-
DataArrays as this one.

numComps = GetNumberOfComponents()
Return the number of components in this vtkFieldData. This is determined by summing
the number of components in each non-NULL data array in this vtkFieldData.

arrayNum = GetArrayContainingComponent(N, arrayComp)
Return the index of the array containing the N’th global component of this vtkFieldData.
(Return -1 if this vtkFieldData does not contain that component.) In the arrayComp
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parameter, returns the particular component of the data array which matches the
requested global component.

numTups = GetNumberOfTuples()
Return the number of tuples in this vtkFieldData. (The number of tuples in the first data
array is returned.)

SetNumberOfTuples(num)
Set the number of tuples (num) of each data array in this vtkFieldData.

tuple = GetTuple(index)
Return a tuple consisting of a concatenation of the specified tuple in each data array con-
tained in this vtkFieldData. The returned array is of type double, so all the data values are
converted to double before being returned.

GetTuple(index, tuple)
This method provides the same functionality as the one above, but the tuple is returned in
a user-provided data array. Be sure that the provided array has enough memory allocated.

SetTuple(index, tuple)
Set the tuple at the specified index. No range checking is performed.

InsertTuple(index, tuple)
Insert the tuple at the specified index. Range checking is performed, and memory is allo-
cated as necessary.

id = InsertNextTuple(tuple)
Insert the tuple at the end of this vtkFieldData. Range checking is performed, and mem-
ory is allocated as necessary. The id of this tuple is returned.

comp = GetComponent(i, j)
Return the value (as a double) at the ith tuple and jth component.

SetComponent(i, j, comp)
Set the value at the ith tuple and jth component. Range checking is not performed.

InsertComponent(i, j, comp)
Insert the value at the ith tuple and jth component. Range checking is performed, and
memory is allocated as necessary.

vtkDataSetAttributes Methods
Recall that there are two types of attributes: those associated with the points of the dataset (vtkPoint-
Data) and those associated with the cells of the dataset (vtkCellData). Both of these classes are sub-
classes of vtkDataSetAttributes (which is a subclass of vtkFieldData) and have nearly identical
interfaces. The following methods are defined by vtkDataSetAttributes and are common to both vtk-
PointData and vtkCellData. Remember: all datasets have attribute data (both cell and point), so all
datasets' attribute data respond to these methods.

PassData(fromData)
Copy the attribute data from the input (fromData) to the output attribute data. Reference
counting is used, and the copy flags (e.g., CopyScalars) are used to control which attri-
bute data is copied.
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CopyAllocate(fromData, size, extend)
Allocate memory and initialize the copy process. The copy process involves copying data
on an item by item basis (e.g., point-by-point or cell-by-cell). The initial allocated size of
each vtkAttributeData object is given by size; if the objects must be dynamically resized
during the copy process, then the objects are extended by extend.

CopyData(fromData, fromId, toId)
Copy the input attribute data (fromData) at location fromId to location toId in the output
attribute data.

InterpolateAllocate(fromData, size, extend)
Allocate memory and initialize the interpolation process. The interpolation process
involves interpolating data across a cell or cell topological feature (e.g., an edge). The ini-
tial allocated size of each vtkAttributeData object is given by size; if the objects must be
dynamically resized during the interpolate process, then the objects are extended by
extend.

InterpolatePoint(fromData, toId, Ids, weights)
Interpolate from the dataset attributes given (fromData) to the point specified (toId).
The interpolation is performed by summing the product of the attribute values given at
each point in the list Ids with the interpolation weights provided.

InterpolateEdge(fromData, toId, id1, id2, t)
Similar to the previous method, except that the interpolation is performed between id1
and id2 using the parametric coordinate t.

DeepCopy(data)
Copy the input data (a vtkDataSetAttributes). Performs a deep copy, which means dupli-
cating allocated memory.

ShallowCopy(data)
Copy the input data (a vtkDataSetAttributes). Performs a shallow copy, which means ref-
erence counting underlying data objects.

SetScalars(scalars)
Specify that the provided vtkDataArray is to be considered the active scalar array. Many
filters operate on the active array unless directed otherwise.

SetActiveScalars(name)
Specify that the array with the given name is to be the scalar attribute data.

scalars = GetScalars()
Retrieve the active scalar (vtkDataArray) attribute data.

scalars = GetScalars(name)
Get the array with the specified name. If name is NULL, or no array matches that name,
then the active scalar attribute data array is returned. 

SetVectors(vectors)
Specify that the provided vtkDataArray is to be considered the active vector array. Many
filters operate on the active array unless directed otherwise.

SetActiveVectors(name)
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Set the active array with the given name to be the vector attribute data.

vectors = GetVectors()
Retrieve the active vector (vtkDataArray) attribute data.

vectors = GetVectors(name)
Get the array with the specified name. If name is NULL, or no array matches that name,
then the vector attribute data array is returned. 

SetTensors(tensors)
Specify that the provided vtkDataArray is to be considered the active tensor array. Many
filters operate on the active array unless directed otherwise. 

SetActiveTensors(name)
Set the active array with the given name to be the tensor attribute data.

tensors = GetTensors()
Retrieve the active tensor (vtkDataArray) attribute data.

tensors = GetTensors(name)
Get the array with the specified name. If name is NULL, or no array matches that name,
then the tensor attribute data array is returned. 

SetNormals(normals)
Specify that the provided vtkDataArray is to be considered the active normal array. Many
filters operate on the active array unless directed otherwise. 

SetActiveNormals(name)
Set the active array with the given name to be the normal attribute data.

normals = GetNormals()
Retrieve the active normal (vtkDataArray) attribute data.

normals = GetNormals(name)
Get the array with the specified name. If name is NULL, or no array matches that name,
then the normal attribute data array is returned. 

SetTCoords(tcoords)
Specify that the provided vtkDataArray is to be considered the active texture coordinate
array. Many filters operate on the active array unless directed otherwise. 

SetActiveTCoords(name)
Set the active array with the given name to be the texture coordinate attribute data.

tcoords = GetTCoords()
Retrieve the active texture coordinate (vtkDataArray) attribute data.

tcoords = GetTCoords(name)
Get the array with the specified name. If name is NULL, or no array matches that name,
then the texture coordinate attribute data array is returned. 

SetGlobalIds(GlobalIds)
Global Ids are used to assign unique names to every cell and/or point. Global Ids are pre-
served by filters whenever possible, and never interpolated, because they represent identi-
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ties instead of numerical quantities. Any two cells (or points) that share a global id are
considered to be the same thing. Specify that the provided vtkDataArray is to be consid-
ered the active global id array. 

SetActiveGlobalIds(name)
Specify that the array with the given name is to be the global id attribute data.

globalids = GetGlobalIds()
Retrieve the active global id (vtkDataArray) attribute data.

globalids = GetGlobalIds(name)
Get the array with the specified name. If name is NULL, or no array matches that name,
then the active global id attribute data array is returned. 

SetPedigreeIds(PedigreeIds)
Pedigree Ids, like global ids are used assign names to every cell and/or point. Pedigree ids
are treated similarly by filters in the pipeline, but instead of being unique - pedigree ids
are used to maintain ancestry information. With pedigree ids, an output cell (or point) can
be traced back to the original cell (or point) that contributed to it. Specify that the pro-
vided vtkDataArray is to be considered the active pedigree id array. 

SetActivePedigreeIds(name)
Specify that the array with the given name is to be the pedigree id attribute data.

pedigreeids = GetPedigreeIds()
Retrieve the active pedigree id (vtkDataArray) attribute data.

pedigreeids = GetPedigreeIds(name)
Get the array with the specified name. If name is NULL, or no array matches that name,
then the active pedigree id attribute data array is returned. 

CopyScalarsOn/Off()
These methods are used to control the copying and interpolation of scalar data from the
input to the output. If off, scalar data is not copied or interpolated.

CopyVectorsOn/Off()
These methods are used to control the copying and interpolation of vector data from the
input to the output. If off, vector data is not copied or interpolated.

CopyTensorsOn/Off()
These methods are used to control the copying and interpolation of tensor data from the
input to the output. If off, tensor data is not copied or interpolated.

CopyNormalsOn/Off()
These methods are used to control the copying and interpolation of normal data from the
input to the output. If off, normal data is not copied or interpolated.

CopyTCoordsOn/Off()
These methods are used to control the copying and interpolation of texture coordinate
data from the input to the output. If off, texture coordinate data is not copied or interpo-
lated.

CopyGlobalIdsOn/Off()
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These methods are used to control the copying and interpolation of global id data from
the input to the output. If off, global id data is not copied or interpolated.

CopyPedigreeIdsOn/Off()
These methods are used to control the copying and interpolation of pedigree id data from
the input to the output. If off, pedigree id data is not copied or interpolated.

CopyAllOn/Off()
These convenience methods set all the copy flags on or off at the same time.

CopyStructuredData(inData, inExt, outExt)
Copy the attribute data from the input vtkDataSetAttributes (inData) for the points/cells
in the given input extent (inExt) to this vtkDataSetAttributes for the points/cells in the
given output extent (outExt).

InterpolateTime(fromData1, fromData2, id, t)
For the given point or cell id (id), interpolate between the two dataset attributes given
(fromData1 and fromData2) at the specified time t (ranging between 0 and 1). Be sure
that the InterpolateAllocate method has been invoked before calling this method.

idx = SetActiveAttribute(name, attributeType)
Set the array with the given name to be the specified active attribute (scalars = 0, vectors
= 1, normals = 2, texture coordinates = 3, tensors = 4, global ids=5, pedigree ids=6). The
index of the array with the given name is returned. If no array exists in this vtkDataSetAt-
tributes with the specified name, -1 is returned.

idx = SetActiveAttribute(index, attributeType)
Similar to the above method, but the array is specified by index rather than by name.

SetCopyAttribute(index, value)
Specify whether to copy the data set attribute indicated by the index. A value of 0 indi-
cates that the array will not be copied; a value of 1 indicates that it will be. The indices
corresponding to the different attribute types are given in the description of the first
SetActiveAttribute method above.

CopyTuple(fromData, toData, fromId, toId)
Copy the tuple at the fromId index in the fromData data array to the tuple at the toId
index in the toData data array.

GetAttributeIndices(indexArray)
Fill the user-provided index array (an array of int) with the indices of the arrays corre-
sponding to scalars, vectors, etc. The indices corresponding to the different attribute types
(used for indexing into the provided array) are given in the description of the first SetAc-
tiveAttribute method above.

attr = IsArrayAnAttribute(index)
Determine whether the data array at the specified index is a data set attribute. If it is,
return an index indicating which attribute it is (scalars = 0, vectors = 1, normals = 2, tex-
ture coordinates = 3, tensors = 4).

array = GetAttribute(attributeType)
Return the data array corresponding to the given attribute type.
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RemoveArray(name)
Remove the array with the given name from the list of arrays in this vtkDataSetAttrib-
utes.

attr = GetAttributeTypeAsString(attributeType)
Given an index corresponding to an attribute type, return the attribute type as a string.

16.12 Selections
A vtkSelection provides ways to represent a subset of a data object. These include lists of indices or
identifiers, attribute value ranges, locations, frustums, or blocks. A selection may be applied to a par-
ticular data object to extract its selected data, or may be modified through filters to expand, reduce, or
otherwise change the nature of the selection. Selections are generated by classes such as vtkSelection-
Source, which produces a selection based on filter parameters, and vtkHardwareSelector, which uses
graphics hardware to select items rendered within a rectangular region of the screen.

vtkSelection is simply a container of vtkSelectionNode objects. Each selection node contains
all the information about its part of the selection. This two level structure allows a single selection to
combine information from different parts of a data object, such as selection on both points and cells,
and allows a selection to maintain selection information on different blocks of a multi-block dataset.

vtkSelection Methods

n = GetNumberOfNodes()
Return the number of vtkSelectionNode objects in the selection.

node = GetNode(i)
Return the i-th vtkSelectionNode.

AddNode(node)
Append the vtkSelectionNode to the end of the list of nodes.

RemoveNode(i)
Remove the i-th vtkSelectionNode.

RemoveNode(node)
Remove the specified vtkSelectionNode if it exists in the selection.

RemoveAllNodes()
Remove all vtkSelectionNode objects, leaving an empty selection.

Union(sel)
Union this selection with the specified vtkSelection. Attempts to append to existing nodes
if properties of the nodes match exactly. Otherwise, it adds new selection nodes to the
selection.

Union(node)
Union this selection with the specified vtkSelectionNode. Attempts to append to an exist-
ing node if properties of the node match exactly. Otherwise, it adds a new selection node
to the selection.
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vtkSelectionNode Methods
Fundamentally, a vtkSelectionNode is simply a collection of arrays (normally a single array). Addi-
tional properties of the selection node indicate exactly how the values in the arrays should be inter-
preted.

SetSelectionList(arr)
Set the array that will be used as the list of selected items, or interpreted in other ways
based on the content type.

arr = GetSelectionList()
Return the selection list.

SetSelectionData(data)
Set a collection of arrays for the selection node stored in a vtkDataSetAttributes instance.
The first array is interpreted in the same way that a normal selection list's single array is.
For VALUES type selections only, the additional arrays are used as further qualifiers so
that more than one data array can be matched with simultaneously.

data = GetSelectionData()
Return the collection of arrays for the selection node as a vtkDataSetAttributes instance.

SetContentType(type)
Set the content type to one of the constants SELECTIONS, GLOBALIDS, PEDIGREE-
IDS, VALUES, INDICES, FRUSTUM, LOCATIONS, THRESHOLDS, BLOCKS
defined in vtkSelectionNode. The content type defines how the selection list is to be
interpreted. The meaning of each type is described in [ref: Selection section].

type = GetContentType()
Return the content type.

SetFieldType(type)
Set the field type to one of the constants CELL, POINT, FIELD, VERTEX, EDGE, ROW
defined in vtkSelectionNode. This determines what parts of a data object the selection
refers to (points or cells in vtkDataSet subclasses, field data of vtkDataObject, vertices or
edges of vtkGraph, or rows of a vtkTable).

type = GetFieldType()
Return the field type.

UnionSelectionList(node)
Merge the selection list of another vtkSelectionNode into this node. This assumes that
both nodes have identical properties.

vtkSelectionNode Property Methods

info = GetProperties()
Return the properties of the selection node stored in a vtkInformation general purpose
container object.

eq = EqualProperties(node, full)
Return true if all the properties in this node are also set to the same values in the node
given as an argument. The second argument is a flag indicating whether to also fully
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check properties in the opposite direction before returning true (i.e. that this node con-
tains all properties of the node passed as an argument).

GetProperties()->Set(vtkSelectionNode:: INVERSE(), inv)
Whether the selection should be inverted, in which case the selection defines what is not
of interest rather than what is.

GetProperties()->Set(vtkSelectionNode::EPSILON(), eps)
For content type LOCATION, this is a tolerance (geometric distance) within which items
are accepted and outside of which they are rejected.

GetProperties()->Set(vtkSelectionNode:: CONTAINING_CELLS(), c)
This flag tells the extraction filter, when the field type is POINT, that it should also
extract the cells that contain any of the extracted points.

GetProperties()->Set(vtkSelectionNode:: PIXEL_COUNT(), count)
A helper for screen space selection, this is the number of pixels covered by the actor
whose cells are listed in the selection node.

GetProperties()->Set(vtkSelectionNode:: SOURCE(), alg)
Pointer to the data or algorithm the selection belongs to.

GetProperties()->Set(vtkSelectionNode:: SOURCE_ID(), id)
ID of the data or algorithm the selection belongs to. What the ID means is application
specific.

GetProperties()->Set(vtkSelectionNode:: PROP(), obj)
Pointer to the prop the selection belongs to.

GetProperties()->Set(vtkSelectionNode:: PROP_ID(), id)
ID of the prop the selection belongs to. What the ID means is application specific.

GetProperties()->Set(vtkSelectionNode:: PROCESS_ID(), id)
Process ID the selection refers to.

GetProperties()->Set(vtkSelectionNode:: COMPOSITE_INDEX(), i)
Used to identify a node in composite datasets.

GetProperties()->Set(vtkSelectionNode:: HIERARCHICAL_LEVEL(), level)
Used to identify the level of a dataset in a hiererchical box (AMR) dataset.

GetProperties()->Set(vtkSelectionNode:: HIERARCHICAL_INDEX(), i)
Used to identify the index of a dataset in a hiererchical box (AMR) dataset.

16.13 Graphs
The hierarchy for graph classes is shown in [Figure graph-hierachy]. At the top level, we distinguish
between graphs whose edges have inherent order from source to target (directed graphs) and graphs
whose edges do not indicate direction (undirected graphs). The directed graph subclasses are natu-
rally structured by specialization. A directed acyclic graph (i.e. a graph with no paths that lead back to
the same place) is a subset of the class of all directed graphs. A vtkTree further restricts this by
enforcing a hierarchy: every vertex but the root must have exactly one parent (incoming edge). The
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mutable classes are used to create or modify graphs. The structure of a graph may be copied into any
other graph instance, if it first passes a compatibility test.

This hierarchy gives us several advantages. Filters that operate on vtkGraph will work for all
graph types. So one can send a vtkTree or a vtkDirectedAcyclicGraph into a filter that takes the more
general vtkGraph as an input type (such as vtkVertexDegree). The subclasses also enable filters to be
specific about input type: if a filter requires a tree, that can be specified as the input type. The separate
mutable classes allow VTK to enforce that all instances of graph data structures are valid at all times.
If vtkGraph itself was mutable, it would have methods for adding edges and vertices. Due to inheri-
tance, this method would exist in all subclasses, including vtkTree. The result would be that vtkTree
could at times hold a structure that is not a valid tree. It would be prohibitively expensive in time and
complexity to check for a valid tree after every edge or vertex addition.

An additional feature of the graph data structures is copy-on-write. Since all graphs share the
same internal representation, multiple objects, even those of different types, may share the same
structure. A deep copy of the structure is only made if the user modifies a graph whose structure is
shared with other graphs. To the caller, the graph instances behave as though they were independent
of other graphs, while internally memory usage is optimized.

The user may assign an arbitrary number of arrays to the vertices and edges of the graph, in
much the same way that attributes are assigned to points and cells in vtkDataSet subclasses. These
attributes may be used in various ways to alter the visualization of the graph, i.e. using them to color
or label the graph.

vtkGraph Methods

vtkGraph is the superclass of all graph types. Since it is not mutable, it only provides read access to
the structure of the graph.

data = GetVertexData()
Return the vtkDataSetAttributes structure containing all vertex attributes.

data = GetEdgeData()
Return the vtkDataSetAttributes structure containing all edge attributes.

pt = GetPoint(id)
Return the location of a particular vertex as a pointer to an array containing x-y-z coordi-
nates.

GetPoint(id, pt)
An alternative form of the previous method. The coordinates are set in the variable passed
as the second argument.

pts = GetPoints()
Return the locations of the vertices as a vtkPoints object.

SetPoints(pts)
Set the vertex locations.

ComputeBounds()
Compute the current bounding box of the graph.

bds = GetBounds()
Return the graph bounds as a six component array with values x_min, x_max, y_min,
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y_max, z_min, z_max.

GetBounds(bds)
An alternate form of the previous method. The bounds are set the variable passed as an
argument.

GetOutEdges(v, it)
Initialize an iterator of type vtkOutEdgeIterator to iterate over all outgoing edges of ver-
tex v. For an undirected graph, this returns all incident edges.

deg = GetDegree(v)
Return the degree of a vertex, which is the total number of edges connected to it.

deg = GetOutDegree(v)
Return the number of outgoing edges connected to a vertex. In an undirected graph, this is
the total number of edges connected to it.

edge = GetOutEdge(v, i)
Return the i-th outgoing edge of a vertex as a vtkOutEdgeType structure.

GetOutEdge(v, i, edge)
This is an alternate form of the previous method, which will work for wrapped languages.
Return the outgoing edge in the variable passed as the third argument, which is of type
vtkGraphEdge.

GetInEdges(v, it)
Initialize an iterator of type vtkInEdgeIterator to iterate over all incoming edges of vertex
v. For an undirected graph, this returns all incident edges.

deg = GetInDegree(v)
Return the number of incoming edges connected to a vertex. In an undirected graph, this
is the total number of edges connected to it.

edge = GetInEdge(v, i)
Return the i-th incoming edge of a vertex as a vtkOutEdgeType structure.

GetInEdge(v, i, edge)
This is an alternate form of the previous method, which will work for wrapped languages.
Return the incoming edge in the variable passed as the third argument, which is of type
vtkGraphEdge.

GetAdjacentVertices(v, it)
Initialize an iterator of type vtkAdjacentVertexIterator to iterate over all outgoing vertices
of a vertex. For an undirected graph, this returns all adjacent vertices.

GetEdges(it)
Initializes an iterator of type vtkEdgeListIterator to iterate over all edges in the graph.

m = GetNumberOfEdges()
Return the number of edges in the graph.

GetVertices(it)
Initializes an iterator of type vtkVertexListIterator to iterate over all vertices in the graph.
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n = GetNumberOfVertices()
Return the number of vertices in the graph.

SetDistributedGraphHelper(helper)
Set the distributed graph helper for the graph that makes the graph capable of being
spread over multiple processors. Helper's type is vtkDistributedGraphHelper. The current
implementation is vtkPBGLDistribtuedGraphHelper, which implements distributed
graphs using the Parallel Boost Graph Library. See the documentation of these classes for
details on using distributed graphs.

helper = GetDistributedGraphHelper()
Return the distributed graph helper.

v = FindVertex(pedigree_id)
Return the vertex whose pedigree ID matches the argument. The ID is passed as a
vtkVariant which can take any type that that can be stored in a VTK array. Return -1 if no
vertex with that ID is found.

success = CheckedShallowCopy(g)
Perform a shallow copy of the graph g if the graph meets the constraints of the graph, oth-
erwise just returns false. For vtkGraph, this check always succeeds, but subclasses over-
ride this behavior to ensure that the incoming graph passes additional tests.

success = CheckedDeepCopy(g)
Perform a deep copy of the graph g if the graph meets the constraints of the graph, other-
wise just returns false. For vtkGraph, this check always succeeds, but subclasses override
this behavior to ensure that the incoming graph passes additional tests.

ReorderOutVertices(v, list)
Reorder the outgoing vertices of a vertex according to a list stored in a vtkIdTypeArray.
This does not change the topology of the graph, just the internal ordering in the data
structure.

v = GetSourceVertex(e)
Retrieve the source vertex index given an edge index. The first time this or GetTargetVer-
tex() is called, the graph will build a mapping array from edge index to source and target
vertex for all edges. If you have access to an edge type such as vtkOutEdgeType,
vtkInEdgeType, vtkEdgeType, or vtkGraphEdge, these should be used in preference to
this method, which will consume additional memory.

v = GetTargetVertex(e)
Similar to GetSourceVertex(), but retrieves the source vertex of the edge.

SetEdgePoints(e, npts, pts)
Set the points for routing edge e by providing a number of points and a 3-x-npts array
containing the x, y, z coodinates of each point.

GetEdgePoints(e, npts, pts)
Get the points for routing edge e by setting the number of points and array of points
passed as the second and third arguments.

n = GetNumberOfEdgePoints(e)
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Return the number of edge points along an edge.

pt = GetEdgePoint(e, i)
Get the i-th point along an edge's path as a pointer to x, y, z coordinate values.

ClearEdgePoints(e)
Clear the edge points associated with an edge.

SetEdgePoint(e, i, pt)
Set the i-th point along an edge's path as an array holding x, y, z coordinate values.

SetEdgePoint(e, i, x, y, z)
An alternate form of the previous method that passes the x, y, z coordinates as separate
arguments.

AddEdgePoint(e, pt)
Add a point to the end of an edge's path as an array holding x, y, z coordinate values.

AddEdgePoint(e, x, y, z)
An alternate form of the previous method that passes the x, y, z coordinates as separate
arguments.

vtkDirectedGraph

vtkDirectedGraph is the superclass of all graphs that impose ordering on edges, so the edge (A,B) is
treated as distinct from (B,A). When copying a graph with methods like CheckedShallowCopy(), this
type ensures that the graph structure is a valid directed graph. There are no additional public methods.

vtkUndirectedGraph 

vtkUndirectedGraph is the superclass of all graphs that do not impose ordering on edges, so the edge
(A,B) is equivalent to an edge (B,A). When copying a graph with methods like CheckedShallow-
Copy(), this type ensures that the graph structure is a valid undirected graph. There are no additional
public methods.

vtkMutableDirectedGraph and vtkMutableUndirectedGraph Methods

Mutable graph classes are the only graph classes whose structure may be edited programmatically.
This refers only to the structure of the graph, since it is possible to add and remove vertex and edge
attributes, including vertex and edge locations, in all graph classes.

v = AddVertex()
Add a vertex to the graph and return its index.

v = AddVertex(properties)
Add a vertex to the graph with properties stored in a vtkVariantArray and return its index.
The order of the properties must match the order that arrays were added to the graph's
vertex data.

v = AddVertex(pedigree_id)
Add a vertex to the graph with the specified pedigree id stored in a vtkVariant and return
its index.
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e = AddEdge(u, v)
Add an edge from vertex u to vertex v and return the edge as a vtkEdgeType structure.

edge = AddGraphEdge(u, v)
Add an edge from vertex u to vertex v and return the edge as a vtkGraphEdge object. This
method provides the functionality of AddEdge(u, v) to wrapped languages.

e = AddEdge(u, v, properties)
Add an edge from vertex u to vertex v with edge properties stored in a vtkVariantArray,
and return the edge as a vtkEdgeType structure. The order of the properties must match
the order that arrays were added to the graph's edge data.

e = AddEdge(u_pedigree, v, properties)
Functions just like AddEdge(u, v, properties) except that the first vertex is specified by its
pedigree ID.

e = AddEdge(u, v_pedigree, properties)
Functions just like AddEdge(u, v, properties) except that the second vertex is specified by
its pedigree ID.

e = AddEdge(u_pedigree, v_pedigree, properties)
Functions just like AddEdge(u, v, properties) except that the both vertices are specified
by their pedigree IDs.

child = AddChild(parent)
Available in vtkMutableDirectedGraph only. Add an outgoing edge from the parent ver-
tex to a new child vertex, and return the new child vertex index. This is useful when
building trees with vtkMutableDirectedGraph.

child = AddChild(parent, properties)
Available in vtkMutableDirectedGraph only. Add an outgoing edge from the parent ver-
tex to a new child vertex  with properties stored in a vtkVariantArray, and return the new
child vertex index. The order of the properties must match the order that arrays were
added to the graph's vertex data.

In addition to the methods mentioned above, vtkMutableDirectedGraph and
vtkMutableUndirectedGraph have a set of similar methods designed to support
distributed graphs. These methods are:

LazyAddVertex()
LazyAddVertex(properties)
LazyAddVertex(pedigree_id)
LazyAddEdge(u, v, properties)
LazyAddEdge(u_pedigree, v, properties)
LazyAddEdge (u, v_pedigree, properties)
LazyAddEdge (u_pedigree, v_pedigree, properties)

These methods are only valid on a distributed graph (i.e. a graph whose distributed helper is
non-null). All these methods work just like their counterparts without the prepended "Lazy", except
that the addition is performed asynchronously if the new vertex or edge will be owned by a remote
processor. Calling Synchronize() on the distributed helper will flush all pending edits. In the case of
adding an edge where both endpoints are nonlocal, this may require two Synchronize() calls.
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vtkDirectedAcyclicGraph

vtkDirectedAcyclicGraph is a constrained directed graph where edges do not form a directed cycle. A
cycle is a sequence of adjacent edges that forms a full loop in the graph. A directed acyclic graph
defines a partial ordering over a set of elements. Other than the added constraint in CheckedShallow-
Copy(), this class is identical to vtkDirectedGraph.

To generate a vtkDirectedAcyclicGraph, first create an instance of vtkMutableDirectedGraph.
After adding the appropriate vertices and edges to create the tree, call CheckedShallowCopy() on an
instance of vtkDirectedAcyclicGraph, passing the mutable graph as an argument. This method will do
one of two things. If the graph is a valid directed acyclic graph, it will set the structure via a shallow
copy and return true. If the graph is found to contain a cycle, the method will return false. There are
no additional public methods.

vtkTree

A tree is a special type of directed acyclic graph that is connected (i.e. has no disjoint pieces), and
each vertex has exactly one incoming edge, except for one vertex with no incoming edges which is
called the root of the tree. The result of these constraints is that a tree is a hierarchy with the root ver-
tex at the top, and edges directed downward toward the lower levels of the tree. Other than the added
constraints in CheckedShallowCopy(), this class is identical to vtkDirectedGraph.

To generate a vtkTree, first create an instance of vtkMutableDirectedGraph. After adding the
appropriate vertices and edges to create the tree, call CheckedShallowCopy() on an instance of vtk-
Tree, passing the mutable graph as an argument. This method will do one of two things. If the tree is
valid, it will set the structure via a shallow copy and return true. If it is not a valid tree, it will return
false. There are no additional public methods.

16.14 Tables
vtkTable is simply a collection of columns stored in arrays. Each column is accessed by name, and
columns may be added, altered, or removed by algorithms. As part of the support for vtkTable the
toolkit now includes discriminated-union (vtkVariant, vtkVariantArray) and string (vtkStdString, and
vtkStringArray) types in addition to the numeric types already in VTK.

vtkTable Methods

Dump(width)
Write the table to standard output using the specified column width.

data = GetRowData()
Return the columns of the table as a vtkDataSetAttributes object.

SetRowData(data)
Set the full data in the table from a vtkDataSetAttributes object.

n = GetNumberOfRows()
The number of rows in the table.

row = GetRow(i)
Retrieve the i-th row of the table as a vtkVariantArray.
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GetRow(i, row)
Retrieve the i-th row of the table into the vtkVariantArray variable specified as the second
argument.

SetRow(i, row)
Set the i-th row of the table from a vtkVariantArray.

i = InsertNextBlankRow()
Insert a new row with empty values (numeric values of zero and/or empty strings) at the
bottom of the table and return the index of the new row.

i = InsertNextRow(row)
Insert a new row with values from a vtkVariantArray to the bottom of the table and return
the index of the new row.

RemoveRow(i)
Remove the i-th row from the table. Rows below the deleted row are shifted up.

m = GetNumberOfColumns()
The number of columns in the table.

name = GetColumnName(j)
Return the name of the j-th column.

arr = GetColumnByName(name)
Return the column with a specified name as a vtkAbstractArray, or null if none exists.

arr = GetColumn(j)
Return the j-th column as a vtkAbstractArray.

AddColumn(arr)
Add an column to the table from a vtkAbstractArray.

RemoveColumnByName(name)
Remove the column with a particular name if it exists.

RemoveColumn(j)
Remove the j-th column from the table. Columns to the right of the deleted column are
shifted left.

val = GetValue(i, j)
Return the value at row i and column j as a vtkVariant.

val = GetValueByName(i, name)
Return the value at a row i and column name as a vtkVariant.

SetValue(i, j, val)
Set the value at a row i and column j as a vtkVariant.

SetValueByName(i, name, val)
Set the value at a row i and column name as a vtkVariant.
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16.15 Multi-Dimensional Arrays
The new vtkArray class forms the base of a hierarchy of sparse and dense arrays that can store data
with arbitrary dimensionality.  Unlike vtkAbstractArray derivatives that are limited to storing a one-
dimension array of tuples, vtkArray dimension can store vector (one-dimension), matrix (two-dimen-
sions), or tensor (three-or-more dimensions) data using a variety of storage schemes.  VTK currently
provides dense and sparse-coordinate storage for multi-dimensional arrays.  Future versions of VTK
may use vtkArray to store field and attribute data.

Please note that you must set VTK_USE_N_WAY_ARRAYS "ON" when building VTK, to
enable the multi-dimensional array classes. Currently, the multi-dimensional array classes are not
wrapped for use in languages other than C++.

vtkArray Methods

vtkArray is a pure-virtual base class that declares methods common to all multi-dimensional arrays,
regardless of how they store their data or what type of value they store.  Of particular importance are
functions to resize arrays that specify both the number of dimensions in the array, and the size of the
array along each dimension.

extents = GetExtents()
Returns the extents (the number of dimensions and size along each dimension) of the
array.

dimensions = GetDimensions()
Returns the number of dimensions stored in the array. Note that this is the same as calling
GetExtents().GetDimensions().

size = GetSize()
Returns the number of values stored in the array. Note that this is the same as calling
GetExtents().GetSize(), and represents the maximum number of values that could ever be
stored using the current extents. This is equal to the number of values stored in a dense
array, and is greater-than-or-equal to the number of values stored in a sparse array.

size = GetNonNullSize()
Returns the number of non-null values stored in the array. Note that this value will equal
GetSize() for dense arrays, and will be less-than-or-equal to GetSize() for sparse arrays. 

SetDimensionLabel(i, label)
Sets the label for the i-th array dimension.

label = GetDimensionLabel(i)
Returns the label for the i-th array dimension. 

GetCoordinatesN(n, coordinates)
Returns the coordinates of the n-th value in the array, where n is in the range [0, GetNon-
NullSize()). Note that the order in which coordinates are visited is undefined, but is guar-
anteed to match the order in which values are visited using other index-based array value
accessors. 

value = GetVariantValueN(n)
Returns the n-th value stored in the array, where n is in the range [0, GetNonNullSize()).
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This is useful for efficiently visiting every value in the array. Note that the order in which
values are visited is undefined, but is guaranteed to match the order used by vtkAr-
ray::GetCoordinatesN(). 

SetVariantValueN(n, value)
Overwrites the n-th value stored in the array, where n is in the range [0, GetNonNull-
Size()). This is useful for efficiently visiting every value in the array. Note that the order
in which values are visited is undefined, but is guaranteed to match the order used by
vtkArray::GetCoordinatesN(). 

array = DeepCopy()
Returns a new array that is a deep copy of this array. 

Resize(i)
Resize(i, j)
Resize(i, j, k)
Resize(extents)

Resizes the array to the given extents (number of dimensions and size of each dimen-
sion). Note that concrete implementations of vtkArray may place constraints on the the
extents that they will store, so you cannot assume that GetExtents() will always return the
same value passed to Resize(). The contents of the array are undefined after calling
Resize() - you should initialize its contents accordingly. In particular, dimension-labels
will be undefined, dense array values will be undefined, and sparse arrays will be empty.

value = GetVariantValue(i)
value = GetVariantValue(i, j)
value = GetVariantValue(i, j, k)
value = GetVariantValue(coordinates)

Returns the value stored in the array at the given coordinates. Note, the number of dimen-
sions in the supplied coordinates must match the number of dimensions in the array.

SetVariantValue(i, value)
SetVariantValue(i, j, value)
SetVariantValue(i, j, k, value)
SetVariantValue(coordinates, value)

Overwrites the value stored in the array at the given coordinates. Note, the number of
dimensions in the supplied coordinates must match the number of dimensions in the
array.

CopyValue(source, source_coordinates, target_coordinates)
CopyValue(source, source_index, target_coordinates)
CopyValue(source, source_coordinates, target_index)

Where coordinates are provided, they must match the number of dimensions in the corre-
sponding array. Overwrites a value with a value retrieved from another array. Both arrays
must store the same data types. 

vtkTypedArray Methods
vtkTypedArray provides a type-specific interface for retrieving and updating data in an arbitrary-
dimension array. It derives from vtkArray and is templated on the type of value stored in the array. 

Methods are provided for retrieving and updating array values based either on their array coor-
dinates, or on a 1-dimensional integer index. The latter approach can be used to iterate over the values
in an array in arbitrary order, which is useful when writing filters that operate efficiently on sparse
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arrays and arrays that can have any number of dimensions. Special overloaded methods provide sim-
ple access for arrays with one, two, or three dimensions.

value = GetValueN(n)
Returns the n-th value stored in the array, where n is in the range [0, GetNonNullSize()).
This is useful for efficiently visiting every value in the array. Note that the order in which
values are visited is undefined, but is guaranteed to match the order used by vtkAr-
ray::GetCoordinatesN(). 

SetValueN(n, value)
Overwrites the n-th value stored in the array, where n is in the range [0, GetNonNull-
Size()). This is useful for efficiently visiting every value in the array. Note that the order
in which values are visited is undefined, but is guaranteed to match the order used by
vtkArray::GetCoordinatesN(). 

value = GetValue(i)

value = GetValue(i, j)

value = GetValue(i, j, k)

value = GetValue(coordinates)
Returns the value stored in the array at the given coordinates. Note, the number of dimen-
sions in the supplied coordinates must match the number of dimensions in the array.

SetValue(i, value)

SetValue(i, j, value)

SetValue(i, j, k, value)

SetValue(coordinates, value)
Overwrites the value stored in the array at the given coordinates. Note, the number of
dimensions in the supplied coordinates must match the number of dimensions in the
array.

vtkDenseArray Methods

vtkDenseArray is a concrete vtkArray implementation that stores values using a contiguous block of
memory. Values are stored with fortran ordering, meaning that if you iterated over the memory block,
the left-most coordinates would vary the fastest.  In addition to the retrieval and update methods pro-
vided by vtkTypedArray, vtkDenseArray provides methods to: 

• fill the entire array with a specific value, and 

• retrieve a raw pointer to the storage memory block.

Fill(value)
Fills every element in the array with the given value. 

reference = operator[](coordinates)
Returns a value by-reference, which is useful for performance and code-clarity. 

ptr = GetStorage()
Returns a mutable reference to the underlying storage. Values are stored contiguously
with fortran ordering. Use at your own risk!
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vtkSparseArray Methods

vtkSparseArray is a concrete vtkArray implementation that stores values using sparse coordinate stor-
age. This means that the array stores the complete set for sparse storage of coordinates and the value
for each non-null value in the array, an approach that generalizes well for arbitrary numbers of dimen-
sions.  In addition to the value retrieval and update methods provided by vtkTypedArray, vtkSparse-
Array provides methods to: 

• get and set a special 'null' value that will be returned when retrieving values for undefined coor-
dinates; 

• clear the contents of the array so that every set of coordinates is undefined; 

• add values to the array in amortized-constant time; 

• resize the array extents so that they bound the largest 

• set of non-NULL values along each dimension; and 

• retrieve pointers to the value- and coordinate-storage memory blocks.

SetNullValue(value)
Set the value that will be returned by GetValue() for NULL areas of the array. 

value = GetNullValue()
Returns the value that will be returned by GetValue() for NULL areas of the array. 

Clear()
Remove all non-null elements from the array, leaving the number of dimensions, the
extent of each dimension, and the label for each dimension unchanged.

ptr = GetCoordinateStorage()
Return a mutable reference to the underlying coordinate storage.In VTK 5.4, GetCoordi-
nateStorage() returns the array coordinates as a contiguous one-dimensional array, orga-
nized so that the coordinates for each value are adjacent in memory.  After VTK 5.4, this
method has been changed to take a zero-based dimension as an argument, returning a
contiguous array of coordinates for that dimension. Use at your own risk! 

ptr = GetValueStorage()
Return a mutable reference to the underlying value storage. Values are stored contigu-
ously, but in arbitrary order. Use GetCoordinateStorage() if you need to get the corre-
sponding coordinates for a value. Use at your own risk! 

ReserveStorage(value_count)
Reserve storage for a specific number of values. This is useful for reading external data
using GetCoordinateStorage() and GetValueStorage(), when the total number of non-
NULL values in the array can be determined in advance. Note that after calling ReserveS-
torage(), all coordinates and values will be undefined, so you must ensure that every set
of coordinates and values is overwritten. It is the caller's responsibility to ensure that
duplicate coordinates are not inserted into the array.

ResizeToContents()
Update the array extents to match its contents, so that the extent along each dimension
matches the maximum index value along that dimension.  Note: ResizeToContents() was
relabelled 'SetExtentsFromContents()' in VTK versions after VTK 5.4.
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AddValue(i, value)
AddValue(i, j, value)
AddValue(i, j, k, value)
AddValue(coordinates, value)

Adds a new non-null element to the array. Does not test to see if an element with
matching coordinates already exists. Useful for providing fast initialization of the array as
long as the caller is prepared to guarantee that no duplicate coordinates are ever used.

vtkArrayData Methods
Because vtkArray does not derive from vtkDataObject, the multi-dimensional array classes cannot be
processed directly by the pipeline.  Instead, the new vtkArrayData class is a vtkDataObject that acts
as a "container" for multi-dimensional arrays.  There is a corresponding vtkArrayDataAlgorithm class
that is used to implement pipeline sources and filters that operate on vtkArrayData.

Please note that in VTK 5.4, vtkArrayData is a vtkDataObject that stores a single vtkArray, and
vtkFactoredArrayData is a vtkDataObject that stores one-or-more vtkArray instances. In subsequent
versions of VTK, the two classes have been merged so that vtkArrayData is a container for one-or-
more vtkArray instances.

array = GetArray()
Returns the vtkArray stored by this vtkArrayData.

SetArray(array)
Sets the vtkArray stored by this vtkArrayData.
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How To Write an Algorithm for VTK 17

This section describes how to create your own algorithms
in VTK. Algorithms are objects that produce data (sources), operate on data to generate new data (fil-
ters), and interface the data to graphics systems and/or other systems (mappers). (One may also refer
to algorithms generically as filters.) You may want to review “The Visualization Pipeline” on page 25
for information about the graphics pipeline. Pipeline execution is discussed in more detail in Chapter
19.

17.1 Overview
Implementing an algorithm or process as a VTK filter requires three basic steps.

1. Set up the pipeline interface. This specifies the number and type of inputs and/or outputs that 
are consumed and/or produced by the filter.

2. Set up the user interface. This provides users of the filter a means by which to tune or control 
algorithm parameters.

3. Write methods to fulfill pipeline requests. These provide the core functionality of the filter and 
contain the algorithm implementation.

The Pipeline Interface

A filter's pipeline interface determines how it may be connected and used in a VTK pipeline. Filters
that consume data define one or more input ports, and those that produce data define one or more out-
put ports. Each port corresponds to a logical input or output of the algorithm implemented by the fil-
ter.

The first part of defining the pipeline interface is to choose the proper superclass from which to
derive the class implementing the new algorithm. All filters derive directly or indirectly from vtkAl-
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gorithm, but direct derivation is used only by advanced filters in rare cases. Several subclasses of
vtkAlgorithm are provided by VTK that define pipeline interfaces for most common cases. Filters
derive from the class defining the most suitable pipeline interface for their algorithm. The proper
superclass depends on the filter's purpose and the kind of geometry and data it is meant to process.
The superclass name is intended to indicate the type of vtkDataObject it produces, though this is often
the type it consumes as well.

• Graphics filters almost always derive from vtkPolyDataAlgorithm or vtkUnstructuredGridAl-
gorithm.

• Imaging filters almost always derive from vtkImageAlgorithm or vtkThreadedImageAlgorithm.

• Filters that process scientific simulation results may derive from vtkRectilinearGridAlgorithm,
vtkStructuredGridAlgorithm, or vtkUnstructuredGridAlgorithm depending on the data set type
supported.

• Abstract filters may derive from vtkDataObjectAlgorithm, vtkDataSetAlgorithm, or vtkPoint-
SetAlgorithm in order to process data objects of a variety of types.

• There are a few other superclasses meant for filters that process advanced data set types beyond
the scope of this book.

All of these superclasses define by default a pipeline interface consisting of one input port and one
output port. The number of ports is set by calling the methods SetNumberOfInputPorts() and/or Set-
NumberOfOutputPorts() when a filter is constructed. For example, the constructor of vtkPolyDataAl-
gorithm contains the following code.

vtkPolyDataAlgorithm::vtkPolyDataAlgorithm()
 {
  ...
  this->SetNumberOfInputPorts(1);
  this->SetNumberOfOutputPorts(1);
 }

Filters may change this number in their constructors. For example, vtkSphereSource does not con-
sume any data (i.e., it is a source object) so its constructor sets the number of input ports to zero.

vtkSphereSource::vtkSphereSource()
 {
  ...
  this->SetNumberOfInputPorts(0);
 }

Port requirements are stored in port information objects. These information objects are populated by
the methods FillInputPortInformation() and FillOutputPortInformation(). The above superclasses
provide a default implementation of these methods that simply requires one data object of the corre-
sponding type on each input port and provides one such data object on each output port. For example,
vtkPolyDataAlgorithm specifies that each input port consumes one vtkPolyData and each output port
produces one vtkPolyData.
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int
vtkPolyDataAlgorithm
 ::FillInputPortInformation(int, vtkInformation* info)
 {
  info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(),
       "vtkPolyData");
  return 1;
 }

 int
 vtkPolyDataAlgorithm
 ::FillOutputPortInformation(int, vtkInformation* info)
 {
  info->Set(vtkDataObject::DATA_TYPE_NAME(),
       "vtkPolyData");
  return 1;
 }

One logical input to an algorithm may actually allow an arbitrary number of data objects, each pro-
vided by a different input connection. If an input port allows zero connections the port is said to be
optional. If it allows more than one connection it is said to be repeatable. For example, vtkGlyph3D
consumes two logical inputs: one providing the geometry describing glyph placement, and one pro-
viding zero or more glyphs to place. Its constructor sets the number of input ports to two.

vtkGlyph3D::vtkGlyph3D()
 {
  ...
  this->SetNumberOfInputPorts(2);
  ...
 }

Then vtkGlyph3D implements FillInputPortInformation() to specify the requirements of each input
port. Specifically, input port zero requires exactly one connection with a data set of any type derived
from vtkDataSet, and input port one supports zero or more connections providing vtkPolyData
objects.

int vtkGlyph3D::FillInputPortInformation(int port,
 vtkInformation *info)

 {
  if (port == 0)
   {
   info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(),
        "vtkDataSet");
   return 1;
   }
  else if (port == 1)
   {
   info->Set(vtkAlgorithm::INPUT_IS_REPEATABLE(), 1);
   info->Set(vtkAlgorithm::INPUT_IS_OPTIONAL(), 1);
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   info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkPolyData");
   return 1;
   }
  return 0;
 }

The User Interface
Many algorithms define parameters that tune their behavior. A VTK filter may define parameters
stored by instance variables in its class. Methods to set and get the parameter values are defined by
"Set/Get" macros. These macros implement the methods to automatically update the filter object's
modified time when parameters change.

For example, the vtkGlyph3D filter provides a "ScaleFactor" parameter that controls the
amount by which to scale input glyphs when placing them in the output. The class defines a member
variable storing the parameter and uses vtkSetMacro and vtkGetMacro to define the user interface
methods SetScaleFactor() and GetScaleFactor().

 class vtkGlyph3D
 {
 public:
  ...
  vtkSetMacro(ScaleFactor,double);
  vtkGetMacro(ScaleFactor,double);
  ...
 protected:
  double ScaleFactor;
 };

Parameters are initialized with a default value by the constructor of a filter. In the vtkGlyph3D imple-
mentation the constructor initializes the ScaleFactor parameter to 1.0.

 vtkGlyph3D::vtkGlyph3D()
 {
  ...
  this->ScaleFactor = 1.0;
  ...
 }

All VTK classes define a PrintSelf() method that prints information about the current state of an
instance of the class. In the case of algorithm implementations the parameters of the algorithm should
be included. For example, vtkGlyph3D prints the value of the ScaleFactor in its PrintSelf() method.

void vtkGlyph3D::PrintSelf(ostream& os, vtkIndent indent)
 {
  this->Superclass::PrintSelf(os,indent);
  ...
  os << indent << "Scale Factor: "
    << this->ScaleFactor << "\n";
  ...
 }
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Fulfilling Pipeline Requests
Once the pipeline and user interfaces have been established it is possible to include a new filter in a
VTK pipeline. The last step is to implement the actual algorithm.

When a pipeline updates, a filter may receive requests asking it to process some information
and/or data. These requests are first sent to the executive object of a filter which may then send them
to the algorithm implementation by calling the virtual method vtkAlgorithm::ProcessRequest(). This
method is given the request information object and a set of input and output pipeline information
objects on which to operate. It is responsible for attempting to fulfill the request and reporting success
or failure. An implementation of ProcessRequest() must be provided by every algorithm object as it is
the entry point for algorithm execution.

Many filters may be implemented without providing the ProcessRequest() method directly. The
standard filter superclasses provide a default implementation of ProcessRequest() that implements the
most common requests by transforming them into calls to request-specific methods. For example,
vtkPolyDataAlgorithm implements ProcessRequest() as follows.

int
vtkPolyDataAlgorithm
::ProcessRequest(vtkInformation* request,

vtkInformationVector** inputVector,
vtkInformationVector* outputVector)

{
if(request->Has(vtkDemandDrivenPipeline::REQUEST_INFORMATION()))

{
return this->RequestInformation(request, inputVector,

outputVector);
}

if(request->Has(
vtkStreamingDemandDrivenPipeline::REQUEST_UPDATE_EXTENT()))

{
return this->RequestUpdateExtent(request, inputVector,

outputVector);
}

if(request->Has(vtkDemandDrivenPipeline::REQUEST_DATA()))
{
return this->RequestData(request, inputVector, outputVector);
}

return this->Superclass::ProcessRequest(request, inputVector,
outputVector);

}

When using a standard superclass a filter needs only to implement the RequestData() method to con-
tain its actual algorithm implementation. The RequestInformation() and RequestUpdateExtent()
methods may also be implemented if a filter needs to transform requested extent between its output
and input. The pipeline information passed to these methods contains all the input and output data
objects on which they should operate. For example, vtkGlyph3D implements RequestData() as fol-
lows.

int vtkGlyph3D::RequestData(vtkInformation* request,
vtkInformationVector** inputVector,
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vtkInformationVector* outputVector)
{

vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkDataSet* input = vtkDataSet::SafeDownCast(

inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData* output = vtkPolyData::SafeDownCast(

outInfo->Get(vtkDataObject::DATA_OBJECT()));
...
int numberOfSources =

inputVector[1]->GetNumberOfInformationObjects();
for(int i=0; i < numberOfSources; ++i)

{
vtkInformation* sourceInfo =

inputVector[1]->GetInformationObject(i);
vtkPolyData* source = vtkPolyData::SafeDownCast(

sourceInfo->Get(vtkDataObject::DATA_OBJECT()));
...
}

...
}

The inputVector contains the input pipeline information. Each element of the array represents one
input port. It is a vtkInformationVector whose entries are the input pipeline information objects for
the connections on the corresponding input port. The outputVector is a vtkInformationVector contain-
ing one output pipeline information object for each output port of the filter. Each pipeline information
object for both input and output contains a vtkDataObject stored with the key vtkDataOb-
ject::DATA_OBJECT(). Once an implementation of RequestData() has retrieved its input and output
data objects from the pipeline information it may proceed with its algorithm implementation.

17.2 Laws of VTK Algorithms

Never Modify Input Data
One of the most important guidelines for any filter writer is to never modify the input to the filter. The
reason for this is simple: the proper execution of the pipeline requires that filters create and modify
their own output. Remember, other filters may be using the input data as well; if you modify a filter’s
input, you can be potentially corrupting the data with respect to other filters that use it or the filter that
created it.

Reference Count Data
If the input data to a filter is sent to the output of the filter unchanged be sure to share the representa-
tion by using reference counting. This reduces the memory cost of the pipeline which can be quite
high for large visualization data. Typically, if one uses Get__() and Set__() methods to get and set
data, reference counting is automatically handled. Alternatively the Register() and UnRegister()
methods of an object may be called directly. The vtkSmartPointer<> template may be used to hold
references to objects as local variables, but it should not be used in the public interface of a class. See
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“Low-Level Object Model” on page 20 for more information about reference counting and smart
pointers. Filter authors may wish to use specialized methods for passing data through a filter, see
“Field and Attribute Data” on page 362 for more information.

Use Debug Macros

Filters should provide debugging information when the object’s Debug flag is set. This is conve-
niently done using VTK’s debug macros defined in VTK/Common/vtkSetGet.h. At a minimum, a
filter should report the initiation of execution similar to the following (from VTK/Graphics/vtk-
ContourFilter.cxx).

vtkDebugMacro(<< "Executing contour filter");

You may also wish to provide other information as the filter executes, for example, a summary of exe-
cution (again from vtkContourFilter.cxx):

vtkDebugMacro(<<"Created: " 
<< newPts->GetNumberOfPoints() << " points, " 
<< newVerts->GetNumberOfCells() << " verts, " 
<< newLines->GetNumberOfCells() << " lines, " 
<< newPolys->GetNumberOfCells() << " triangles");

Do not place debugging macros in the inner portions of a loop, since the macro invokes an if check
that may affect performance. Also, if debugging is turned on in an inner loop, too much information
will be output to be meaningfully interpreted.

Reclaim/Delete Allocated Memory

One common mistake that filter writers make is introducing memory leaks or using excessive mem-
ory. Memory leaks can be avoided by pairing New() and Delete() methods for all VTK objects and
new and delete methods for all native or non-VTK objects. (See “Standard Methods: Creating and
Deleting Objects” on page 300.)

Another way to reduce memory usage is to use the Squeeze() methods provided by vtkDataAr-
ray and subclasses. This method reclaims excess memory that an object may be using. Use the
Squeeze() method whenever the size of the data object can only be estimated upon initial allocation.

Compute Modified Time

One of the trickiest parts of writing a filter is making sure that its modified time is properly managed.
As you may recall, modified time is an internal time stamp that each object maintains in response to
changes in its internal state. Typically, modified time changes when a Set__() method is invoked. For
example, the method vtkTubeFilter::SetNumberOfSides(num) causes the vtkTubeFilter’s modified
time to change when this method is invoked, as long as num is different than the tube filter’s current
instance variable value. 

Normally, the modified time of a filter is maintained without requiring intervention. For exam-
ple, if you use the vtkSet/Get macros defined in VTK/Common/vtkSetGet.h to get and set
instance variable values, modified time is properly managed, and the inherited method
vtkObject::GetMTime() returns the correct value. However, if you define your own Set__() methods,
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or include methods that modify the internal state of the object, you will have to invoke Modified()
(i.e., change the internal modified time) on the filter as appropriate. And, if your object definition
includes references to other objects, the correct modified time of the filter includes both the filter and
objects it depends on. This requires overloading the GetMTime() method.

vtkCutter is an example of a filter demonstrating this behavior. This filter makes reference to
another object, (i.e., the CutFunction), an instance of vtkImplicitFunction. When the implicit function
definition changes, we expect the cutter to reexecute. Thus, the GetMTime() method of the filter must
reflect this by considering the modified time of the implicit function; the GetMTime() method inher-
ited from its superclass vtkObject must be overloaded. The implementation of the
vtkCutter::GetMTime() method is as follows. It’s actually more complicated than suggested here
because vtkCutter depends on two other objects (vtkLocator and vtkContourValues) as shown below.

unsigned long vtkCutter::GetMTime()
{
 unsigned long mTime=this->Superclass::GetMTime();
 unsigned long contourValuesMTime=this->ContourValues->GetMTime();
 unsigned long time;

 mTime = ( contourValuesMTime > mTime ? 
contourValuesMTime : mTime );

 if ( this->CutFunction != NULL )
  {
  time = this->CutFunction->GetMTime();
  mTime = ( time > mTime ? time : mTime );
  }
 if ( this->Locator != NULL )
  {
  time = this->Locator->GetMTime();
  mTime = ( time > mTime ? time : mTime );
  }
 return mTime;
}

The class vtkLocator is used to merge coincident points as the filter executes; vtkContourValues is a
helper class used to generate contour values for those functions using isosurfacing as part of their exe-
cution process. The GetMTime() method must check all objects that vtkCutter depends on, returning
the largest modified time it finds.

Although the use of modified time and the implicit execution model of the VTK visualization
pipeline is simple, there is one common source of confusion. That is, you must distinguish between a
filter’s modified time and its dependency on the data stream. Remember, filters will execute either
when they are modified (the modified time changes), or the input to the filter changes (dependency on
data stream). Modified time only reflects changes to a filter or dependencies on other objects indepen-
dent of the data stream.

Use ProgressEvent and AbortExecute 
The ProgressEvent is invoked at regular intervals during the execution of a source, filter, or mapper
object (i.e., any algorithm). Progress user methods typically perform such functions as updating an
application user interface (e.g., imagine manipulating a progress bar in the GUI). (See “General
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Guidelines for GUI Interaction” on page 423 and “User Methods, Observers, and Commands” on
page 29 for more information.)

A progress user method is created by invoking AddObserver() with an event type of vtkCom-
mand::ProgressEvent. When the progress method is invoked, the filter also sets the current progress
value (a decimal fraction between (0,1) retrieved with the GetProgress() method). The progress
method can be used in combination with the vtkAlgorithm’s invocation of StartEvent and EndEvent.
For example, Examples/Tutorial/Step2 shows how to use these methods. Here’s a code frag-
ment to show how it works.

vtkDecimatePro deci
deci AddObserver StartEvent {StartProgress deci “Decimating...”}
deci AddObserver ProgressEvent {ShowProgress deci “Decimating...”}
deci AddObserver EndEvent EndProgress

Not all filters invoke ProgressEvents or invoke them infrequently (depending on the filter implemen-
tation). The progress value may not be a true measure of the actual work done by the filter because it
is difficult to measure progress in some filters and/or the filter implementor may choose to update the
filter at key points in the algorithm (e.g., after building internal data structures, reading in a piece of
data, etc.).

Related to progress methods is the concept of a flag that is used to stop execution of a filter.
This flag, defined in vtkAlgorithm, is called the AbortExecute flag. When set, some filters will termi-
nate their execution, sending to their output some portion of the result of their execution (or possibly
nothing). Typically, the flag is set during invocation of a ProgressEvent and is used to prematurely
terminate execution of a filter when it is taking too long or the application is attempting to keep up
with user input events. Not all filters support the AbortExecute flag. Check the source code to be sure
which ones support the flag. (Most do, and those that don’t will in the near future.) An example use of
progress user methods and the abort flag is shown in the following code fragment taken from VTK/
Graphics/vtkDecimatePro.cxx.

for ( ptId=0; ptId < npts && !abortExecute ; ptId++ )
  {
  if ( ! (ptId % 10000) ) 
   {
   vtkDebugMacro(<<"Inserting vertex #" << ptId);
   this->UpdateProgress (0.25*ptId/npts);//25% inserting
   if (this->GetAbortExecute())
    {
    abortExecute = 1;
    break;
    }
   }
  this->Insert(ptId);
  }

Note that the filter implementor made some arbitrary decisions: the progress methods are invoked
every 10,000 points; and the portion of the RequestData() method shown is assumed to take approxi-
mately 25% of the total execution time. Also, some debug output is combined with the execution of
the progress method, as well as a status check on the abort flag. This points out an important guide-
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line: as a filter implementor you do not want to invoke progress methods too often because they can
affect overall performance.

Implement PrintSelf() Methods
All VTK classes implement a PrintSelf() method that prints the state of the object in a human-read-
able format. An implementation of this method must first pass the call to the superclass's implementa-
tion of the method and then print the state of the class's instance variables. If one of these instance
variables is itself a VTK class then that object's PrintSelf() method should be invoked with an incre-
mented level of indentation. For example, vtkCutter implements PrintSelf() as follows.

 void vtkCutter::PrintSelf(ostream& os, vtkIndent indent)
 {
  this->Superclass::PrintSelf(os,indent);
  os << indent << "Cut Function: " << this->CutFunction << "\n";
  os << indent << "Sort By: " << this->GetSortByAsString() << "\n";
  if ( this->Locator )
   {
   os << indent << "Locator: " << this->Locator << "\n";
   }
  else
   {
   os << indent << "Locator: (none)\n";
   }
  this->ContourValues->PrintSelf(os, indent.GetNextIndent());
  os << indent << "Generate Cut Scalars: "
    << (this->GenerateCutScalars ? "On\n" : "Off\n");
 }

Get Input/Output Data From Pipeline Information
Many filters provide GetInput() and GetOutput() methods that are useful for users to get the inputs
and outputs of a filter they create. It is tempting to use these methods from within the implementation
of ProcessRequest() or one of the methods it calls, but this should not be done. The pipeline informa-
tion objects passed to ProcessRequest() and related methods contain the data objects that should be
used. These may be different from the data objects returned by GetInput() or GetOutput(), particularly
when one filter is used internally in the implementation of another filter.

17.3 Example Algorithms
In this section a few example VTK filters are given. We show how to implement the filters by follow-
ing the steps outlined above.

A Graphics Filter
The class vtkShrinkFilter defines a simple graphics filter. Its purpose is to shrink all cells of an input
data set in order to visualize the structure of each cell. Since all standard VTK cell types are sup-
ported, the output type must be vtkUnstructuredGrid. We also want one input port for the input data
set and one output port for the output data set. This makes vtkUnstructuredGridAlgorithm a suitable
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choice for the superclass. The algorithm defines one parameter, ShrinkFactor, indicating the fraction
of the original cell size that should be used for each output cell. The class declaration appears in
VTK/Graphics/vtkShrinkFilter.h as follows.

 #ifndef __vtkShrinkFilter_h
 #define __vtkShrinkFilter_h
 #include "vtkUnstructuredGridAlgorithm.h"
 class VTK_GRAPHICS_EXPORT vtkShrinkFilter : public
              vtkUnstructuredGridAlgorithm
 {
 public:
  static vtkShrinkFilter* New();
  vtkTypeRevisionMacro(vtkShrinkFilter,
             vtkUnstructuredGridAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);
  // Description:
  // Get/Set the fraction of shrink for each cell.
  vtkSetClampMacro(ShrinkFactor, double, 0.0, 1.0);
  vtkGetMacro(ShrinkFactor, double);
 protected:
  vtkShrinkFilter();
  ~vtkShrinkFilter() {}
  virtual int FillInputPortInformation(int port,
               vtkInformation* info);
  virtual int RequestData(vtkInformation*,
              vtkInformationVector**,
              vtkInformationVector*);
  double ShrinkFactor;
 private:
  vtkShrinkFilter(const vtkShrinkFilter&);
  void operator=(const vtkShrinkFilter&);
 };
 #endif

To complete the definition of the class, we need to implement the constructor and the FillInputPortIn-
formation(), PrintSelf(), and RequestData() methods. These implementations, excerpted from the
VTK/Graphics/vtkShrinkFilter.cxx file, are shown in the following. (Note:
VTK_GRAPHICS_EXPORT is a #define macro that is used by some compilers to export symbols
from shared libraries.)

The constructor initializes the ShrinkFactor parameter to a default value. Since the superclass
vtkUnstructuredGridAlgorithm sets the number of input ports and output ports to one this constructor
need not change it.

 vtkShrinkFilter::vtkShrinkFilter()
 {
  this->ShrinkFactor = 0.5;
 }

The PrintSelf() method prints the setting of the ShrinkFactor parameter.
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void vtkShrinkFilter::PrintSelf(ostream& os, vtkIndent indent)
 {
  this->Superclass::PrintSelf(os,indent);
  os << indent << "Shrink Factor: "
         << this->ShrinkFactor << "\n";
 }

The FillInputPortInformation() method overrides the default from vtkUnstructuredGridAlgorithm to
specify support for accepting any vtkDataSet as input.

 int vtkShrinkFilter::FillInputPortInformation(
              int, vtkInformation* info)
 {
  info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(),
       "vtkDataSet");
  return 1;
 }

Finally, the RequestData() method implements the cell shrink algorithm.

 int vtkShrinkFilter::RequestData(
  vtkInformation*,
  vtkInformationVector** inputVector,
  vtkInformationVector* outputVector)
 {
  // Get input and output data.
  vtkDataSet* input =
   vtkDataSet::GetData(inputVector[0]);
  vtkUnstructuredGrid* output =
   vtkUnstructuredGrid::GetData(outputVector);

  // We are now executing this filter.
  vtkDebugMacro("Shrinking cells");

  // Skip execution if there is no input geometry.
  vtkIdType numCells = input->GetNumberOfCells();
  vtkIdType numPts = input->GetNumberOfPoints();
  if(numCells < 1 || numPts < 1)
   {
   vtkDebugMacro("No data to shrink!");
   return 1;
   }

  // Allocate working space for new and old cell
  // point lists.
  vtkSmartPointer<vtkIdList> ptIds =
   vtkSmartPointer<vtkIdList>::New();
  vtkSmartPointer<vtkIdList> newPtIds =
   vtkSmartPointer<vtkIdList>::New();
  ptIds->Allocate(VTK_CELL_SIZE);
  newPtIds->Allocate(VTK_CELL_SIZE);
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// Allocate approximately the space needed for the output cells.
  output->Allocate(numCells);

  // Allocate space for a new set of points.
  vtkSmartPointer<vtkPoints> newPts =

vtkSmartPointer<vtkPoints>::New();
  newPts->Allocate(numPts*8, numPts);

  // Allocate space for data associated with the
  // new set of points.
  vtkPointData* inPD = input->GetPointData();
  vtkPointData* outPD = output->GetPointData();
  outPD->CopyAllocate(inPD, numPts*8, numPts);

  // Support progress and abort.
  vtkIdType tenth =
   (numCells >= 10? numCells/10 : 1);
  double numCellsInv = 1.0/numCells;
  int abort = 0;

  // Traverse all cells, obtaining node
  // coordinates. Compute "center" of cell, then
  // create new vertices shrunk towards center.
  for(vtkIdType cellId = 0;
    cellId < numCells && !abort;
    ++cellId)
   {
   // Get the list of points for this cell.
   input->GetCellPoints(cellId, ptIds);
   vtkIdType numIds = ptIds->GetNumberOfIds();

   // Periodically update progress and check for
   // an abort request.
   if(cellId % tenth == 0)
    {
    this->UpdateProgress((cellId+1)*numCellsInv);
    abort = this->GetAbortExecute();
    }

   // Compute the center of mass of the cell
   // points.
   double center[3] = {0,0,0};
   for(vtkIdType i=0; i < numIds; ++i)
    {
    double p[3];
    input->GetPoint(ptIds->GetId(i), p);
    for(int j=0; j < 3; ++j)
     {
     center[j] += p[j];
     }
    }
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   for(int j=0; j < 3; ++j)
    {
    center[j] /= numIds;
    }

   // Create new points for this cell.
   newPtIds->Reset();
   for(vtkIdType i=0; i < numIds; ++i)
    {
    // Get the old point location.
    double p[3];
    input->GetPoint(ptIds->GetId(i), p);

    // Compute the new point location.
    double newPt[3];
    for(int j=0; j < 3; ++j)
     {
     newPt[j] =
      (center[j] +
       this->ShrinkFactor*(p[j] - center[j]));
     }

    // Create the new point for this cell.
    vtkIdType newId =
     newPts->InsertNextPoint(newPt);
    newPtIds->InsertId(i, newId);

    // Copy point data from the old point.
    vtkIdType oldId = ptIds->GetId(i);
    outPD->CopyData(inPD, oldId, newId);
    }

   // Store the new cell in the output.
   output->InsertNextCell(
    input->GetCellType(cellId), newPtIds);
   }

  // Store the new set of points in the output.
  output->SetPoints(newPts);

  // Just pass cell data through because we still
  // have the same number and type of cells.
  output->GetCellData()
   ->PassData(input->GetCellData());

  // Avoid keeping extra memory around.
  output->Squeeze();

  return 1;
 }
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The vtkShrinkFilter example is typical of graphics filters. Simpler filters supporting only polygonal
cell types may use the superclass vtkPolyDataAlgorithm instead.

A Simple Imaging Filter
The class vtkSimpleImageFilterExample defines a very simple imaging filter. It simply copies image
data from its input to its output, and is intended to be copied and modified by users wishing to imple-
ment very simple image processing tasks in VTK filters. A special superclass vtkSimpleImageToIm-
ageFilter provides a pipeline interface suitable for such simple imaging filters. It even implements the
RequestData() method and transforms it into a call to the very simple method SimpleExecute(). The
class declaration appears in VTK/Imaging/vtkSimpleImageFilterExample.h as follows.

 #ifndef __vtkSimpleImageFilterExample_h
 #define __vtkSimpleImageFilterExample_h
 #include "vtkSimpleImageToImageFilter.h"
 class VTK_IMAGING_EXPORT vtkSimpleImageFilterExample
  : public vtkSimpleImageToImageFilter
 {
 public:
  static vtkSimpleImageFilterExample* New();
  vtkTypeRevisionMacro(vtkSimpleImageFilterExample,
             vtkSimpleImageToImageFilter);
 protected:
  vtkSimpleImageFilterExample() {}
  ~vtkSimpleImageFilterExample() {}
  virtual void SimpleExecute(vtkImageData* input,
                vtkImageData* output);
 private:
  vtkSimpleImageFilterExample(
   const vtkSimpleImageFilterExample&);
  void operator=(
   const vtkSimpleImageFilterExample&);
 };
 #endif

To complete the definition of the class, we need to implement the SimpleExecute() method. Its imple-
mentation appears in VTK/Imaging/vtkSimpleImageFilterExample.cxx as shown here.
(Note: VTK_IMAGING_EXPORT is a #define macro that is used by some compilers to export sym-
bols from shared libraries.)

VTK image data may be represented using any of several scalar data types. Image processing
filters are usually implemented using a function template. Pointers to the input and output image data
arrays are given in the last two arguments. In this example we assume that the output data type will be
the same as the input data type though this may not always be the case in practice.

 template <class IT>
 void vtkSimpleImageFilterExampleExecute(
  vtkImageData* input, vtkImageData* output,
  IT* inPtr, IT* outPtr)
 {
  int dims[3];
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  input->GetDimensions(dims);
  if (input->GetScalarType() !=
    output->GetScalarType())
   {
   vtkGenericWarningMacro(
    << "Execute: input ScalarType, "
    << input->GetScalarType()
    << ", must match out ScalarType "
    << output->GetScalarType());
   return;
   }
  int size = dims[0]*dims[1]*dims[2];
  for(int i=0; i<size; i++)
   {
   outPtr[i] = inPtr[i];
   }
 }

The SimpleExecute() method is called by the RequestData() method defined by vtkSimpleImageTo-
ImageFilter. The superclass has already extracted the input and output data objects from the input and
output pipeline information it was given. These data objects are passed as arguments to the SimpleEx-
ecute() method. In order to support all possible image scalar types the vtkTemplateMacro is used in a
switch statement to instantiate calls to the above function template.

 void vtkSimpleImageFilterExample::SimpleExecute(
  vtkImageData* input, vtkImageData* output)
 {
  void* inPtr = input->GetScalarPointer();
  void* outPtr = output->GetScalarPointer();
  switch(output->GetScalarType())
   {
   // This is simply a #define for a big case list.
   // It handles all data types VTK supports.
   vtkTemplateMacro(
    vtkSimpleImageFilterExampleExecute(
    input, output,
    (VTK_TT*)(inPtr), (VTK_TT*)(outPtr)));
   default:
    vtkGenericWarningMacro(
     "Execute: Unknown input ScalarType");
    return;
   }
 }

While the vtkSimpleImageToImageFilter superclass makes writing an imaging filter extremely sim-
ple, it also leaves out support for many advanced VTK pipeline features. Filters written using this
superclass will work in VTK pipelines but may not be particularly efficient. Serious image filter
implementations should subclass directly from vtkImageAlgorithm and support streaming, or even
vtkThreadedImageAlgorithm to support threaded processing as well.
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A Threaded Imaging Filter
The class vtkImageShiftScale defines a threaded imaging filter. Its purpose is to scale and shift the
range of pixel values from input to output. An example application of such a filter is to convert a
floating-point image to an unsigned 8-bit integer representation before writing to a file. Since the
input and output type is vtkImageData, we may wish to choose vtkImageAlgorithm as a superclass.
However, since the shifting and scaling is a per-pixel operation it is trivial to support a threaded
implementation. This makes vtkThreadedImageAlgorithm an ideal choice of superclass for this filter.
The algorithm defines four parameters specifying the amount to shift and scale, the output scalar type,
and whether to clamp values to the range of the output type. The class declaration appears in VTK/
Imaging/vtkImageShiftScale.h as follows.

 #ifndef __vtkImageShiftScale_h
 #define __vtkImageShiftScale_h
 #include "vtkThreadedImageAlgorithm.h"
 class VTK_IMAGING_EXPORT vtkImageShiftScale
  : public vtkThreadedImageAlgorithm
 {
 public:
  static vtkImageShiftScale* New();
  vtkTypeRevisionMacro(vtkImageShiftScale,
             vtkThreadedImageAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Set/Get the shift value.
  vtkSetMacro(Shift,double);
  vtkGetMacro(Shift,double);

  // Description:
  // Set/Get the scale value.
  vtkSetMacro(Scale,double);
  vtkGetMacro(Scale,double);

  // Description:
  // Set the desired output scalar type. The result of the shift
  // and scale operations is cast to the type specified.
  vtkSetMacro(OutputScalarType, int);
  vtkGetMacro(OutputScalarType, int);
  void SetOutputScalarTypeToDouble()
   {this->SetOutputScalarType(VTK_DOUBLE);}
  void SetOutputScalarTypeToFloat()
   {this->SetOutputScalarType(VTK_FLOAT);}
  void SetOutputScalarTypeToLong()
   {this->SetOutputScalarType(VTK_LONG);}
  void SetOutputScalarTypeToUnsignedLong()
   {this->SetOutputScalarType(VTK_UNSIGNED_LONG);};
  void SetOutputScalarTypeToInt()
   {this->SetOutputScalarType(VTK_INT);}
  void SetOutputScalarTypeToUnsignedInt()
   {this->SetOutputScalarType(VTK_UNSIGNED_INT);}
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  void SetOutputScalarTypeToShort()
   {this->SetOutputScalarType(VTK_SHORT);}
  void SetOutputScalarTypeToUnsignedShort()
   {this->SetOutputScalarType(VTK_UNSIGNED_SHORT);}
  void SetOutputScalarTypeToChar()
   {this->SetOutputScalarType(VTK_CHAR);}
  void SetOutputScalarTypeToUnsignedChar()
   {this->SetOutputScalarType(VTK_UNSIGNED_CHAR);}

  // Description:
  // When the ClampOverflow flag is on, the data is thresholded so that
  // the output value does not exceed the max or min of the data type.
  // By default, ClampOverflow is off.
  vtkSetMacro(ClampOverflow, int);
  vtkGetMacro(ClampOverflow, int);
  vtkBooleanMacro(ClampOverflow, int);
 protected:
  vtkImageShiftScale();
  ~vtkImageShiftScale() {}

  double Shift;
  double Scale;
  int OutputScalarType;
  int ClampOverflow;

  virtual
  int RequestInformation(vtkInformation*,
              vtkInformationVector**,
              vtkInformationVector*);

  virtual
  void ThreadedRequestData(vtkInformation*,
               vtkInformationVector**,
               vtkInformationVector*,
               vtkImageData*** inData,
               vtkImageData** outData,
               int outExt[6],
               int threadId);
 private:
  vtkImageShiftScale(const vtkImageShiftScale&);
  void operator=(const vtkImageShiftScale&);
 };
 #endif

To complete the definition of the class, we need to implement the constructor and the PrintSelf(),
RequestInformation(), and ThreadedRequestData() methods. These implementations, excerpted from
the VTK/Imaging/vtkImageShiftScale.cxx file, are shown in the following. (Note:
VTK_IMAGING_EXPORT is a #define macro that is used by some compilers to export symbols
from shared libraries. Also, the large number of variants of SetOutputScalarType() allow the parame-
ter to be set easily from Tcl, Python, or Java wrappers, and are not critical.) 
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The constructor initializes the parameter values to reasonable defaults.

 vtkImageShiftScale::vtkImageShiftScale()
 {
  this->Shift = 0.0;
  this->Scale = 1.0;
  this->OutputScalarType = -1;
  this->ClampOverflow = 0;
 }

The PrintSelf() method prints the settings of the parameters.

 void vtkImageShiftScale::PrintSelf(
  ostream& os, vtkIndent indent)
 {
  this->Superclass::PrintSelf(os,indent);
  os << indent << "Shift: " << this->Shift << "\n";
  os << indent << "Scale: " << this->Scale << "\n";
  os << indent << "Output Scalar Type: "
    << this->OutputScalarType << "\n";
  os << indent << "ClampOverflow: "
    << (this->ClampOverflow? "On" : "Off") << "\n";
 }

The RequestInformation() method changes the output type to that specified by the OutputScalarType
parameter if it has been set.

 int vtkImageShiftScale::RequestInformation(
  vtkInformation*,
  vtkInformationVector**,
  vtkInformationVector* outputVector)
 {
  // Set the image scalar type for the output.
  if(this->OutputScalarType != -1)
   {
   vtkInformation* outInfo =
    outputVector->GetInformationObject(0);
   vtkDataObject::SetPointDataActiveScalarInfo(
    outInfo, this->OutputScalarType, -1);
   }
  return 1;
 }

In order to support any combination of input and output scalar type, the core of the algorithm is
implemented in a function template vtkImageShiftScaleExecute. The function is used only inside the
class implementation file and does not need to be declared in the header. It should be defined and
implemented just before it is needed. The template keyword before the function definition indicates
that it is a templated function, and that it is templated over the type T. If you are not familiar with C++
templates, you can think of T as a string that gets replaced by int, short, float, etc. at compile
time much like a C macro. Notice that T is used as the data type for inPtr and outPtr. Since these
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are functions instead of methods, they do not have access to the this pointer and its associated
instance variables. Instead, we pass in the this pointer as a variable called self. The self argument
can then be used to access the values of the class as is done in the examples shown here. For example,
in the following we obtain the value of Scale from the instance and place it into a local variable
called scale. The template will be instantiated and called by the ThreadedRequestData() method for
all possible combinations. Each thread is given a region of the output image for which it is responsi-
ble. This region is specified by the outExt argument.

This code also introduces a new concept: image iterators. In VTK, several convenience classes
are available for looping (or iterating) over the pixels in an image. The class vtkImageIterator is tem-
plated over the type of the image, and unlike most other classes in VTK is not instantiated with the
New() factory method. Instead, the image iterator is instantiated on the stack with the standard C++
constructor. The constructor takes two arguments: a pointer to an instance of vtkImageData and the
associated extent over which to iterate.

The vtkImageProgressIterator is another convenience class similar to the vtkImageIterator (it is
a subclass of vtkImageIterator). However, vtkImageProgressIterator requires two additional parame-
ters for instantiation: a pointer to the filter instantiating the progress iterator (i.e., self in the example)
and the thread id. What the vtkImageProgressIterator does is to first insure that the thread id is zero
(to limit the number of callbacks to a single thread), and periodically invoke UpdateProgress() on the
filter. It also checks the AbortExecute flag on the filter each time IsAtEnd() is called and reports the
end of data early if the flag is set.

Note how the BeginSpan() and EndSpan() methods are used to process one row of pixels at a
time. The image iterator method IsAtEnd() is used to halt the processing of the image when all pixels
have been processed.

 template <class IT, class OT>
 void vtkImageShiftScaleExecute(vtkImageShiftScale* self,
                 vtkImageData* inData,
                 vtkImageData* outData,
                 int outExt[6], int id,
                 IT*, OT*)
 {
  // Create iterators for the input and output extents assigned to
  // this thread.
  vtkImageIterator<IT> inIt(inData, outExt);
  vtkImageProgressIterator<OT> outIt(outData, outExt, self, id);

  // Get the shift and scale parameters values.
  double shift = self->GetShift();
  double scale = self->GetScale();

  // Clamp pixel values within the range of the output type.
  double typeMin = outData->GetScalarTypeMin();
  double typeMax = outData->GetScalarTypeMax();
  int clamp = self->GetClampOverflow();

  // Loop through output pixels.
  while (!outIt.IsAtEnd())
   {
   IT* inSI = inIt.BeginSpan();
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   OT* outSI = outIt.BeginSpan();
   OT* outSIEnd = outIt.EndSpan();
   if (clamp)
    {
    while (outSI != outSIEnd)
     {
     // Pixel operation
     double val = ((double)(*inSI) + shift) * scale;
     if (val > typeMax)
      {
      val = typeMax;
      }
     if (val < typeMin)
      {
      val = typeMin;
      }
     *outSI = (OT)(val);
     ++outSI;
     ++inSI;
     }
    }
   else
    {
    while (outSI != outSIEnd)
     {
     // Pixel operation
     *outSI = (OT)(((double)(*inSI) + shift) * scale);
     ++outSI;
     ++inSI;
     }
    }
   inIt.NextSpan();
   outIt.NextSpan();
   }
 }

The vtkTemplateMacro is used by ThreadedRequestData() below to call the function template
vtkImageShiftScaleExecute1() for each possible input scalar data type. This function uses the vtk-
TemplateMacro to call the above function template vtkImageShiftScaleExecute() for each possible
output scalar data type given an input scalar data type. The two uses of vtkTemplateMacro dispatch
calls to the vtkImageShiftScaleExecute() function template for all possible combinations of input and
output scalar types.

 template <class T>
 void vtkImageShiftScaleExecute1(
  vtkImageShiftScale* self,
  vtkImageData* inData,
  vtkImageData* outData,
  int outExt[6], int id, T*)
 {
  switch (outData->GetScalarType())
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   {
   vtkTemplateMacro(
    vtkImageShiftScaleExecute(self, inData,
                 outData, outExt, id,
                 static_cast<T*>(0),
                 static_cast<VTK_TT*>(0)));
   default:
    vtkErrorWithObjectMacro(
     self, "ThreadedRequestData: Unknown output ScalarType");
    return;
   }
 }

Finally, the ThreadedRequestData() method is the entry point for the filter implementation in each
thread. The superclass vtkThreadedImageAlgorithm implements the RequestData() method and cre-
ates some number of helper threads. In each thread this ThreadedRequestData() method is called.

 void vtkImageShiftScale::ThreadedRequestData(
  vtkInformation*,
  vtkInformationVector**,
  vtkInformationVector*,
  vtkImageData*** inData,
  vtkImageData** outData,
  int outExt[6],
  int threadId)
 {
  vtkImageData* input = inData[0][0];
  vtkImageData* output = outData[0];
  switch(input->GetScalarType())
   {
   vtkTemplateMacro(
    vtkImageShiftScaleExecute1(this, input, output, outExt, threadId,
                  static_cast<VTK_TT*>(0)));
   default:
    vtkErrorMacro("ThreadedRequestData: Unknown input ScalarType");
    return;
   }
 }

For simplicity the input and output image data objects for every input connection and every output
port are extracted from their pipeline information objects and passed in arrays to this method. This fil-
ter uses only one input connection and one output, so only the first entries of these arrays are used.

Non-threaded filters may be implemented similarly to this example. They should use vtkIma-
geAlgorithm as a superclass, and implement RequestData() instead of ThreadedRequestData(). These
two superclasses are sufficient for implementation of most image processing algorithms.

A Simple Reader
The class vtkSimplePointsReader provides a simple example of how to write a reader. Its purpose is
to read a list of points from an ASCII file. Each point is specified on one line by three floating point
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values. The reader has zero input ports and one output port producing vtkPolyData. This makes vtk-
PolyDataAlgorithm a suitable choice for superclass. There is one parameter called FileName specify-
ing the name of the file from which to read points. The class declaration appears in VTK/IO/
vtkSimplePointsReader.h as follows.

 #ifndef __vtkSimplePointsReader_h
 #define __vtkSimplePointsReader_h
 #include "vtkPolyDataAlgorithm.h"
 class VTK_IO_EXPORT vtkSimplePointsReader
  : public vtkPolyDataAlgorithm
 {
 public:
  static vtkSimplePointsReader* New();
  vtkTypeRevisionMacro(vtkSimplePointsReader,
             vtkPolyDataAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description: Set/Get the name of the file from which to read points.
  vtkSetStringMacro(FileName);
  vtkGetStringMacro(FileName);

 protected:
  vtkSimplePointsReader();
  ~vtkSimplePointsReader();
  char* FileName;
  int RequestData(vtkInformation*,
          vtkInformationVector**,
          vtkInformationVector*);
 private:
  vtkSimplePointsReader(
   const vtkSimplePointsReader&);
  void operator=(const vtkSimplePointsReader&);
 };

Note that the vtkSetStringMacro() and vtkGetStringMacro() invocations define the methods SetFile-
Name() and GetFileName() which automatically manage the memory for the file name string. The
constructor shown below initializes FileName to a NULL pointer and the destructor releases any allo-
cated string by setting FileName back to NULL.

To complete the definition of the class, we need to implement the constructor and destructor,
and the PrintSelf() and RequestData() methods. These implementations, excerpted from the VTK/IO/
vtkSimplePointsReader.cxx file, are shown in the following. (Note: VTK_IO_EXPORT is a
#define macro that is used by some compilers to export symbols from shared libraries.) The construc-
tor initializes the parameter value to a reasonable default. It also changes the number of input ports to
zero since the reader consumes no input.

 vtkSimplePointsReader::vtkSimplePointsReader()
 {
  this->FileName = 0;
  this->SetNumberOfInputPorts(0);
 }
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The destructor frees memory consumed by the FileName parameter.

 vtkSimplePointsReader::~vtkSimplePointsReader()
 {
  this->SetFileName(0);
 }

The PrintSelf() method prints the value of the FileName parameter.

 void vtkSimplePointsReader::PrintSelf(ostream& os, vtkIndent indent)
 {
  this->Superclass::PrintSelf(os,indent);
  os << indent << "FileName: "
    << (this->FileName ? this->FileName : "(none)") << "\n";
 }

Finally, the RequestData() method contains the reader implementation.

 int vtkSimplePointsReader::RequestData(
  vtkInformation*,
  vtkInformationVector**,
  vtkInformationVector* outputVector)
 {
  // Make sure we have a file to read.
  if(!this->FileName)
   {
   vtkErrorMacro("A FileName must be specified.");
   return 0;
   }

  // Open the input file.
  ifstream fin(this->FileName);
  if(!fin)
   {
   vtkErrorMacro("Error opening file "
          << this->FileName);
   return 0;
   }

  // Allocate objects to hold points and
  // vertex cells.
  vtkSmartPointer<vtkPoints> points =
   vtkSmartPointer<vtkPoints>::New();
  vtkSmartPointer<vtkCellArray> verts =
   vtkSmartPointer<vtkCellArray>::New();

  // Read points from the file.
  vtkDebugMacro("Reading points from file "
         << this->FileName);
  double x[3];
  while(fin >> x[0] >> x[1] >> x[2])
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   {
   vtkIdType id = points->InsertNextPoint(x);
   verts->InsertNextCell(1, &id);
   }
  vtkDebugMacro("Read "
         << points->GetNumberOfPoints()
         << " points.");

  // Store the points and cells in the output
  // data object.
  vtkPolyData* output =
   vtkPolyData::GetData(outputVector);
  output->SetPoints(points);
  output->SetVerts(verts);

  return 1;
 }

Reader implementations must deal with input files that may not exist or may be the wrong format.
This leads to many potential cases of failure. When a RequestData() method fails the reason should be
reported using vtkErrorMacro and the method should return 0. When a RequestData() method is suc-
cessful, it should return 1. Note the use of the vtkSmartPointer<> template to create and hold the
point and vertex objects. This avoids the need to explicitly call Delete() on these objects after handing
them to the vtkPolyData object. Since the reference held by a smart pointer is freed by its destructor
all possible exit paths from the method will automatically release the objects.

A Streaming Filter
The class vtkImageGradient provides a filter that computes an approximate image gradient using cen-
tral differencing. It serves as a good example for filters that change the image size from input to out-
put. In order to provide the gradient direction at all pixels in a requested extent of the output the filter
must ask for one extra layer of pixels surrounding this extent from the input. A filter parameter Han-
dleBoundaries specifies how to handle the image boundaries. If enabled, the algorithm works as if
boundary pixels are duplicated so that central differencing works for the boundary pixels. If disabled,
the output whole extent of the image is reduced by a one pixel border along every axis. The class is
defined by VTK/Imaging/vtkImageGradient.h and implemented by VTK/Imaging/vtkIm-
ageGradient.cxx. Below the implementation of two key methods is shown.

The RequestInformation() method shrinks the image by one pixel if boundary handling is not
enabled. This amounts to changing the whole extent from the input pipeline information and storing it
in the output pipeline information.

 int vtkImageGradient::RequestInformation(
  vtkInformation*,
  vtkInformationVector** inputVector,
  vtkInformationVector* outputVector)
 {
  // Get input and output pipeline information.
  vtkInformation* outInfo =
   outputVector->GetInformationObject(0);
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  vtkInformation* inInfo =
   inputVector[0]->GetInformationObject(0);

  // Get the input whole extent.
  int extent[6];
  inInfo->Get(
  vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
   extent);

  // Shrink output image extent by one pixel if
  // not handling boundaries.
  if(!this->HandleBoundaries)
   {
   for(int idx = 0;
     idx < this->Dimensionality;
     ++idx)
    {
    extent[idx*2] += 1;
    extent[idx*2 + 1] -= 1;
    }
   }

  // Store the new whole extent for the output.
  outInfo->Set(
  vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
   extent, 6);

  // Set the number of point data componets to the
  // number of components in the gradient vector.
  vtkDataObject::SetPointDataActiveScalarInfo(
   outInfo, VTK_DOUBLE, this->Dimensionality);

  return 1;
 }

The RequestUpdateExtent() method grows the extent requested by a consumer of the output by one
pixel around the boundary to generate the extent needed from the input. In the case that boundary
handling is enabled the grown extent must be clipped by the whole extent of the input image to avoid
accessing non-existent pixels.

 int vtkImageGradient::RequestUpdateExtent(
  vtkInformation*,
  vtkInformationVector** inputVector,
  vtkInformationVector* outputVector)
 {
  // Get input and output pipeline information.
  vtkInformation* outInfo =
   outputVector->GetInformationObject(0);
  vtkInformation* inInfo =
   inputVector[0]->GetInformationObject(0);
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  // Get the input whole extent.
  int wholeExtent[6];
  inInfo->Get(
  vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
   wholeExtent);

  // Get the requested update extent from the output.
  int inUExt[6];
  outInfo->Get(
  vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),
   inUExt);

  // In order to do central differencing we need
  // one more layer of input pixels than we are
  // producing output pixels.
  for(int idx = 0;
    idx < this->Dimensionality;
    ++idx)
   {
   inUExt[idx*2] -= 1;
   inUExt[idx*2+1] += 1;

   // If handling boundaries instead of shrinking
   // the image then we must clip the needed
   // extent within the whole extent of the input.
   if (this->HandleBoundaries)
    {
    if(inUExt[idx*2] < wholeExtent[idx*2])
     {
     inUExt[idx*2] = wholeExtent[idx*2];
     }
    if(inUExt[idx*2+1] > wholeExtent[idx*2+1])
     {
     inUExt[idx*2+1] = wholeExtent[idx*2+1];
     }
    }
   }

  // Store the update extent needed from the intput.
  inInfo->Set(
  vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),
   inUExt, 6);

  return 1;
 }

During pipeline execution the RequestInformation() method will be called first. This will inform con-
sumers of the output image of its adjusted size. Later the RequestUpdateExtent() method will be
called to ask the filter how much of the input image it needs to produce the requested output extent.
Finally the RequestData() method will be called to actually compute the gradient. We omit it here for
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brevity. (Actually vtkImageGradient is threaded so it uses vtkThreadedImageAlgorithm as its super-
class and implements ThreadedRequestData().)

An Abstract Filter
The class vtkElevationFilter defines an abstract graphics filter. Its purpose is to generate scalar data
on the points of a data set by projecting their position onto a one-dimensional parametric space. Ref-
erence counting is used to avoid allocating a duplicate copy of all the input geometry and data. Since
only attribute data (e.g., scalars) are modified and the underlying geometry of the data set is not
changed, there is no need to require a specific input or output data set type. The filter accepts any vtk-
DataSet and produces a duplicate of the data set as output but with the addition of the elevation data.
This makes vtkDataSetAlgorithm a suitable choice of superclass. The algorithms defines three input
parameters defining the mapping from 3D to the 1D parameter space and then to the output scalar
range. The class declaration appears in VTK/Graphics/vtkElevationFilter.h as follows.

 #ifndef __vtkElevationFilter_h
 #define __vtkElevationFilter_h
 #include "vtkDataSetAlgorithm.h"
 class VTK_GRAPHICS_EXPORT vtkElevationFilter
  : public vtkDataSetAlgorithm
 {
 public:
  static vtkElevationFilter* New();
  vtkTypeRevisionMacro(vtkElevationFilter,
             vtkDataSetAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  // Description:
  // Define one end of the line
  // (small scalar values). Default is (0,0,0).
  vtkSetVector3Macro(LowPoint,double);
  vtkGetVectorMacro(LowPoint,double,3);

  // Description:
  // Define other end of the line
  // (large scalar values). Default is (0,0,1).
  vtkSetVector3Macro(HighPoint,double);
  vtkGetVectorMacro(HighPoint,double,3);

  // Description:
  // Specify range to map scalars into.
  // Default is [0, 1].
  vtkSetVector2Macro(ScalarRange,double);
  vtkGetVectorMacro(ScalarRange,double,2);

 protected:
  vtkElevationFilter();
  ~vtkElevationFilter() {}
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  int RequestData(vtkInformation*,
          vtkInformationVector**,
          vtkInformationVector*);

  double LowPoint[3];
  double HighPoint[3];
  double ScalarRange[2];
 private:
  vtkElevationFilter(const vtkElevationFilter&);
  void operator=(const vtkElevationFilter&);
 };
 #endif

To complete the definition of the class, we need to implement the constructor and the PrintSelf() and
RequestData() methods. These implementations, excerpted from the VTK/Graphics/vtkEleva-
tionFilter.cxx file, are shown in the following. (Note: VTK_GRAPHICS_EXPORT is a #define
macro that is used by some compilers to export symbols from shared libraries.)

The constructor initializes the parameters to default values. Since the superclass vtkDataSetAl-
gorithm sets the number of input ports and output ports to one this constructor need not change it.

 vtkElevationFilter::vtkElevationFilter()
 {
  this->LowPoint[0] = 0.0;
  this->LowPoint[1] = 0.0;
  this->LowPoint[2] = 0.0;
  this->HighPoint[0] = 0.0;
  this->HighPoint[1] = 0.0;
  this->HighPoint[2] = 1.0;
  this->ScalarRange[0] = 0.0;
  this->ScalarRange[1] = 1.0;
 }

The PrintSelf() method prints the parameter values.

 void vtkElevationFilter::PrintSelf(
  ostream& os, vtkIndent indent)
 {
  this->Superclass::PrintSelf(os,indent);
  os << indent << "Low Point: ("
    << this->LowPoint[0] << ", "
    << this->LowPoint[1] << ", "
    << this->LowPoint[2] << ")\n";
  os << indent << "High Point: ("
    << this->HighPoint[0] << ", "
    << this->HighPoint[1] << ", "
    << this->HighPoint[2] << ")\n";
  os << indent << "Scalar Range: ("
    << this->ScalarRange[0] << ", "
    << this->ScalarRange[1] << ")\n";
 }
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Finally, the RequestData() method implements the algorithm.

 int vtkElevationFilter::RequestData(
  vtkInformation*,
  vtkInformationVector* outputVector)
 {
  // Get the input and output data objects.
  vtkDataSet* input =
   vtkDataSet::GetData(inputVector[0]);
  vtkDataSet* output =
   vtkDataSet::GetData(outputVector);

  // Check the size of the input.
  vtkIdType numPts = input->GetNumberOfPoints();
  if(numPts < 1)
   {
   vtkDebugMacro("No input!");
   return 1;
   }

  // Allocate space for the elevation scalar data.
  vtkSmartPointer<vtkFloatArray> newScalars =
   vtkSmartPointer<vtkFloatArray>::New();
  newScalars->SetNumberOfTuples(numPts);

  // Set up 1D parametric system and make sure it
  // is valid.
  double diffVector[3] =
   { this->HighPoint[0] - this->LowPoint[0],
    this->HighPoint[1] - this->LowPoint[1],
    this->HighPoint[2] - this->LowPoint[2] };
  double length2 = vtkMath::Dot(diffVector,
                 diffVector);
  if(length2 <= 0)
   {
   vtkErrorMacro("Bad vector, using (0,0,1).");
   diffVector[0] = 0;
   diffVector[1] = 0;
   diffVector[2] = 1;
   length2 = 1.0;
   }

  // Support progress and abort.
  vtkIdType tenth = (numPts >= 10? numPts/10 : 1);
  double numPtsInv = 1.0/numPts;
  int abort = 0;

  // Compute parametric coordinate and map into
  // scalar range.
  double diffScalar =
   this->ScalarRange[1] - this->ScalarRange[0];
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  vtkDebugMacro("Generating elevation scalars!");
  for(vtkIdType i=0; i < numPts && !abort; ++i)
   {
   // Periodically update progress and check for
   // an abort request.
   if(i % tenth == 0)
    {
    this->UpdateProgress((i+1)*numPtsInv);
    abort = this->GetAbortExecute();
    }

   // Project this input point into the 1D system.
   double x[3];
   input->GetPoint(i, x);
   double v[3] = { x[0] - this->LowPoint[0],
           x[1] - this->LowPoint[1],
           x[2] - this->LowPoint[2] };
   double s =
    vtkMath::Dot(v, diffVector) / length2;
   s = (s < 0.0 ? 0.0 : s > 1.0 ? 1.0 : s);

   // Store the resulting scalar value.
   newScalars->SetValue(
    i, this->ScalarRange[0] + s*diffScalar);
   }

  // Copy all the input geometry and data to
  // the output.
  output->CopyStructure(input);
  output->GetPointData()
   ->PassData(input->GetPointData());
  output->GetCellData()
   ->PassData(input->GetCellData());

  // Add the new scalars array to the output.
  newScalars->SetName("Elevation");
  output->GetPointData()->AddArray(newScalars);
  output->GetPointData()
   ->SetActiveScalars("Elevation");

  return 1;
 }

Note that the filter only computes scalar data and then passes it to the output. The actual generation of
the output structure is done using the CopyStructure() method. This method makes a reference-
counted copy of the input geometric structure and original attribute data.

vtkPointSetAlgorithm works in a similar fashion, except that the point coordinates are modified
or generated and sent to the output. See vtkTransformFilter if you’d like to see a concrete example of
vtkPointSetAlgorithm.
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When writing a filter that modifies attribute data, or modifies point positions without changing
the number of points or cells, either vtkDataSetAlgorithm or vtkPointSetAlgorithm is a suitable
superclass.

Composite Dataset Aware Filters
The class vtkExtractBlock is a filter that extracts blocks from a multi-block dataset. The filter takes in
a multi-block dataset and produces a multiblock dataset. Hence it's a vtkMultiBlockDataSetAlgo-
rithm subclass. The user selects the blocks to be extracted using the AddIndex(), RemoveIndex(),
RemoveAllIndices() API. vtkExtractBlock has a property PruneOutput, which when set results in the
output multi-block being pruned to not have any empty branches. To keep it simple, we will ignore
the tree pruning component of this algorithm, the reader is encouraged to look at the source for details
for the pruning algorithm. The class declaration in VTK/Graphics/vtkExtractBlock.h, minus the tree
pruning code is as follows:

#ifndef __vtkExtractBlock_h
#define __vtkExtractBlock_h
#include "vtkMultiBlockDataSetAlgorithm.h"
class vtkCompositeDataIterator;
class vtkMultiPieceDataSet;
class VTK_GRAPHICS_EXPORT vtkExtractBlock : public 
vtkMultiBlockDataSetAlgorithm
{
public:
static vtkExtractBlock* New();
vtkTypeRevisionMacro(vtkExtractBlock, vtkMultiBlockDataSetAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);

// Description: Select the block indices to extract.
// Each node in the multi-block tree is identified by an \c index. 
// The index can be obtained by performing a preorder traversal of the 
// tree (including empty nodes). eg. A(B (D, E), C(F, G)).
// Inorder traversal yields: A, B, D, E, C, F, G
// Index of A is 0, while index of C is 4.
void AddIndex(unsigned int index);
void RemoveIndex(unsigned int index);
void RemoveAllIndices();

//BTX
protected:
vtkExtractBlock();
~vtkExtractBlock();

// Implementation of the algorithm.
virtual int RequestData(vtkInformation *, 
vtkInformationVector **, vtkInformationVector *);

// Extract subtree
void CopySubTree(vtkCompositeDataIterator* loc,
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vtkMultiBlockDataSet* output, vtkMultiBlockDataSet* input);

private:
vtkExtractBlock(const vtkExtractBlock&); // Not implemented.
void operator=(const vtkExtractBlock&); // Not implemented.

class vtkSet;
vtkSet *Indices;
vtkSet *ActiveIndices;

//ETX
};

#endif

Following are the excerpts from the VTK/Graphics/vtkExtractBlock.cxx file (minus the tree pruning
code) which shows the implementations for the various methods.

The constructor initializes the default parameters, which includes allocation of the sets used to
indices to be extracted.

{
this->Indices = new vtkExtractBlock::vtkSet();
this->ActiveIndices = new vtkExtractBlock::vtkSet();
}

Here vtkSet is merely a subclass of STL set, defined as such to avoid the inclusion of STL headers in
the VTK header file, as follows:

#include <vtkstd/set>
class vtkExtractBlock::vtkSet : public vtkstd::set<unsigned int>
{
};
The destructor releases the memory allocated for sets.
vtkExtractBlock::~vtkExtractBlock()
{
delete this->Indices;
delete this->ActiveIndices;
}

The RequestData() method is where the filter's crux is implemented. Following is an extract from the
same:

Author: utkarsh Subject: Inserted Text Date: 5/26/2009 12:02:34 PM
int vtkExtractBlock::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
vtkMultiBlockDataSet *input = 
vtkMultiBlockDataSet::GetData(inputVector[0], 0);
vtkMultiBlockDataSet *output = 
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vtkMultiBlockDataSet::GetData(outputVector, 0);
if (this->Indices->find(0) != this->Indices->end())
{
// trivial case.
output->ShallowCopy(input);
return 1;
}
output->CopyStructure(input);
(*this->ActiveIndices) = (*this->Indices);
// Copy selected blocks over to the output.
vtkCompositeDataIterator* iter = input->NewIterator();
iter->VisitOnlyLeavesOff();
for (iter->InitTraversal();
!iter->IsDoneWithTraversal() && this->ActiveIndices->size()>0;
iter->GoToNextItem())
{
if (this->ActiveIndices->find(iter->GetCurrentFlatIndex()) !=
this->ActiveIndices->end())
{
this->ActiveIndices->erase(iter->GetCurrentFlatIndex());
// This removed the visited indices from this->ActiveIndices.
this->CopySubTree(iter, output, input);
}
}
iter->Delete();
this->ActiveIndices->clear();
...
return 1;
}

Note that unlike CopyStructure() on a vtkDataSet used earlier, CopyStructure on a vtkCompositeDa-
taSet merely copies the structure for the composite tree and not the input geometric structure. Once
we have an output composite tree with the same structure as the input, we use the vtkCompositeData-
Iterator to iterate over the input and copying only the blocks for the chosen indices to the output.
CopySubTree() is a method that compies the entire sub tree over, as follows:

void vtkExtractBlock::CopySubTree(vtkCompositeDataIterator* loc,
vtkMultiBlockDataSet* output, vtkMultiBlockDataSet* input)

{
vtkDataObject* inputNode = input->GetDataSet(loc);
if (!inputNode->IsA("vtkCompositeDataSet"))
{
vtkDataObject* clone = inputNode->NewInstance();
clone->ShallowCopy(inputNode);
output->SetDataSet(loc, clone);
clone->Delete();
}

else
{
vtkCompositeDataSet* cinput = 
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vtkCompositeDataSet::SafeDownCast(inputNode);
vtkCompositeDataSet* coutput = vtkCompositeDataSet::SafeDownCast(
outut->GetDataSet(loc));

vtkCompositeDataIterator* iter = cinput->NewIterator();
iter->VisitOnlyLeavesOff();
for (iter->InitTraversal(); !iter->IsDoneWithTraversal(); 
iter->GoToNextItem())
{
vtkDataObject* curNode = iter->GetCurrentDataObject();
vtkDataObject* clone = curNode->NewInstance();
clone->ShallowCopy(curNode);
coutput->SetDataSet(iter, clone);
clone->Delete();

this->ActiveIndices->erase(loc->GetCurrentFlatIndex() +
iter->GetCurrentFlatIndex());

}
iter->Delete();
}

}

Typically filters dealing with composite datasets use the vtkCompositeDataIterator to iterate over the
nodes in the composite tree. Concrete subclasses of vtkCompositeDataSet also provide additional
API to access the tree eg. vtkMultiBlockDataSet has GetBlock() API. When writing a filter that deals
with composite datasets, ensure that the executive created is vtkCompositeDataPipeline. This is done
by overriding vtkAlgorithm::CreateDefaultExecutive() which is already implemented in vtkMulti-
BlockDataSetAlgorithm and hence we don't do it in this filter.

Programmable Filters
An alternative to developing a filter in C++ is to use programmable algorithms. These objects allow
you to create a function that is invoked during the execution of the algorithm (i.e., during the Request-
Data() method). The advantage of programmable filters is that you do not have to rebuild the VTK
libraries, or even use C++. In fact, you can use the supported interpreted languages Tcl, Java, and
Python to create a filter!

Programmable sources and filters are algorithms that enable you to create new filters at run-
time. There is no need to create a C++ class or rebuild object libraries. Programmable objects take
care of the overhead of hooking into the visualization pipeline, requiring only that you write the body
of the filter’s RequestData() method.

The programmable objects are vtkProgrammableSource, vtkProgrammableFilter, vtkProgram-
mableGlyphFilter, vtkProgrammableAttributeDataFilter, and vtkProgrammableDataObjectSource.
vtkProgrammableSource is a source object that supports and can generate an output of any of the
VTK dataset types. vtkProgrammableFilter allows you to set input and retrieve output of any dataset
type (e.g., GetPolyDataOutput()). The filter vtkProgrammableAttributeDataFilter allows one or more
inputs of the same or different types, and can generate an output of any dataset type.

An example will clarify the application of these filters. This excerpted code is from VTK/Exam-
ples/Modelling/Tcl/expCos.tcl.

vtkProgrammableFilter besselF
   besselF SetInputConnection [transF GetOutputPort]
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   besselF SetExecuteMethod bessel

 proc bessel {} {
   set input [besselF GetPolyDataInput]

 set numPts [$input GetNumberOfPoints]
vtkPoints newPts

 vtkFloatArray derivs

for {set i 0} {$i < $numPts} {incr i} {
set x [$input GetPoint $i]
set x0 [lindex $x 0]
set x1 [lindex $x 1]

set r [expr sqrt($x0*$x0 + $x1*$x1)]
set x2 [expr exp(-$r) * cos(10.0*$r)]
set deriv [expr -exp(-$r) * (cos(10.0*$r) + 10.0*sin(10.0*$r))]

newPts InsertPoint $i $x0 $x1 $x2
eval derivs InsertValue $i $deriv

}

set output [besselF GetPolyDataOutput]
$output CopyStructure $input
$output SetPoints newPts

 [$output GetPointData] SetScalars derivs

  newPts Delete; #reference counting - it's ok
derivs Delete

 }

 vtkWarpScalar warp
warp SetInput [besselF GetPolyDataOutput]
warp XYPlaneOn
warp SetScaleFactor 0.5

This example instantiates a vtkProgrammableFilter and then the Tcl proc bessel() serves as the func-
tion to compute the Bessel functions and derivatives. Note that bessel() works directly with the output
of the filter obtained with the method GetPolyDataOutput(). This is because the output of besselF can
be of any VTK supported dataset type, and we have to indicate to objects working with the output
which type to use.

We hope that this chapter helps you write your own filters in VTK. You may wish to build on
the information given here by studying the source code in other filters. It’s particularly helpful if you
can find an algorithm that you understand, and then look to see how VTK implements it.
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Integrating With The Windowing System 18

At some point in your use of VTK you will probably
want to modify the default interaction behavior (in vtkRenderWindowInteractor) or add a graphical
user interface (GUI) to your VTK based application. This section will explain how to do this for
many common user interface toolkits. Up-to-date and new examples will be found in the VTK/
Examples/GUI source directory. To use this chapter effectively, we recommend that you begin by
reading the next section on managing interaction style. Then (to embed VTK into a GUI) look at
“General Guidelines for GUI Interaction” on page 423 and then only the subsection appropriate to
your user interface. If you are using a GUI other than the ones covered here, read the subsections that
are similar to your GUI.

18.1 vtkRenderWindow Interaction Style
The class vtkRenderWindowInteractor captures mouse and keyboard events in the render window,
translates window system specific events into VTK events (these are defined in Common/
vtkCommand.h) and then dispatches the translated VTK events to another class—the interactor
style. Therefore, to add a new style of interaction to VTK, you need to derive a new class from vtkIn-
teractorStyle. For example, the class vtkInteractorStyleTrackball implements the trackball style inter-
action described in “vtkRenderWindowInteractor” on page 45. vtkInteractorStyleJoystickActor or
vtkInteractorStyleJoystickCamera implements the joystick interaction style described in the same
section. Another option is to use the class vtkInteractorStyleUser. This class allows users to define a
new interactor style without subclassing.

Basically, the way this works is as follows. vtkRenderWindowInteractor intercepts events
occurring in the vtkRenderWindow with which it is associated. Recall that on instantiation,
vtkRenderWindowInteractor actually instantiates a device/windowing-specific implementation—
either vtkXRenderWindowInteractor (Unix) or vtkWin32RenderWindowInteractor (Windows). The
event intercepts are enabled when the vtkRenderWindowInteractor::Start() method is called. These
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events are in turn forwarded to the vtkRenderWindowInteractor::InteractorStyle instance. The inter-
actor style processes the events as appropriate.

Here is a list of the available interactor styles with a brief description of what each one does.

• vtkInteractorStyleJoystickActor — implements joystick style for actor manipulation.
• vtkInteractorStyleJoystickCamera — implements joystick style for camera manipulation.
• vtkInteractorStyleTrackballActor — implements trackball style for actor manipulation.
• vtkInteractorStyleTrackballCamera — implements trackball style for camera manipulation.
• vtkInteractorStyleSwitch — manages the switching between trackball and joystick mode, and

camera and object (actor) mode. It does this by intercepting keystrokes and internally switching
to one of the modes listed above. (Recall from “vtkRenderWindowInteractor” on page 45 that
Keypress j / Keypress t toggles between the trackball and joystick modes, and Keypress c
/ Keypress a toggles between camera and actor mode.)

• vtkInteractorStyleFlight — a special class that allows the user to “fly-through” complex scenes.
• vtkInteractorStyleImage — a specially designed interactor style for 2D images. This class per-

forms window and level adjustment via mouse motion, as well as pan and dolly constrained to
the x-y plane.

• vtkInteractorStyleUnicam — single button camera manipulation. Rotation, zoom, and pan can
all be performed with one mouse button.

• vtkInteractorStyleTerrain — Moves the camera around an object with a constant view-up vector
(in the z-direction). The camera is moved with combinations of elevation, azimuth and zoom.

• vtkInteractorStyleRubberBandZoom — supports zooming in on an object by drawing a rectan-
gle in the render window.

If one of these interactor styles does not suit your needs, you can create your own interactor style.
There are two approaches to create your own. First, you can subclass from vtkInteractorStyle and
override the appropriate virtual methods. Second, you can create observers that directly observe the
vtkRenderWindowInteractor (see “Adding vtkRenderWindowInteractor Observers” on page 47) and
take the appropriate actions as registered events are observed.

Subclassing from vtkInteractorStyle requires overriding the following methods (as described in
VTK/Rendering/vtkInteractorStyle.h):

// Description:
 // Generic event bindings must be overridden in subclasses.
 virtual void OnMouseMove() {}
 virtual void OnLeftButtonDown() {}
 virtual void OnLeftButtonUp() {}
 virtual void OnMiddleButtonDown() {}
 virtual void OnMiddleButtonUp() {}
 virtual void OnRightButtonDown() {}
 virtual void OnRightButtonUp() {}

virtual void OnMouseWheelForward() {}
virtual void OnMouseWheelBackward() {}

 // Description:
 // OnChar implements keyboard functions, but subclasses can override 
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// this behavior.
 virtual void OnChar()
 virtual void OnKeyDown() {}
 virtual void OnKeyUp() {}
 virtual void OnKeyPress() {}
 virtual void OnKeyRelease() {}

 // Description:
 // These are more esoteric events, but are useful in some cases.

virtual void OnExpose() {}
virtual void OnConfigure() {}

 virtual void OnEnter() {}
 virtual void OnLeave() {}

Then to use the interactor style, associate it with vtkRenderWindowInteractor via the
SetInteractorStyle() method.

The second approach for developing your own style involves creating a set of command/
observers to implement the desired behavior (see “Adding vtkRenderWindowInteractor Observers”
on page 47 for an example). This provides greater flexibility and the capability to tie together code
without the constraints of object inheritance.

18.2 General Guidelines for GUI Interaction
For the most part VTK has been designed to isolate the functional objects from the user interface.
This has been done for portability and flexibility. But sooner or later you will need to create a user
interface, so we have provided a number of hooks to help in this process. These hooks are called user
methods and they are discussed in Chapter 3 (see “User Methods, Observers, and Commands” on
page 29). Recall that the essence of user methods in VTK is that any class can invoke an event. If an
observer is registered with the class that invokes the event, then an instance of vtkCommand is exe-
cuted which is the implementation of the callback. There are a variety of events invoked by different
VTK classes that come in handy when developing a user interface. A partial list of the more useful
events is provided below.

The subclasses of vtkInteractorStyle and vtk3DWidget (subclasses of vtkInteractorObserver)
invoke these events:

• StartInteractionEvent

• InteractionEvent

• EndInteractionEvent

In general, these events are invoked when you might expect. Pressing a mouse button starts the inter-
action (StartInteractionEvent), moving the mouse requires interactive response (InteractionEvent),
and releasing the mouse ends the interaction (EndInteractionEvent). These events are designed to pro-
vide the necessary control to change the level-of-detail (see “Level-Of-Detail Actors” on page 55) or
to otherwise ensure interactive rendering performance.

All filters (subclasses of vtkAlgorithm) invoke these events:

• StartEvent
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• EndEvent
• ProgressEvent

The class vtkRenderWindow invokes this event (while rendering):

• AbortCheckEvent 

The classes (and subclasses of) vtkActor, vtkVolume, vtkPropPicker, vtkPicker, and
vtkWorldPointPicker invoke these events while picking:

• PickEvent
• StartPickEvent (available in the picking classes only)
• EndPickEvent (available in the picking classes only)

The class vtkRenderWindowInteractor invokes these events:

• StartPickEvent — while picking
• EndPickEvent — while picking
• UserEvent — in response to “u” keypress in the render window
• ExitEvent — in response to the “e” keypress in the render window

And don’t forget that you can define your own vtkInteractorStyle with its own set of special call-
backs.

The StartEvent, EndEvent, and ProgressEvent invocations can be used to provide feedback to
the user on what the application is doing and how much longer it will take. The vtkDemandDriven-
Pipeline invokes StartEvent and EndEvent on all filters. ProgressEvents are supported by imaging fil-
ters, some readers, and many (but not all) of the visualization filters. The AbortCheckEvent can be
used to allow the user to interrupt a render that is taking too long (requires the use of vtkLODActors).
The pick events in combination with virtual methods can be used to override the default VTK interac-
tor behavior so that you can create your own custom interaction style.

To help you get started, consider the following two examples that incorporate user methods.
Both are written in Tcl but can be easily converted to other languages. The first defines a proc that
catches the ProgressEvent to display the progress of the vtkImageGaussianSmooth filter. It then
catches the EndEvent to update the display to indicate the processing is complete (Figure 18–1). The
code is based on VTK/Examples/GUI/Tcl/ProgressEvent.tcl.

# Demonstrate filter ProgressEvent and GetProgress 
package require vtk

# Image pipeline 

Figure 18–1  GUI feedback as a result of invoking the StartEvent, ProgressEvent, and EndEvent as a
filter executes.
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vtkImageReader reader
reader SetDataByteOrderToLittleEndian
reader SetDataExtent 0 255 0 255 1 93
reader SetFilePrefix $env(VTK_DATA_ROOT)/Data/headsq/quarter
reader SetDataMask 0x7fff

vtkImageGaussianSmooth smooth
smooth SetInputConnection [reader GetOutputPort]
smooth AddObserver ProgressEvent {
.text configure -text \

Completed [expr [smooth GetProgress]*100.0] percent
update 

} 
smooth AddObserver EndEvent {
 .text configure -text Completed Processing
update

}

button .run -text Execute -command{
smooth Modified
smooth Update

}
label .text -text Waiting to Process 
pack .run .text

For pipelines consisting of multiple filters, each filter could provide an indication of its progress. You
can also create generic Tcl procs (rather than define them in-line as here) and assign them to multi-
ple filters.

The second example makes use of the AbortCheckEvent to interrupt a long render if a mouse
event is pending. (The script is based on VTK/Examples/Rendering/Tcl/AbortCheckEv-
ent.tcl.) Most of the code is typical VTK code. The critical changes are that you must use instances
of vtkLODActor; it is best if you turn on GlobalImmediateModeRendering() since the abort method
cannot be invoked in the middle of display list processing; and finally you must add a few lines of
code to process the abort check. In this example we define a simple procedure called TkCheckAbort
which invokes the GetEventPending() method of vtkRenderWindow and then sets the AbortRender
instance variable to 1 if an event is pending. The resolution of the mace model has been dramatically
increased (Figure 18–2(left)) so that you can see the effects of using the AbortRender logic. Feel free
to adjust the resolution of the sphere to suit your system. If everything is working properly then you
should be able to quickly rotate and then zoom without waiting for the full resolution sphere to render
in between the two actions (Figure 18–2(right)). 

package require vtk
package require vtkinteraction
# Create the RenderWindow, Renderer and both Actors
vtkRenderer ren1
vtkRenderWindow renWin

 renWin AddRenderer ren1 
vtkRenderWindowInteractor iren

 iren SetRenderWindow renWin
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# Create a sphere source and actor 
vtkSphereSource sphere 

sphere SetThetaResolution 40 
sphere SetPhiResolution 40 

vtkPolyDataMapper sphereMapper
 sphereMapper SetInputConnection [sphere GetOutputPort]
 sphereMapper GlobalImmediateModeRenderingOn

vtkLODActor sphereActor
 sphereActor SetMapper sphereMapper

# Create the spikes using a cone source and the sphere source
#
vtkConeSource cone 
vtkGlyph3D glyph

 glyph SetInputConnection [sphere GetOutputPort]
 glyph SetSourceConnection [cone GetOutputPort]
 glyph SetVectorModeToUseNormal
 glyph SetScaleModeToScaleByVector
 glyph SetScaleFactor 0.25

vtkPolyDataMapper spikeMapper
 spikeMapper SetInput Connection [glyph GetOutput Port] 

vtkLODActor spikeActor 
 spikeActor SetMapper spikeMapper

# Add the actors to the renderer, set the background and size
ren1 AddActor sphereActor 
ren1 AddActor spikeActor 
ren1 SetBackground 0.1 0.2 0.4 
renWin SetSize 300 300

iren AddObserver UserEvent {wm deiconify .vtkInteract}

set cam1 [ren1 GetActiveCamera] 
$cam1 Zoom 1.4
iren Initialize

proc TkCheckAbort {} {
 if {[renWin GetEventPending] != 0} {renWin SetAbortRender 1}

} 
renWin AddObserver AbortCheckMethod TkCheckAbort

Figure 18–2  Aborting the rendering process.
This is used to improve overall interaction with
VTK. Rendering can be aborted whenever an
event is pending. Make sure that you are using
immediate mode rendering.
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# Prevent the tk window from appearing; start the event loop 
wm withdraw .

18.3 X Windows, Xt, and Motif
Most traditional UNIX based applications use either Xt or Motif as
their widget set. Many of those that don’t directly use Xt or Motif
end up using Xt at a lower level. There are two common ways to
integrate VTK into your Xt (or Motif) based application. These
examples can be found in the VTK/Examples/GUI/Motif source
directory. First we will look at an example (Example1.cxx) where
the VTK rendering window and the application UI are in separate
windows (Figure 18–3). This helps avoid some problems that can
occur if VTK and the UI do not use the same X visual. Both win-
dows will use the same X event loop. Consider the following exam-
ple application. It draws a mace into a VTK render window and then creates a Motif push button and
associated callback in a separate window. 

// Include OS specific include file to mix in X code

#include "vtkActor.h"
#include "vtkConeSource.h"
#include "vtkGlyph3D.h"
#include "vtkPolyData.h"
#include "vtkPolyDataMapper.h"
#include "vtkRenderWindow.h"
#include "vtkRenderer.h"
#include "vtkSphereSource.h"
#include "vtkXRenderWindowInteractor.h"

#include <Xm/PushB.h>
// void quit_cb(Widget,XtPointer,XtPointer);
// main (int argc, char *argv[])
{
 // X window stuff
 XtAppContext app;
 Widget toplevel, button;
 Display *display;
 // VTK stuff
 vtkRenderWindow *renWin;
 vtkRenderer *ren1;
 vtkActor *sphereActor1, *spikeActor1;
 vtkSphereSource *sphere;
 vtkConeSource *cone;
 vtkGlyph3D *glyph;
 vtkPolyDataMapper *sphereMapper, *spikeMapper;
 vtkXRenderWindowInteractor *iren;

Figure 18–3  Simple Motif
application using VTK.
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The first section of code simply includes the required header files and prototypes a simple callback
called quit_cb. Then we enter the main function and declare some standard X/Motif variables. Then
we declare the VTK objects we will need as before. The only significant change here is the use of the
vtkXRenderWindowInteractor subclass instead of the typical vtkRenderWindowInteractor. This sub-
class allows us to access some additional methods specific to the vtkXRenderWindowInteractor class.

renWin = vtkRenderWindow::New();
 ren1 = vtkRenderer::New();
 renWin->AddRenderer(ren1);
 
 sphere = vtkSphereSource::New();
 sphereMapper = vtkPolyDataMapper::New();
 sphereMapper->SetInputConnection(sphere->GetOutputPort());
 sphereActor1 = vtkActor::New();
 sphereActor1->SetMapper(sphereMapper);
 cone = vtkConeSource::New();
 glyph = vtkGlyph3D::New();
 glyph->SetInputConnection(sphere->GetOutputPort());
 glyph->SetSourceConnection(cone->GetOutputPort());
 glyph->SetVectorModeToUseNormal();
 glyph->SetScaleModeToScaleByVector();
 glyph->SetScaleFactor(0.25);
 spikeMapper = vtkPolyDataMapper::New();
 spikeMapper->SetInputConnection(glyph->GetOutputPort());
 spikeActor1 = vtkActor::New();
 spikeActor1->SetMapper(spikeMapper);
 ren1->AddProp(sphereActor1);
 ren1->AddProp(spikeActor1);
 ren1->SetBackground(0.4,0.1,0.2);

The above code is standard VTK code to create a mace.

// Do the xwindow ui stuff
 XtSetLanguageProc(NULL,NULL,NULL);
 toplevel = XtVaAppInitialize(&app,"Sample",NULL,0,

&argc,argv,NULL,NULL);
 
 // Get the display connection and give it to the renderer
 display = XtDisplay(toplevel);
 renWin->SetDisplayId(display);
 
 // We use an X specific interactor
 // since we have decided to make this an X program
 iren = vtkXRenderWindowInteractor::New();
 iren->SetRenderWindow(renWin);
 iren->Initialize(app);
 
 button = XtVaCreateManagedWidget("Exit",

xmPushButtonWidgetClass, 
toplevel,XmNwidth, 50, 
XmNheight, 50,NULL);



18.3  X Windows, Xt, and Motif 429

 
 XtRealizeWidget(toplevel);
 XtAddCallback(button,XmNactivateCallback,quit_cb,NULL);
 XtAppMainLoop(app);
}

// Simple quit callback
void quit_cb(Widget w,XtPointer client_data,XtPointer call_data)
{
 exit(0);
}

Finally we perform the standard Xt initialization and create our toplevel shell. The next few lines are
very important. We obtain the X display id from the toplevel shell and tell the render window to use
the same display id. Next we create the vtkXRenderWindowInteractor, set its render window and
finally initialize it using the X application context from our earlier XtVaAppInitialize() call. Then we
use standard Xt/Motif calls to create a push button, realize the toplevel shell, and assign a callback to
the pushbutton. The last step is to start the XtAppMainLoop. The quit_cb is a simple callback that
just exits the application. It is critical in this type of approach that the VTK render window interactor
is initialized prior to creating the rest of your user interface. Otherwise some events may not be han-
dled correctly.

Now we will modify the preceding example so that the rendering
window is part of the user interface (Figure 18–4). (The modified source
code is in VTK/Examples/GUI/Motif/Example2.cxx.) This will
require that we create a toplevel shell with a visual that VTK can use for
rendering. Fortunately vtkXOpenGLRenderWindow includes some
methods for helping you create an appropriate toplevel shell. Much of
the code in the following example is the same as the previous example.
The differences will be discussed shortly.

// Include OS specific file to mix in X code

#include "vtkActor.h"
#include "vtkConeSource.h"
#include "vtkGlyph3D.h"
#include "vtkPolyData.h"
#include "vtkPolyDataMapper.h"
#include "vtkRenderer.h"
#include "vtkSphereSource.h"
#include "vtkXOpenGLRenderWindow.h"
#include "vtkXRenderWindowInteractor.h"

#include <Xm/PushB.h>
#include <Xm/Form.h>

void quit_cb(Widget,XtPointer,XtPointer);

main (int argc, char *argv[])
{
 // X window stuff
 XtAppContext app;

Figure 18–4  Simple
Motif application with
integrated VTK render
window.
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 Widget toplevel, form, toplevel2, vtk;
 Widget button;
 int depth;
 Visual *vis;
 Display *display;
 Colormap col;
 
 // VTK stuff
 vtkXOpenGLRenderWindow *renWin;
 vtkRenderer *ren1;
 vtkActor *sphereActor1, *spikeActor1;
 vtkSphereSource *sphere;
 vtkConeSource *cone;
 vtkGlyph3D *glyph;
 vtkPolyDataMapper *sphereMapper, *spikeMapper;
 vtkXRenderWindowInteractor *iren;
 
 renWin = vtkXOpenGLRenderWindow::New();
 ren1 = vtkRenderer::New();
 renWin->AddRenderer(ren1);
 
 sphere = vtkSphereSource::New();
 sphereMapper = vtkPolyDataMapper::New();
 sphereMapper->SetInputConnection(sphere->GetOutputPort());
 sphereActor1 = vtkActor::New();
 sphereActor1->SetMapper(sphereMapper);
 cone = vtkConeSource::New();
 glyph = vtkGlyph3D::New();
 glyph->SetInputConnection(sphere->GetOutputPort());
 glyph->SetSourceConnection(cone->GetOutputPort());
 glyph->SetVectorModeToUseNormal();
 glyph->SetScaleModeToScaleByVector();
 glyph->SetScaleFactor(0.25);
 spikeMapper = vtkPolyDataMapper::New();
 spikeMapper->SetInputConnection(glyph->GetOutputPort());
 spikeActor1 = vtkActor::New();
 spikeActor1->SetMapper(spikeMapper);
 ren1->AddActor(sphereActor1);
 ren1->AddActor(spikeActor1);
 ren1->SetBackground(0.4,0.1,0.2);

// Do the xwindow ui stuff
 XtSetLanguageProc(NULL,NULL,NULL);
 toplevel = XtVaAppInitialize(&app,"Sample",NULL,0,

&argc,argv,NULL,NULL);

The initial code is relatively unchanged. In the beginning we have included an additional Motif
header file to support the Motif form widget. In the main function we have added some additional
variables to store some additional X properties.

// Get the display connection and give it to the renderer
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 display = XtDisplay(toplevel);
 renWin->SetDisplayId(display);
 depth = renWin->GetDesiredDepth();
 vis = renWin->GetDesiredVisual();
 col = renWin->GetDesiredColormap();
 
 toplevel2 = XtVaCreateWidget("top2",

topLevelShellWidgetClass,toplevel,
    XmNdepth, depth,
    XmNvisual, vis,
    XmNcolormap, col,
    NULL);

Here is where the significant changes begin. We use the first toplevel shell widget to get an X display
connection. We then set the render window to use that display connection and then query what X
depth, visual, and colormap would be best for it to use. Then we create another toplevel shell widget
this time explicitly specifying the depth, colormap, and visual. That way the second toplevel shell will
be suitable for VTK rendering. All of the child widgets of this toplevel shell will have the same depth,
colormap, and visual as toplevel2. 

form = XtVaCreateWidget("form",xmFormWidgetClass, toplevel2, NULL);
 vtk = XtVaCreateManagedWidget("vtk",

xmPrimitiveWidgetClass, form, 
   XmNwidth, 300, XmNheight, 300,
   XmNleftAttachment, XmATTACH_FORM,
   XmNrightAttachment, XmATTACH_FORM,
   XmNtopAttachment, XmATTACH_FORM,
   NULL);
 button = XtVaCreateManagedWidget("Exit",

xmPushButtonWidgetClass, form,
   XmNheight, 40,
   XmNbottomAttachment, XmATTACH_FORM,
   XmNtopAttachment, XmATTACH_WIDGET,
   XmNtopWidget, vtk,
   XmNleftAttachment, XmATTACH_FORM,
   XmNrightAttachment, XmATTACH_FORM,
   NULL);
 
 XtAddCallback(button,XmNactivateCallback,quit_cb,NULL);
 XtManageChild(form);
 XtRealizeWidget(toplevel2);
 XtMapWidget(toplevel2);
 
 // We use a X specific interactor
 // since we have decided to make this an X program
 iren = vtkXRenderWindowInteractor::New();
 iren->SetRenderWindow(renWin);
 iren->SetWidget(vtk);
 iren->Initialize(app);
 XtAppMainLoop(app);
}
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/* quit when the Exit button is clicked*/
void quit_cb(Widget w,XtPointer client_data,XtPointer call_data)
{
 exit(0);
}

Finally we create a few Motif widgets including a xmPrimitiveWidgetClass which is what VTK will
render into. The form widget has been added simply to handle layout of the button and the rendering
window. The SetWidget() call is used in this example to tell the interactor (and hence the render win-
dow) what widget to use for rendering. 

18.4 Microsoft Windows / Microsoft Foundation Classes (MFC)
The basics of integration of VTK within the Windows environment has been shown previously (see
“Create An Application” on page 29). You can also develop MFC-based applications that make use of
VTK in two different ways. The first way to use VTK within an MFC based application is following
the code from VTK/Examples/GUI/Win32/SimpleCxx/Win32Cone.cxx. Create a vtkRender-
Window in the MFC application and if desired, parent it with a MFC-based window. The second way
is to make use of the vtkMFCView, vtkMFCRenderView and vtkMFCDocument classes that are
provided in the Examples/GUI/Win32/SampleMFC subdirectory. In fact, the Sample.exe applica-
tion is a sample MFC-based application that demonstrates the use of these classes. This MDI applica-
tion (Multi-Document Interface) shows how to open several VTK data files and interact with them
through the GUI (Figure 18–5). You may copy these classes as a starting point for your own new
MFC applications.

Figure 18–5  A sample built as an
MFC MDI application.
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18.5 Tcl/Tk 
Integrating VTK with Tcl/Tk user interfaces is typically a fairly easy process thanks to classes such as
vtkTkRenderWidget, and vtkTkImageViewerWidget. These classes can be used just like you would
use any other Tk widget. Up-to-date information and new examples may be found both in the VTK/
Examples/GUI/Tcl and VTK/Wrapping/Tcl source directories. Consider the following example
taken from VTK/Examples/GUI/Tcl/vtkTkRenderWidgetDemo.tcl. Figure 18–6 shows the
result of running this script.

package require vtk
package require vtkinteraction
# This script uses a vtkTkRenderWidget to
# create a Tk widget that is associated with 
# a vtkRenderWindow.

# Create the GUI: a render widget and a quit
# button
wm withdraw .
toplevel .top 
frame .top.f1 
vtkTkRenderWidget .top.f1.r1 \
 -width 400 -height 400 

button .top.btn -text Quit -command exit
pack .top.f1.r1 -side left -padx 3 -pady 3 -fill both \

-expand t
pack .top.f1 -fill both -expand t
pack .top.btn -fill x
# Get the render window associated with the widget.
set renWin [.top.f1.r1 GetRenderWindow]
vtkRenderer ren1
$renWin AddRenderer ren1

# Bind the mouse events
BindTkRenderWidget .top.f1.r1

# Create a Cone source and actor
vtkConeSource cone
vtkPolyDataMapper coneMapper
  coneMapper SetInputConnection [cone GetOutputPort]
  coneMapper GlobalImmediateModeRenderingOn
vtkLODActor coneActor
  coneActor SetMapper coneMapper
# Add the actors to the renderer, set the background
#
ren1 AddProp coneActor
ren1 SetBackground 0.1 0.2 0.4

The first line is the standard package require vtk command that is used to load the VTK Tcl pack-
age. The vtkinteraction package contains default bindings for handling mouse and keyboard
events for a render widget. Specifically it defines the BindTkRenderWidget proc which sets up

Figure 18–6  Tcl/Tk example.
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those bindings for a particular vtkTkRenderWidget. Next we withdraw the default toplevel widget
and create a new one called .top. On some systems you may need to create .top with the following
line instead of the one given above.

toplevel .top -visual best

Next we create and pack the frame, vtkTkRenderWidget, and a button in the traditional Tk manner.
The next line queries the vtkTkRenderWidget for the underlying render window that it is using. We
store this in a variable called renWin. We then create a renderer, associate it with the render window,
and then bind the mouse events to the vtkRenderWidget using the BindTkRenderWidget proc.
Finally we create a cone and actor in the normal manner. If you wish, the render window can be pro-
vided as an argument on the creation of the vtkTkRenderWidget as follows:

vtkRenderWindow renWin
vtkTkRenderWidget .top.f1.r1 \

-width 400 -height 400 -rw renWin

Then simply use renWin instead of $renWin since it is now an instance, not a variable reference. 
For your application development you will probably want to customize the event handling. The

best way to do this is to make a copy of bindings-rw.tcl and bindings.tcl located in VTK/
Wrapping/Tcl/vtkinteraction and then edit it to suit your preferences. The format of the first
file is fairly straightforward. It defines the BindTkRenderWidget proc that associates events with
specific Tcl procedures. The other file defines these procedures. The same techniques used with
vtkTkRenderWidget can be used with vtkTkImageViewerWidget for image processing. Instead of
having a -rw option and GetRenderWindow() method, vtkTkImageViewerWidget supports -iv and
GetImageViewer().

When using the vtkTkWidget classes you should not use the interactor classes such as
vtkRenderWindowInteractor. Normally you should use either an interactor or a vtkTkWidget but
never both for a given window.

18.6 Java
The Visualization Toolkit includes a class specially designed to help you integrate VTK into your Java
based application. This is a fairly tricky procedure since Java does not provide any “public” classes to
support native code integration. It is made more difficult by the fact that Java is a multithreaded lan-
guage and yet windowing systems such as X11R5 do not support multithreaded user interfaces. To
help overcome these difficulties, we have provided a Java class called vtkPanel. This class works
with Java to make a vtkRenderWindow appear like a normal Java AWT Canvas. The
SimpleVTK.java example is in the VTK/Wrapping/Java subdirectory. It makes use of the
vtkPanel class. vtkPanel.java is in VTK/Wrapping/Java/vtk.

18.7 Using VTK with Qt
VTK now contains many classes that make it easy to integrate VTK functionality into Qt applica-
tions. The VTK source files related to Qt are located under the VTK/GUISupport/Qt directory. Qt
related VTK examples are located under the VTK/Examples/GUI/Qt directory. The Qt support in
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VTK is not enabled by default, so when you configure VTK, you have to turn on the Qt support by
setting the following set of CMake variables:

• "VTK_USE_GUISUPPORT:BOOL=ON
• "VTK_USE_QT:BOOL=ON
• "DESIRED_QT_VERSION:STRING=4
• "QT_QMAKE_EXECUTABLE:FILEPATH=C:/full/path/to/qmake

If you turn on BUILD_EXAMPLES in addition to setting all the required Qt variables, then all the
examples in the VTK/Examples/GUI/Qt directory will also be built when you build VTK. Or you can
build them individually after building VTK.

If you start from scratch with a new VTK build tree, follow these instructions to make these set-
tings interactively in cmake-gui or ccmake:

• "Configure vtk
• "Turn on VTK_USE_GUISUPPORT (advanced) and VTK_USE_QT
• "Configure vtk again
• "Set DESIRED_QT_VERSION (to 4 or 3)
• "Configure vtk again
• "Set QT_QMAKE_EXECUTABLE
• "Optionally turn on BUILD_EXAMPLES
• "Configure & generate

If you want to use the QVTKPluginWidget in the Qt designer application, be sure to build a configu-
ration that matches designer. By default, use the Release configuration in a Visual Studio or Xcode
build, or set CMAKE_BUILD_TYPE to "Release" for a makefile based build.

After building, copy the file QVTKWidgetPlugin.dll (or the *.so or *.dylib equivalent on Linux
or Mac) to the "plugins/designer" folder of your Qt installation. Then, when you open up designer,
you should have "QVTKWidget" available in the Widget Box of Qt designer, as seen in the following
screenshot:
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The vtkEventQtSlotConnect class is an adapter class that allows you to connect vtkObject
based events to your QObject based slots such that when the vtkObject event is invoked, your slot is
called. Example use of this class is located in the Form1::init method in the file VTK/Examples/GUI/
Qt/Events/GUI.ui.h. This code snippet from that example demonstrates how easy it is to connect your
slot method to a vtkObject based event:

connections = vtkEventQtSlotConnect::New();

  // get right mouse pressed with high priority
  connections->Connect(qVTK1->GetRenderWindow()->GetInteractor(),
                       vtkCommand::RightButtonPressEvent,

this,SLOT(popup( vtkObject*, unsigned long, 
void*, void*, vtkCommand*)),

                       popup1, 1.0);
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Coding Resources 19

This chapter provides information to make the job of
building VTK applications and classes a little easier. Object diagrams are useful when you’d like an
overview of the objects in the system; they are included here in symbolic form known as object mod-
eling diagrams. The diagrams we use here are simplified to mainly show inheritance, but some asso-
ciations between classes are shown as well. Succinct filter descriptions are provided to help you find
the right filter to do the job at hand. This chapter also documents the VTK legacy and XML file for-
mats.

19.1 Object Diagrams
The following section contains abbreviated object diagrams using the OMT graphical language. The
purpose of this section is to convey the essence of the software structure, particularly inheritance and
object associations. Due to space limitation, not all objects are shown, particularly “leaf” (i.e., bottom
of the inheritance tree) objects. Instead, we choose a single leaf object to represent other sibling
objects. (Object diagrams for all classes in VTK are provided in the online documentation.) The orga-
nization of the objects follows that of the synopsis.

Foundation

The foundation object diagram is shown in Figure 19–1. These represent the core data objects, as
well as other object manipulation classes. 

Cells

The cell object diagram is shown in Figure 19–3. Currently, 21 concrete cell types are supported in
VTK. The special class vtkGenericCell is used to represent any type of cell (i.e., supports the thread-
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safe vtkDataSet::GetCell() method). The class vtkEmptyCell is used to indicate the presence of a
deleted or NULL cell.

Datasets
The data object diagram is shown in Figure 19–2, and the dataset object diagram is shown in Figure
19–4. Currently, six concrete dataset types are supported. Unstructured point data can be represented

vtkIdTypeArray

vtkIntArray

vtkCollection

vtkCollectionElement

BottomCurrent Top

vtkObject

Figure 19–1  Foundation object diagram.
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by any of the subclasses of vtkPointSet. vtkImageData used to be vtkStructuredPoints, and represents
2D image and 3D volume data. 

Topology and Attribute Data
The object diagram for topology and attribute data objects is shown in Figure 19–5. These are the
core objects to represent data.

Pipeline
The object diagram for the classes in VTK’s pipeline architecture is shown in Figure 19–6. This
includes executive and information objects.

Sources and Filters
The source and filter object diagram is shown in Figure 19–7. 

Mappers
The mapper object diagram is shown in Figure 19–8. There are basically two types: graphics mappers
that map visualization data to the graphics system and writers that write data to an output file (or other
I/O device). 

vtkDataSet

vtkDataObject

vtkObject

Figure 19–2  Data object diagram.

vtkCompositeDataSetvtkGenericDataSet vtkGraph

vtkImageStencilData vtkPiecewiseFunctionvtkSelection
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Figure 19–3  Cell object diagram.
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Figure 19–4  Dataset object diagram.
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Graphics
The graphics object diagram is shown in Figure 19–10. The diagram has been extended to include
some associations with objects in the system. If you are unfamiliar with the object-oriented graphics
notation see Rumbaugh et al., Object-Oriented Modeling and Design. 

Volume Rendering
The volume rendering class hierarchy is shown in Figure 19–11. The hierarchy for structured volume
rendering is shown in Figure 19–12, and the one for unstructured grid volume rendering is shown in
Figure 19–13. Note that VTK’s volume rendering process supports mixing volumes, surfaces, and
annotation. Just make sure that the surface geometry is opaque.

vtkDataSetAttributes

vtkFieldData

vtkObject

vtkCellLinksvtkCellTypesvtkCellArray

Figure 19–5  Topology and attribute
data object diagram.

vtkDataArray Data

vtkCellDatavtkPointData

vtkObjectBase
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vtkExecutive

vtkDemandDrivenPipeline

vtkStreamingDemandDrivenPipeline

vtkAlgorithm vtkInformationVector
InputPortInformation
OutputPortInformation

vtkInformation vtkInformationKey

vtkInformationStringKeyvtkInformationIntegerKeyvtkInformationDataObjectKey

vtkInformationRequestKeyvtkInformationDoubleVectorKey

Figure 19–6  Pipeline object diagram.
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Imaging
The imaging object diagram is shown in Figure 19–14. Imaging integrates with the graphics pipeline
via the vtkImageData dataset. Also, it is possible to capture an image from the renderer via the
vtkRendererSource or vtkWindowToImageFilter object, and then feed the image into the imaging
pipeline. 

OpenGL Renderer
The OpenGL renderer object diagram is shown in Figure 19–15. Note that there are other rendering
libraries in VTK. The OpenGL object diagram is representative of these other libraries.

Picking 
The picking class hierarchy is shown in Figure 19–16. vtkPropPicker and vtkWorldPointPicker are
the fastest (hardware-based) pickers. All pickers can return a global x-y-z from a selection point in the
render window. vtkCellPicker uses software ray casting to return information about cells (cell id,
parametric coordinate of intersection). vtkPointPicker returns a point id. vtkPropPicker indicates
which instance of vtkProp was picked as well as returning the pick coordinates.

Figure 19–7  Source and filter object diagram.
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Transformation Hierarchy 
VTK provides an extensive, powerful transformation hierarchy. This hierarchy supports linear, non-
linear, affine, and homogeneous transformations. The transformation object diagram is shown in Fig-
ure 19–17.

Widgets and Interaction Style
VTK provides an extensive suite of interactive widgets and interaction styles. Widgets may appear in
the scene as 2D or 3D props (known as representations) that respond to user interaction. Note that an
interaction style is similar to a widget except that no representation is associated with an interactor

vtkOpenGLPolyDataMapper

vtkPolyDataMapper

vtkAbstractVolumeMappervtkMapper

vtkWriter

Figure 19–8  Mapper object diagram.
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(typically interactors are used to control cameras). The widget and interaction style object diagrams
are shown in Figure 19–9. 

19.2 Summary Of Filters

In this section we provide a brief summary of VTK filters. The section is divided into three parts: an
overview of source objects, a list of imaging filters, and a description of visualization filters. Classes
used to interface with data (i.e., readers, writers, importers, and exporters) are described in Chapter 12
“Reading and Writing Data” on page 239. 

Source Objects

In this section we provide a brief description of source objects. Source objects initiate the visualiza-
tion pipeline. Note that readers (source objects that read files) are not listed here. Instead, find them in

Figure 19–9  Widget and interaction style object diagram. Note that only a portion of the
widgets and interactor styles are shown
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Chapter 12 “Reading and Writing Data” on page 239. Each entry includes a brief description includ-
ing the type of output it generates.

• vtkArrowSource — generate a polygonal representation of an arrow.

vtkProperty

vtkBackfaceProperty

vtkMapper

vtkLookupTable

vtkCamera vtkRenderWindow

vtkLightCollectionvtkActorCollection

vtkRenderer

vtkDataSetMappervtkPolyDataMapper

vtkPolyData

Input

vtkActor

Figure 19–10  Graphics object diagram.
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• vtkAxes — create three orthogonal lines that form a set of x-y-z axes. (See “3D Text Annota-
tion and vtkFollower” on page 65.)

• vtkBooleanTexture — create a 2D texture map (structured points) based on combinations of
being inside of, outside of, or on a region boundary defined by an implicit function.

• vtkConeSource — generate a polygonal representation of a cone. (See “Glyphing” on page 94.)

• vtkCubeSource — generate a polygonal representation of a cube. (See “Assemblies” on
page 56.)

• vtkCursor3D — generate a 3D cursor (showing a bounding box and three intersecting lines)
given a bounding box and focal point.

• vtkCylinderSource — generate a polygonal representation of a cylinder. (See “Procedural
Source Object” on page 42.)

• vtkDiskSource — generate a polygonal representation of a disk with a hole in the center.

• vtkEarthSource — generate a polygonal representation of the earth as a sphere.

• vtkEllipticalButtonSource — create an ellipsoidal-shaped 3D button.

• vtkGlyphSource2D — generate a polygonal representation of a 2D glyph.

• vtkImageCanvasSource2D — create an image by drawing into it with primitive shapes. (See
“ImageCanvasSource2D” on page 126.)

• vtkImageEllipsoidSource — create an image of a ellipsoid distribution. (See “Image Logic” on
page 132.)

• vtkImageGaussianSource — create an image of a Gaussian distribution.

• vtkImageGridSource — create an image of an axis-aligned grid.

• vtkImageMandelbrotSource — create an image of the Mandelbrot set.

• vtkImageNoiseSource — create an image filled with random, uniform noise.

Figure 19–11  Volume rendering object diagram.
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• vtkImageSinusoidSource — create an image of sinusoidal values computed by specifying
period, phase, amplitude, and direction. (See “ImageSinusoidSource” on page 128.)

• vtkLineSource — create a polyline with resolution number of line segments, defined by two
end points. (See “Stream Surfaces” on page 97.)

• vtkMILVideoSource — Matrox imaging library frame grabber.

• vtkOutlineCornerSource — create wireframe outline corners for a user-specified bounding box
(similar to vtkOutlineCornerFilter, but explicitly specifying a bounding box instead of specify-
ing an input dataset from which to determine a bounding box).

• vtkOutlineSource — generate a wireframe outline around a user-specified bounding box (simi-
lar to vtkOutlineFilter, but explicitly specifying a bounding box instead of specifying an input
dataset from which to determine a bounding box).

vtkVolumeRayCastFunction

vtkVolumeRayCastCompositeFunction

vtkVolumeRayCastMIPFunction vtkVolumeRayCastIsosurfaceFunction

vtkVolumeRayCastMapper
vtkEncodedGradientEstimator

vtkEncodedGradientShader

vtkVolumeMapper

Figure 19–12  Structured volume rendering object diagram.
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vtkUnstructuredGridBunykRayCastFunction
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vtkUnstructuredLinearRayIntegrator

vtkUnstructuredGridPreIntegration

vtkUnstructuredLinearRayIntegrator

Figure 19–13  Unstructured grid volume rendering object diagram.
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• vtkParametricFunctionSource — tessellate a given parametric function (specified as a subclass
of vtkParametricFunction).

• vtkPlaneSource — generate an array of quadrilaterals in a plane by specifying three corners and
the resolution (in X and Y) of the plane. (See “Using Texture” on page 58.)

• vtkPlatonicSolidSource — generate a polygonal representation of each of the five Platonic sol-
ids (tetrahedron, cube, octahedron, icosahedron, and dodecahedron).

• vtkPointLoad — generate a tensor field from a point load on a semi-infinite domain.

• vtkPointSource — generate a random cloud of points within a specified radius. (See “Stream-
lines” on page 95.)

• vtkProgrammableDataObjectSource — a filter that can be programmed at run-time to read or
generate a vtkDataObject (i.e., a field). (See “Working With Field Data” on page 249.)

• vtkProgrammableSource — a filter that can be programmed at run-time to read or generate any
type of vtkDataSet. (See “Surfaces from Unorganized Points” on page 224.)

• vtkPSphereSource — a subclass of vtkSphereSource that can handle a request for a piece of the
data.

• vtkRectangularButtonSource — create a rectangular-shaped 3D button.

• vtkRegularPolygonSource — create a regular, n-sided polygon and/or a polyline. This is useful
for seeding streamlines or defining regions for clipping/cutting.

• vtkRendererSource — an imaging filter that takes the renderer or render window into the imag-
ing pipeline (great for screen capture).

Figure 19–14  Imaging object diagram.
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• vtkRTAnalyticSource — produce an image dataset whose pixel/voxel values are determined by
the function Maximum*Gaussian + XMag*sin(XFreq*X) + YMag*sin(YFreq*Y) +

ZMag*cos(ZFreq*Z).

• vtkSampleFunction — evaluate an implicit function over a volume. (See “Extract Subset of
Cells” on page 103.)

• vtkSphereSource — generate a polygonal representation of a sphere. (See “vtkDelaunay2D” on
page 218.)

• vtkSuperquadricSource — generates a polygonal representation of a superquadric.

• vtkTextSource — create a polygonal representation of input text.

• vtkTexturedSphereSource — create a polygonal representation of a sphere with associated tex-
ture coordinates.

• vtkTransformToGrid — sample a user-specified transform onto a 3D uniform grid.

• vtkTriangularTexture — generate a triangular 2D texture map.

• vtkVectorText — create a polygonal representation of text. (See “Transforming Data” on
page 70.)

• vtkVideoSource — grabs video signals as an image.

• vtkWin32VideoSource — Video-for-Windows video digitizer.

• vtkWindowToImageFilter — capture the contents of a vtkWindow as input to image pipeline.
(See “Saving Images” on page 247.)

vtkCameravtkLight

vtkObject

vtkProperty

vtkOpenGLRenderer

vtkRenderervtkRenderWindow

Figure 19–15  OpenGL / graphics interface object diagram.
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Imaging Filters  

In this section we provide a brief summary of imaging filters. Note that descriptions of other visual-
ization filters are found in “Visualization Filters” on page 455. Classes used to interface with data are
described in Chapter 12 “Reading and Writing Data” on page 239.

All the filters described here take vtkImageData (or obsolete vtkStructuredPoints) as input, and
typically produce the same type of output.

• vtkClipVolume — clip a volume with an implicit function to generate a tetrahedral mesh.

• vtkDiscreteMarchingCubes — a subclass of vtkMarchingCubes that (if computing scalars) will
store the output scalar value as cell-centered data.

• vtkExtractVOI — extract a volume of interest (a subset of the volume) and/or subsample the
volume. (See “Subsampling Image Data” on page 121.)

• vtkGreedyTerrainDecimation — approximates a height field with a triangle mesh (triangulated
irregular network - TIN). (See “Gaussian Splatting” on page 222.)

• vtkImageAccumulate — generate a histogram of the input image. (See “Histogram” on
page 132.)

Figure 19–16  Picking object diagram.
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Figure 19–17  Transformation object diagram.
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• vtkImageAnisotropicDiffusion2D — iteratively apply a 2D diffusion filter to perform edge-pre-
serving smoothing.

• vtkImageAnisotropicDiffusion3D — iteratively apply a 3D diffusion filter to perform edge-pre-
serving smoothing.

• vtkImageAppend — merge multiple input images into one output image; they will be concate-
nated along a user-specified axis. (See “Append Images” on page 129.)

• vtkImageAppendComponents — merge the components from two input images; the resulting
image will contain all the components from both images. (See “Append Images” on page 129.)

• vtkImageBlend — combine the components of multiple images according to the alpha values
and/or the opacity setting for each input; the number of components per input image must
match, and the output image will also have this number of components. (See “ImageGrid-
Source” on page 127.)

• vtkImageButterworthHighPass — apply a frequency-domain high pass filter.

• vtkImageButterworthLowPass — apply a frequency-domain low pass filter.

• vtkImageCacheFilter — cache (store) images for future use to avoid pipeline re-execution.
• vtkImageCast — change the scalar type of an image by casting from the input scalar type to a

user-specified output scalar type. (See “Convert Scalar Type” on page 128.)

• vtkImageChangeInformation — modify the spacing, origin, or extent of the data without
changing the data itself. (See “Change Spacing, Origin, or Extent” on page 129.)

• vtkImageCheckerboard — show two images at once using a checkerboard pattern.

• vtkImageCityBlockDistance — create a distance map (distance to the nearest 0-valued pixel/
voxel) using the city block (or Manhattan) metric (i.e., stepping along pixel/voxel edges, never
through the middle of a cell).

• vtkImageClip — reduce the size (extent) of the input image. (See “Subsampling Image Data”
on page 121.)

• vtkImageConstantPad — change the extent of the image, setting any pixels outside the original
extent to a constant user-specified value.

• vtkImageContinuousDilate3D — evaluate the maximum value in an ellipsoidal neighborhood.

• vtkImageContinuousErode3D — evaluate the minimum value in an ellipsoidal neighborhood.

• vtkImageConvolve — convolution of an image with a kernel.
• vtkImageCorrelation — create a correlation image for two input images.

• vtkImageCursor3D — add a cursor to the input image, modifying the pixels/voxels covered by
the cursor.

• vtkImageDataGeometryFilter — extract geometry (points, lines, planes) as vtkPolyData. (See
“Warp Based On Scalar Values” on page 122.)

• vtkImageDataStreamer — initiate streaming for image data; to satisfy a request for data, this
filter calls Update() on its input many times, each time requesting a different piece of the data.
This is helpful when operating on large data that cannot be stored in memory with all the addi-
tional information required by a filter operating on this image/volume data. (See “ImageNoise-
Source” on page 127.)
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• vtkImageDifference — generate a difference image / error value for two images.

• vtkImageDilateErode3D — increase the size of regions with one scalar value while decreasing
the size of regions with another scalar value along the boundary between the two.

• vtkImageDivergence — create a scalar field that represents the rate of change of the input vec-
tor field.

• vtkImageDotProduct — create a dot product image from two vector images.

• vtkImageEuclideanDistance — create a distance map (i.e., distance to the nearest 0-valued
pixel/voxel) 3D Euclidean distance (i.e., straight-line distance).

• vtkImageEuclideanToPolar — convert 2D Euclidean coordinates to polar coordinates.

• vtkImageExport — pass the data in a vtkImageData to a C programming language array, pro-
viding applications with direct access to the image data in memory. This is the reverse of vtkIm-
ageImport.

• vtkImageExtractComponents — extract a subset of the components of the input image.

• vtkImageFFT — perform a Fast Fourier Transform (i.e., transform from the spatial to the fre-
quency domain).

• vtkImageFlip — flip an image about a specified axis (i.e., right becomes left, etc.). (See “Image
Flip” on page 134.)

• vtkImageFourierCenter — shift the zero frequency from the origin to the center.

• vtkImageGaussianSmooth — perform 1D, 2D, or 3D Gaussian convolution to smooth the input
image. (See “Gaussian Smoothing” on page 133.)

• vtkImageGradient — compute the gradient vector in 2D or 3D at each point of an image; the
vector results are stored in the output image as scalar components. (See “Gradient” on
page 133.)

• vtkImageGradientMagnitude — similar to vtkImageGradient, but the magnitude of the gradient
vector at each point in the image is stored in the output image. (See “Gradient” on page 133.)

• vtkImageHSIToRGB — convert images stored using the HSI (hue, saturation, intensity) color
model to the RGB (red, green, blue) one.

• vtkImageHSVToRGB — convert images stored using the HSV (hue, saturation, value) color
model to the RGB (red, green, blue) one.

• vtkImageHybridMedian2D — perform a median (middle value) filter while preserving lines /
corners.

• vtkImageIdealHighPass — perform a simple frequency domain high pass filter.

• vtkImageIdealLowPass — perform a simple frequency domain low pass filter.

• vtkImageImport — create a vtkImageData from data in a C programming language array. This
is the reverse of vtkImageExport.

• vtkImageIslandRemoval2D — remove small clusters with a specified value from the image.

• vtkImageLaplacian — compute the Laplacian (divergence of the gradient).

• vtkImageLogarithmicScale — perform a log function on each pixel.
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• vtkImageLogic — perform a logic operation: AND, OR, XOR, NAND, NOR, NOT; the first
four operations require two input images; the last two only require one. (See “Image Logic” on
page 132.)

• vtkImageLuminance — calculate luminance of an RGB image (luminance = 0.3*R + 0.59*G +
0.11*B). (See “Image Luminance” on page 132.)

• vtkImageMagnify — increase the size of the image by an integer scale factor.

• vtkImageMagnitude — compute a magnitude image from the scalar components of an input
image. (See “Gradient” on page 133.)

• vtkImageMapToColors — map a single-component image through a lookup table. (See “Map
Image to Color” on page 131.)

• vtkImageMapToWindowLevelColors — map the single-component input image through a
lookup table and window / level it (i.e., modulate the color from the lookup table based on (S -
(L - W/2)) / W, where S is the scalar value, L is the level value, and W is the window value).
This allows you to highlight scalars in a specified range. (See “Map Image to Color” on
page 131.)

• vtkImageMarchingCubes — a streaming version of marching cubes.

• vtkImageMask — Combine a mask image with an input image. If a mask pixel is non-zero, the
output pixel is unchanged from the input; if a mask pixel is zero, the input pixel is et to a user-
specified “masked value”.

• vtkImageMaskBits — specify four unsigned int values, and use them to compute bitwise logi-
cal operations on each component of each input pixel (one unsigned int value per component).

• vtkImageMathematics — apply basic mathematical operations to one or two images. (See
“Image Mathematics” on page 135.)

• vtkImageMedian3D — compute a median (middle value) filter in a rectangular neighborhood.

• vtkImageMirrorPad — change the extent of the image; mirror the original image at its boundar-
ies to fill pixels outside the original extent.

• vtkImageNonMaximumSuppression — set non-maximum (i.e., not a peak) pixel values to 0.

• vtkImageNormalize — normalize the vector defined by the scalar components of an image.

• vtkImageOpenClose3D — perform opening or closing (image morphology operations) using
two dilate / erode operations.

• vtkImagePermute — reorder the axes of an image; use SetFilteredAxes() to specify how the X,
Y, and Z axes should be relabelled. (See “Image Permute” on page 134.)

• vtkImageQuantizeRGBToIndex — from an RGB (red, green, blue) image, create an index
image and a lookup table. The indices in the output image, when passed through the lookup
table, return the corresponding RGB values of the input image. This filter does not support
streaming because it must operate on the entire image.

• vtkImageRange3D — compute the range (max - min) in an ellipsoidal neighborhood.

• vtkImageRectilinearWipe — make a rectilinear combination of two images.

• vtkImageResample — resample an image to increase or decrease its size. (See “Speed vs.
Accuracy Trade-offs” on page 159.)
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• vtkImageReslice — permute, rotate, flip, scale, resample, deform, and/or pad image data in any
combination with reasonably high efficiency. (See “Image Reslice” on page 137.)

• vtkImageRFFT — perform a Reverse Fast Fourier Transform (i.e., transform from the fre-
quency to the spatial domain).

• vtkImageRGBToHSI — convert images stored using the RGB (red, green, blue) color model to
the HSI (hue, saturation, intensity) one.

• vtkImageRGBToHSV — convert images stored using the RGB (red, green, blue) color model
to the HSV (hue, saturation, value) one.

• vtkImageSeedConnectivity — label the regions connected to user-specified seeds by pixel/vox-
els with a specified value.

• vtkImageSeparableConvolution — compute three, 1D convolutions on an image (one along
each of the X, Y, and Z axes).

• vtkImageShiftScale — Shift the scalar values of the input image by a specified amount, and
then multiply them by the specified scale value. (See “Convert Scalar Type” on page 128.)

• vtkImageShrink3D — shrink (reduce the extent of) an image by subsampling on a uniform grid.
• vtkImageSkeleton2D — perform a skeleton operation in 2D.
• vtkImageSobel2D — compute the vector field of an image showing the gradient of the intensity

at each pixel using Sobel functions.
• vtkImageSobel3D — compute the vector field of a volume showing the gradient of the intensity

at each voxel using Sobel functions.
• vtkImageStencil — combine images via a cookie-cutter operation.
• vtkImageToImageStencil — converts vtkImageData into an image that can be used with vtkIm-

ageStencil or other VTK classes that apply a stencil to an image.
• vtkImageToPolyDataFilter — convert an image to polygons.
• vtkImageThreshold — perform binary or continuous thresholding, replacing scalar values that

do or do not meet the thresholding criteria with user-specified values.
• vtkImageTranslateExtent — shift the whole extent, but does not change the data, similar to

vtkImageChangeInformation.
• vtkImageVariance3D — compute an approximation of the variance within an ellipsoidal neigh-

borhood (i.e., the average of the difference squared between each pixel/voxel in the neighbor-
hood and the center pixel/voxel value).

• vtkImageWrapPad — pad an image using a mod operation on the pixel index so that the origi-
nal image is tiled across the new image.

• vtkLinkEdgels — link edgels together to form digital curves.
• vtkMarchingCubes — high-performance isocontouring algorithm. (See “Working With Data

Attributes” on page 89.)
• vtkMarchingSquares — high-performance isocontouring algorithm in 2D.
• vtkMemoryLimitImageDataStreamer — a subclass of vtkImageDataStreamer that determines

the number of pieces to use for streaming based on a user-specified memory limit.
• vtkRecursiveDividingCubes — generate an isocontour as a cloud of points.



19.2  Summary Of Filters 455

• vtkSimpleImageFilterExample — just copies the input image to the output; provided as a sim-
ple example of an imaging filter. Its superclass, vtkSimpleImageToImageFilter hides much of
the complexity of vtkImageAlgorithm. (See “A Simple Imaging Filter” on page 399.)

• vtkSynchronizedTemplates2D — high-performance isocontouring algorithm in 2D.
• vtkSynchronizedTemplates3D — high-performance isocontouring algorithm in 3D.
• vtkSynchronizedTemplatesCutter3D — generate a cut surface (by specifying a cut function)

from an image/volume dataset.

Visualization Filters
The classes listed below are organized to the type of data they input. Each class contains a brief
description of what it does and any special notations regarding multiple inputs or outputs.

Input Type vtkDataSet. These filters will process any type of dataset (that is, subclasses of vtkData-
Set).

• vtkAppendFilter — appends one or more datasets into a single unstructured grid. (See
“Appending Data” on page 100.)

• vtkArrayCalculator — perform mathematical operations on data in field data arrays.
• vtkAssignAttribute — label a data array as an attribute (scalars, vectors, etc.). (See “Working

With Field Data” on page 249.)
• vtkAttributeDataToFieldDataFilter — transform attribute data (either point or cell) into field

data.
• vtkBoxClipDataSet — generate an unstructured grid dataset consisting only of the cells (and

pieces of cells) contained in a user-specified box.
• vtkBrownianPoints — assign random vectors to points.
• vtkCastToConcrete — cast an abstract type of input (e.g., vtkDataSet) to a concrete form (e.g.,

vtkPolyData). (See “Extract Portions of the Mesh” on page 115.)
• vtkCellCenters — generate points (vtkPolyData) marking cell centers. (See “Labeling Data” on

page 68.)
• vtkCellDataToPointData — convert cell data to point data. (See “Working With Data Attri-

butes” on page 89.)
• vtkCellDerivatives — compute derivatives of scalar and vectors.
• vtkClipDataSet — cut through the cells of arbitrary vtkDataSets, returning everything con-

tained within a user-specified implicit function (or having a scalar value greater than the one
specified).

• vtkConnectivityFilter — extract geometrically connected cells into an unstructured grid. (See
“Extract Cells as Polygonal Data” on page 104.)

• vtkContourFilter — generate isosurface(s). (See “Contouring” on page 93.)
• vtkCutMaterial — computes cut plane for a (material, array) pair.
• vtkCutter — generate an n-1 dimensional cut surface from an n-dimensional dataset. (See “Cut-

ting” on page 98.)
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• vtkDashedStreamLine — generate a streamline with dashes representing elapsed time.
(Although this is a subclass of vtkStreamer, vtkStreamTracer does not duplicate its functional-
ity.)

• vtkDataSetSurfaceFilter — extract surface geometry from a dataset (faster version of vtkGeom-
etryFilter, but with less options).

• vtkDataSetToDataObjectFilter — converts a dataset into a general data object.

• vtkDataSetTriangleFilter — triangulate any type of dataset.

• vtkDicer — abstract superclass for generating data values based on spatial (or other) segrega-
tion.

• vtkDistributedDataFilter — redistribute data among processors in a parallel application into
spatially contiguous unstructured grid datasets. This filter is sometimes referred to as “D3” for
“distributed data decomposition”.

• vtkDistributedStreamTracer — generates streamlines by integrating a vector field for a dataset
distributed across processors.

• vtkEdgePoints — generate points along cell edges that intersect an isosurface.

• vtkElevationFilter — generate scalars according to projection along a vector. (See “An Abstract
Filter” on page 412.)

• vtkExtractEdges — extract the cell edges of a dataset as lines. (See “vtkDelaunay2D” on
page 218.)

• vtkExtractGeometry — extract cells that lie either entirely inside or outside of an implicit func-
tion. (See “Extract Subset of Cells” on page 103.)

• vtkExtractTensorComponents — extract the components of a tensor as scalars, vectors, nor-
mals, or texture coordinates.

• vtkExtractVectorComponents — extract components of vector as separate scalars.

• vtkFieldDataToAttributeDataFilter — convert general field data into point or cell attribute data.

• vtkGaussianSplatter — generate a scalar field in a volume by splatting points (injecting points
into a volume, distributing values to nearby voxels) with an elliptical, Gaussian distribution.
(See “Gaussian Splatting” on page 222.)

• vtkGeometryFilter — extract surface geometry from a dataset, and store the output as vtkPoly-
Data. (See “Extract Cells as Polygonal Data” on page 104.)

• vtkGlyph2D — a 2D specialization of vtkGlyph3D. Translation, rotation, and scaling of the
glyphs is constrained to the x-y plane.

• vtkGlyph3D — copy a polygonal glyph (second input to the filter defines the glyph) to every
point in the (first) input. (See “Glyphing” on page 94.)

• vtkHedgeHog — generate scaled and oriented lines at each point from the associated vector
field (basically a specialization of vtkGlyph3D).

• vtkHyperStreamline — use tensor data to generate a streamtube; the tube cross section is
warped according to eigenvectors.

• vtkIdFilter — generate scalars or field data from integer point or cells id values (useful for plot-
ting). (See “Labeling Data” on page 68.)
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• vtkImplicitModeller — generate a distance field by computing the distance from the input
geometry to the points of an image/volume dataset. (See “Creating An Implicit Model” on
page 213.)

• vtkImplicitTextureCoords — create texture coordinates based on an implicit function.

• vtkInterpolateDataSetAttributes — interpolate point- and cell-centered attribute data (scalars,
vectors, etc.) between two datasets (useful for animation).

• vtkMarchingContourFilter — generate isosurfaces/isolines from scalar values. This filter calls
vtkMarchingSquares, vtkMarchingCubes, vtkImageMarchingCubes, or vtkContourFilter
(depending on the type of the input dataset) to perform the contouring.

• vtkMaskFields — allow control of which fields are passed to the output.

• vtkMaskPoints — select a subset of input points. This filter is often used in conjunction with
vtkGlyph3D to limit the number of glyphs produced. (See “Glyphing” on page 94.)

• vtkMergeDataObjectFilter — merge a data object and dataset to form a new dataset (useful for
combining data stored separately as geometry and solution files).

• vtkMergeFields — merge components from multiple arrays (all in one of cell data, point data,
or general field data) to form a new array.

• vtkMergeFilter — merge components of data (e.g., geometry, scalars, vectors, etc.) from differ-
ent datasets into a single dataset. (See “Merging Data” on page 99.)

• vtkMeshQuality — calculate the geometric quality of tetrahedral meshes.

• vtkOBBDicer — divide a dataset into pieces using oriented bounding boxes.

• vtkOutlineCornerFilter — create wireframe outline corners for arbitrary input dataset (similar
to vtkOutlineCornerSource, but using the bounding box of the dataset).

• vtkOutlineFilter — create a wireframe outline around the input dataset (similar to vtkOutline-
Source, but using the bounding box of the dataset). (See “Probing” on page 100.)

• vtkPassThroughFilter — filter which shallow copies its input to its output.

• vtkPCellDataToPointData — a subclass of vtkCellDataToPointData that can operate on pieces
of the data and produce piece-invariant results.

• vtkPointDataToCellData — convert point data to cell data. (See “Working With Data Attri-
butes” on page 89.)

• vtkPOutlineCornerFilter — performs the functionality of vtkOutlineCornerFilter on polygonal
data distributed across processes. It ensures that the outline corners are drawn around the cor-
ners of the bounding box of the whole dataset, not around the corners of the bounding box for
each piece of the data.

• vtkPProbeFilter — a parallel version of vtkProbeFilter.

• vtkProbeFilter — probe, or resample, one dataset with another. (See “Probing” on page 100.)

• vtkProcessIdScalars — store in a point or cell scalar array the process id of the process contain-
ing this portion of the data. This is useful for visually displaying the partitioning of data across
processors.

• vtkProgrammableAttributeDataFilter — a run-time programmable filter that operates on data
attributes.
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• vtkProgrammableFilter — a run-time programmable filter. (See “Programmable Filters” on
page 419.)

• vtkProgrammableGlyphFilter — a run-time programmable filter that can generate glyphs that
vary arbitrarily based on data value.

• vtkProjectedTexture — generate texture coordinates projected onto an arbitrary 
surface.

• vtkRearrangeFields — move and/or copy data arrays (fields) between general field data, point
data, and cell data. (See “Working With Field Data” on page 249.)

• vtkReflectionFilter — reflects a dataset across a plane.
• vtkSelectVisiblePoints — select the subset of points that are visible; hidden points are culled

(not passed to the output). (See “Labeling Data” on page 68.)
• vtkShepardMethod — resample a set of points into a volume.
• vtkShrinkFilter — shrink the cells of a dataset by moving the vertices of each cell toward that

cell’s centroid (average position of the vertices); this causes the cells to break apart from one
another. (See “Extract Subset of Cells” on page 103.)

• vtkSimpleElevationFilter — generate scalars from dot product of points with user-specified
vector.

• vtkSpatialRepresentationFilter — create a polygonal representation of a spatial search (i.e.,
locator) object.

• vtkSplitField — Split a multi-component field (data array) into multiple single-component
fields.

• vtkStreamer — abstract superclass performs vector field particle integration. Deprecated; use
vtkStreamTracer and its subclasses instead.

• vtkStreamLine — generate a streamline from a vector field. Deprecated; use vtkStreamTracer
and its subclasses instead.

• vtkStreamPoints — generate a set of points along a streamline from a vector field. Deprecated;
use vtkStreamTracer and its subclasses instead.

• vtkStreamTracer — generates streamlines by integrating a vector field. (See “Streamlines” on
page 95.)

• vtkSurfaceReconstructionFilter — constructs a surface from unorganized points. (See “Sur-
faces from Unorganized Points” on page 224.)

• vtkTensorGlyph — generate glyphs based on tensor eigenvalues and eigenvectors.
• vtkTextureMapToCylinder — generate 2-D texture coordinates by projecting data onto a cylin-

der. (See “Generate Texture Coordinates” on page 111.)
• vtkTextureMapToPlane — generate 2-D texture coordinates by projecting data onto a plane.
• vtkTextureMapToSphere — generate 2-D texture coordinates by projecting data onto a sphere.
• vtkThreshold — extract cells whose scalar values lie below, above, or between a threshold

range. (See “Working With Data Attributes” on page 89.)
• vtkThresholdPoints — extract points whose scalar values lie below, above, or between a thresh-

old range.
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• vtkThresholdTextureCoords — compute texture coordinates based on satisfying a threshold cri-
terion.

• vtkTransformTextureCoords — transform (e.g., scale, shift, etc.) texture coordinates. (See
“Generate Texture Coordinates” on page 111.)

• vtkVectorDot — store a scalar per point computed from the dot product between the vector and
normal at that point.

• vtkVectorNorm — compute scalars from the Euclidean norm of vectors.

• vtkVoxelModeller — convert an arbitrary dataset into a voxel (image/volume) representation.
This filter is similar to vtkImplicitModeller, but it stores occupancy instead of distance.

Input Type vtkPointSet. These filters will process datasets that are a subclass of vtkPointSet. (These
classes explicitly represent their points with an instance of vtkPoints.)

• vtkDelaunay2D — create constrained and unconstrained Delaunay triangulations including
alpha shapes. (See “vtkDelaunay2D” on page 218.)

• vtkDelaunay3D — create 3D Delaunay triangulation including alpha shapes. (See
“vtkDelaunay3D” on page 221.)

• vtkExtractDataOverTime — extract point data from a time sequence for a specified point id.

• vtkPCAAnalysisFilter — performs principal component analysis of a set of aligned pointsets.

• vtkProcrustesAlignmentFilter — aligns a set of pointset datasets together in a least squares
sense to their mutual mean.

• vtkTransformFilter — reposition the points in a vtkPointSet using a 4x4 transformation matrix.
(See “Transforming Data” on page 70.)

• vtkWarpLens — transform points according to lens distortion.

• vtkWarpScalar — modify point coordinates by scaling according to scalar values. (See “Warp
Based On Scalar Values” on page 122.)

• vtkWarpTo — modify point coordinates by warping towards a point.

• vtkWarpVector — modify point coordinates by scaling in the direction of the point vectors.

• vtkWeightedTransformFilter — transform based on per-point or per-cell weighting functions.

Input Type vtkPolyData. The input type must be vtkPolyData. Remember that filters that accept
vtkDataSet and vtkPointSet will also process vtkPolyData.

• vtkAppendPolyData — collect one or more vtkPolyData datasets into a single vtkPolyData.
(See “Appending Data” on page 100.)

• vtkApproximatingSubdivisionFilter — a superclass for classes that subdivide the cells of a
polygonal surface using an approximating scheme.

• vtkArcPlotter — plot data along an arbitrary polyline.

• vtkBandedPolyDataContourFilter — generate filled contours (bands of cells that all have the
same cell scalar value).
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• vtkButterflySubdivisionFilter — subdivide a triangular, polygonal surface using a butterfly
subdivision scheme; four new triangles are created for each triangle of the polygonal surface.

• vtkCleanPolyData — merge coincident points, remove degenerate primitives.

• vtkClipPolyData — clip a polygonal dataset with an implicit function (or scalar value), return-
ing all the cells within the implicit function (or greater than the scalar value). (See “Clip Data”
on page 110.)

• vtkCollectPolyData — when performing distributed processing of the dataset, collect the dis-
tributed polygonal datasets to the 0th process.

• vtkCurvatures — compute the curvature (Gauss and mean) of a vtkPolyData object at each
point in the dataset.

• vtkDecimatePro — reduce the number of triangles in a triangle mesh. (See “Decimation” on
page 107.)

• vtkDepthSortPolyData — Sort polygons based on depth (distance from the camera); used for
translucent rendering. (See “Actor Transparency” on page 55.)

• vtkDuplicatePolyData — when using a distributed tiled display, put an entire copy of the data-
set on every process. The filter is used at the end of a pipeline for driving a tiled display.

• vtkExtractPolyDataGeometry — extract polygonal cells that lie entirely inside or outside of an
implicit function. This is very similar to the functionality of vtkClipPolyData.

• vtkExtractPolyDataPiece — extract a piece of a polygonal dataset as requested by a down-
stream filter or mapper.

• vtkFeatureEdges — extract edges of cells in a polygonal dataset that meet certain conditions
(feature, boundary, manifold, non-manifold edges).

• vtkGraphLayoutFilter — distribute an undirected graph network into pleasing arrangement.

• vtkHull — generate a convex hull of a polygonal dataset using six or more independent planes
to bound the dataset.

• vtkLinearExtrusionFilter — generate polygonal data by sweeping a vtkPolyData according to a
specified straight-line extrusion function. (See “Extrusion” on page 217.)

• vtkLinearSubdivisionFilter — subdivide a triangular, polygonal surface using a linear subdivi-
sion scheme; four new triangles are created for each triangle of the polygonal surface.

• vtkLoopSubdivisionFilter — subdivide a triangular, polygonal surface using Loop’s subdivi-
sion scheme (described in Loop, C., "Smooth Subdivision surfaces based on triangles,", Mas-
ters Thesis, University of Utah, August 1987).

• vtkMaskPolyData — create a new vtkPolyData by selecting every nth cell of the input vtkPoly-
Data; n is user-specified.

• vtkPLinearExtrusionFilter — a subclass of vtkLinearExtrusionFilter that can produce piece-
invariant results.

• vtkPolyDataConnectivityFilter — extract geometrically connected regions of the dataset. (See
“Extract Portions of the Mesh” on page 115.)

• vtkPolyDataNormals — generate surface normal vectors (i.e., vectors perpendicular to the geo-
metric surface) at each point in the dataset. (See “Generate Surface Normals” on page 107.)
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• vtkPolyDataStreamer — request pieces one-by-one from the input (upstream filters), and
append the resulting polygonal data (using vtkAppendPolyData) to form a single output dataset.

• vtkPolyDataToImageStencil — converts vtkPolyData into an image that can be used with
vtkImageStencil or other VTK classes that apply a stencil to an image.

• vtkPPolyDataNormals — a subclass of vtkPolyDataNormals that can produce piece-invariant
results.

• vtkProjectedTerrainPath — project an input polyline onto a terrain image (a 2D vtkImageData
whose scalars are height data).

• vtkQuadricClustering — a decimation algorithm (using spatial binning) for very large datasets.
(See “Decimation” on page 107)

• vtkQuadricDecimation — a decimation algorithm using the quadric error measure. (See “Deci-
mation” on page 107.)

• vtkQuantizePolyDataPoints — quantizes x-y-z coordinates of points (i.e., converts the coordi-
nates to integer-valued coordinates) in addition to inherited functionality of vtkCleanPolyData.

• vtkReverseSense — reverse the connectivity order of points in a cell and/or the direction of sur-
face normals. (See “Surfaces from Unorganized Points” on page 224.)

• vtkRibbonFilter — create oriented ribbons from lines in a polygonal dataset.

• vtkRotationalExtrusionFilter — generate polygonal data by sweeping a vtkPolyData according
to a specified rotational path. (See “Extrusion” on page 217.)

• vtkRuledSurfaceFilter — construct a polygonal surface from two or more “parallel” lines. This
filter is typically used to create stream surfaces from a rake of streamlines. (See “Stream Sur-
faces” on page 97.)

• vtkSelectPolyData — select polygonal data by drawing a loop (i.e., creating a list of x-y-z point
coordinates). The polygonal output is either the cells contained within the loop or unchanged
geometry with a new scalar array indicating the selected points.

• vtkShrinkPolyData — shrink polygonal data by moving the points of each cell towards the
cell’s centroid, causing the polygonal cells to disconnect from one another.

• vtkSmoothPolyDataFilter — use Laplacian smoothing to “relax” the polygonal mesh, making
the cells “better-shaped” and the vertices more evenly distributed. (See “Smooth Mesh” on
page 109.)

• vtkSplineFilter — generate uniformly subdivided polylines from an input dataset containing
polylines using a vtkSpline.

• vtkStripper — generate triangle strips from input triangles and polylines from input lines in the
polygonal mesh. (See “Warp Based On Scalar Values” on page 122.)

• vtkSubPixelPositionEdgels — adjust edgel (line) positions in the input polygonal dataset based
on gradients contained in the second input (a vtkImageData).

• vtkTransformPolyDataFilter — reposition the points in a polygonal dataset according to a 4x4
transformation matrix. This filter is like vtkTransformFilter, but it is specialized for vtkPoly-
Data. (See “Transforming Data” on page 70.)
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• vtkTransmitPolyDataPiece — when working in a distributed environment and all the polygonal
data is initially on process 0, break the dataset into pieces (one per process), and send each pro-
cess its corresponding piece.

• vtkTriangleFilter — generate triangles from polygons or triangle strips.

• vtkTriangularTCoords — generate texture coordinates for the triangles in a polygonal dataset.

• vtkTubeFilter — wrap lines with geometric tubes. (See “vtkDelaunay2D” on page 218.)

• vtkVoxelContoursToSurfaceFilter — convert line contours (stored in a polygonal dataset as
vtkPolygon cells) into a surface.

• vtkWindowedSincPolyDataFilter — smooths meshes using a windowed sinc function (a stan-
dard signal processing low-pass filter). (See “Smooth Mesh” on page 109.)

Input Type vtkStructuredGrid. The input type must be vtkStructuredGrid. Remember that filters
that accept vtkDataSet and vtkPointSet will also process vtkStructuredGrid.

• vtkBlankStructuredGrid — convert a specified point scalar array into a blanking field (i.e., an
array containing 0’s for points considered “off” and 1’s for points considered “on”). A point is
blanked (marked “off”) if its scalar value lies within a specified scalar range; it is not blanked
(i.e., marked “on”) otherwise.

• vtkBlankStructuredGridWithImage — create a blanking field (i.e., an array containing 0’s for
points considered “off” and 1’s for points considered “on”) for a structured grid with an image
whose dimensions are the same as those of the structured grid. Zero values in the image indi-
cate that the output point is blanked; non-zero values indicate that the output point is visible.

• vtkExtractGrid — extract a region of interest and/or subsample a vtkStructuredGrid. (See “Sub-
sampling Structured Grids” on page 113.)

• vtkGridSynchronizedTemplates3D — high-performance isocontouring algorithm specialized
for structured grid datasets.

• vtkStructuredGridClip — reduce the extent of the input structured grid. This filter’s functional-
ity is very similar to vtkImageClip, but it operates on a structured grid instead of an image or
volume.

• vtkStructuredGridGeometryFilter — extract a region of the structured grid (by specifying the
extents of this region) as polygonal geometry (points, lines, surfaces). (See “Extract Computa-
tional Plane” on page 112.)

• vtkStructuredGridOutlineFilter — generate a wireframe outline of the boundaries of the struc-
tured grid. This is similar to the vtkOutlineFilter, but the edges of the outline will follow the
curves of the boundaries of the vtkStructuredGrid.

Input Type vtkUnstructuredGrid. These filters take vtkUnstructuredGrid as input. Remember that
filters that accept vtkDataSet and vtkPointSet will also process vtkUnstructuredGrid’s.

• vtkContourGrid — generate isosurfaces/isolines from scalar values, specialized for unstruc-
tured grids. (See “Contour Unstructured Grids” on page 117.)

• vtkExtractUnstructuredGrid — extract a subset of an unstructured grid either by region of inter-
est, by point ids, or by cell ids. (See “Extract Portions of the Mesh” on page 115.)
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• vtkExtractUnstructuredGridPiece — extract a piece of an unstructured grid dataset as requested
by a downstream filter or mapper.

• vtkExtractUserDefinedPiece — a subclass of vtkExtractUnstructuredGridPiece where the cells
composing a piece are defined by a user-specified function.

• vtkSubdivideTetra — subdivide a tetrahedral mesh into 12 tetrahedra for every original tetrahe-
dron.

• vtkTransmitUnstructuredGridPiece — when working in a distributed environment and all the
unstructured grid data is initially on process 0, break the dataset into pieces (one per process),
and send each process its corresponding piece.

Input Type vtkRectilinearGrid. The input type must be vtkRectilinearGrid. Remember that filters
that accept vtkDataSet will also process vtkRectilinearGrid.

• vtkExtractRectilinearGrid — extract a sub-grid (Volume of Interest, or VOI) from the struc-
tured rectilinear dataset.

• vtkRectilinearGridClip — reduce the size (extent) of the input rectilinear grid dataset.

• vtkRectilinearGridGeometryFilter — extract a region of the rectilinear grid (by specifying the
extents of this region) as polygonal geometry (points, lines, surfaces). (See “Extract Computa-
tional Plane” on page 112.)

• vtkRectilinearGridOutlineFilter — create a wireframe outline around the boundaries of a recti-
linear grid.

• vtkRectilinearGridToTetrahedra — create a tetrahedral mesh (vtkUnstructuredGrid) from a rec-
tilinear grid.

• vtkRectilinearSynchronizedTemplates — generate isosurface from scalar values, specialized
for rectilinear grids.

Mapper Objects

In this section we provide a brief description of mapper objects. Mapper objects terminate the visual-
ization pipeline. Note that writers (mapper objects that write files) are not listed here. Instead, find
them in “Reading and Writing Data” on page 239. Each entry includes a brief description including
the type of input it requires.

• vtkDataSetMapper — maps any type of dataset to the graphics system. (See “Extract Cells as
Polygonal Data” on page 104.)

• vtkFixedPointVolumeRayCastMapper — maps a volume (vtkImageData) to an image via soft-
ware ray casting (using 15-bit fixed-point precision for calculations) for volumes containing up
to 4-component scalar of any data type.

• vtkImageMapper — 2D image display.

• vtkLabeledDataMapper — generates 3D text labels for a dataset based on underlying data val-
ues. (See “Labeling Data” on page 68.)

• vtkPolyDataMapper — maps polygonal data to the graphics system. (See “Defining Geometry”
on page 53 as well as many of the code examples in this book.)
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• vtkPolyDataMapper2D — draws vtkPolyData into the overlay plane.

• vtkProjectedTetrahedraMapper — maps an unstructured grid to an image using the volume ren-
dering technique described by Shirley and Tuchman in "A Polygonal Approximation to Direct
Scalar Volume Rendering" in Computer Graphics, December 1990.

• vtkTextMapper — displays 2D text annotation. (See “2DText Annotation” on page 63.)

• vtkUnstructuredGridVolumeRayCastMapper — maps an unstructured grid to an image via soft-
ware ray casting.

• vtkUnstructuredGridVolumeZSweepMapper — maps an unstructured grid to an image using
the ZSweep technique described by Ricardo Farias, Joseph S. B. Mitchell, and Claudio T. Silva
in “ZSWEEP: An Efficient and Exact Projection Algorithm for Unstructured Volume Render-
ing” in 2000 Volume Visualization Symposium, pages 91--99, October 2000.

• vtkVolumeRayCastMapper — maps a volume (vtkImageData) to an image via software ray
casting for volumes containing single-component unsigned short or unsigned char scalars.

• vtkVolumeTextureMapper2D — maps a volume (vtkImageData) to an image via 2D textures.

• vtkVolumeTextureMapper3D — maps a volume (vtkImageData) to an image via 3D textures,
taking advantage of current graphics hardware to perform the 3D texture mapping.

Actor (Prop) Objects

The following is a brief description of the various types of vtkProp (e.g., vtkProp3D and vtkActor)
available in the system.

• vtkActor — a type of vtkProp3D whose geometry is defined by analytic primitives such as
polygons and lines; it is often used for representing a dataset in a 3D scene. (See “Actors” on
page 53.)

• vtkActor2D — type of prop drawn in the overlay plane. (See “Controlling vtkActor2D” on
page 62 and “Text Annotation” on page 63.)

• vtkAnnotatedCubeActor — a subclass of vtkProp3D that displays a 3D cube with face labels
indicating coordinate directions. It is intended for use with vtkOrientationMarkerWidget to
indicate direction in a 3D scene.

• vtkAssembly — an ordered grouping (hierarchy) of vtkProp3D’s with a shared transformation
matrix. (See “Assemblies” on page 56.)

• vtkAxesActor — a subclass of vtkProp3D that displays three labeled coordinate axes. It is
intended for use with vtkOrientationMarkerWIdget to indicate direction in a 3D scene.

• vtkAxisActor2D — a single labeled axis drawn in the overlay plane.

• vtkCaptionActor2D — attach a text caption to an object.

• vtkCornerAnnotation — display text in the four corners of a viewport.

• vtkCubeAxesActor2D — draw the x-y-z axes around a bounding box (specified using a vtkDa-
taSet, a vtkProp, or manually specifying the bound). Each axis is labeled with the range of the
coordinates of the bounding box in its associated dimension. (See “Bounding Box Axes
(vtkCubeAxesActor2D)” on page 68.)
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• vtkFollower — a vtkActor that always faces the camera. (See “3D Text Annotation and vtkFol-
lower” on page 65.)

• vtkImageActor — a special type of vtkProp3D that draws an image as a texture map on a single
polygon. (See “Image Actor” on page 124.)

• vtkLegendBoxActor — used by vtkXYPlotActor to draw curve legends; combines text, sym-
bols, and lines into a curve legend for labeling the curves in the vtkXYPlotActor.

• vtkLODActor — a simple level-of-detail scheme for rendering 3D geometry. (See “Level-Of-
Detail Actors” on page 55.)

• vtkLODProp3D — level-of-detail method for vtkProp3D’s. It is more general-purpose than
vtkLODActor because it supports any type of vtkProp3D, including vtkVolume (for volume
rendering). (See “vtkLODProp3D” on page 57.)

• vtkParallelCoordinatesActor — multivariate visualization technique for displaying a vtkDataO-
bject. Parallel coordinates represent N-dimensional data by using a set of N parallel axes (not
orthogonal like the usual x-y-z Cartesian axes). Each N-dimensional point is plotted as a poly-
line, where each of the N components of the point lie on one of the N axes, and the components
are connected by straight lines.

• vtkPropAssembly — an ordered grouping (hierarchy) of vtkProps.

• vtkProp3D — a transformable (i.e., has a matrix) type of vtkProp. (See “Controlling 3D Props”
on page 52.)

• vtkScalarBarActor — a labeled, colored bar that visually expresses the relationship between
color and scalar value. (See “Scalar Bar” on page 66.)

• vtkTextActor — text drawn in the overlay plane that can be set to scale as the viewport changes
size. (See “2DText Annotation” on page 63.)

• vtkTextActor3D — a subclass of vtkProp3D for displaying text. Unlike vtkTextActor, it sup-
ports oriented text.

• vtkVolume — a vtkProp3D used for volume rendering.

• vtkXYPlotActor — draw an x-y plot of scalar data contained in one or more vtkDataSets. (See
“X-Y Plots” on page 66.)

Views and Informatics

VTK version 5.4 and later have extensive support for informatics (information visualization) and
related classes (e.g., vtkView). Figure 19–18 shows informatics-related object diagrams. Note that is
support for Qt charting is built into a portion of the view hierarchy (only if VTK is compiled against
Qt). Finally, many of the classes here require that the Boost Graph Library (http://www.boost.org/doc/
libs/1_39_0/libs/graph/doc/index.html) or Parallel Boost Graph Library (PBGL) is built with VTK,
which of courses requires enabling this option in the associated CMake build process. For more infor-
mation on the Information Visualization capabilities of VTK See “Information Visualization” on
page 163.

vtkGraph Algorithms. The following are algorithms that produce the data object type vtkGraph. By
default the algorithms take vtkGraph as input, but this can be changed by overriding the method
FillInputPortInfo().
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• vtkBoostBrandesCentrality — compute Brandes betweenness centrality on a vtkGraph.

• vtkBoostBreadthFirstSearch — perform a breadth-first search.

• vtkBoostConnectedComponents — find the connected components of a graph.

• vtkCollapseGraph — collapses vertices onto their neighbors based on an input selection.

• vtkCollectGraph — collect a distributed graph onto vertex 0.

• vtkEdgeLayout — layout a graph using complex edge placement (including curved edges).
This is different than vtkGraphLayout which places vertices (connected by straight lines). Mul-
tiple strategies are supported.

• vtkExtractSelectedGraph — return a subgraph of the input graph based on a selection.

• vtkGraphHierarchicalBundleEdges — layout a graph with reference to a supplementary vtk-
Tree. The vtkGraph defines the topology of the graph; vtkTree defines the geometry.

• vtkGraphLayout — layout a graph’s vertices using a variety of strategies.

• vtkPBGLBreadthFirstSearch — perform a breadth-first search on a distributed graph using
PBGL.

• vtkPBGLCollapseGraph — collapse multiple vertices (with the same value) onto the same ver-
tex in a distributed graph using PBGL.

• vtkPBGLCollapseParallelEdges — collapse multiple vertices into a single vertex using PBGL.

• vtkPBGLCollectGraph — collects all the pieces of a distributed vtkGraph onto a single, non-
distributed vtkGraph.

• vtkPBGLConnectedComponents — compute connected components on a distributed graph
using PBGL.

• vtkPBGLGraphSQLReader — create a graph using two SQL tables. The edge table must have
one row for each edge, with two columns that define the edge source and target. The vertex
table has one romw for each vertex, with field values that match those in the edge table.

• vtkPBGLMinimumSpanningTree — compute the minimal spanning tree in a distributed graph.

• vtkPBGLRandomGraphSource — generate a distributed graph with random edges.

• vtkPBGLRMATGraphSource — generate a distributed, random graph built according to the
recursive matrix (R-MAT) model.

• vtkPBGLShortestPaths — compute the shortest path from an origin vertex to all other vertices
in a distributed graph.

• vtkPBGLVertexColoring — compute a vertex coloring for a distributed, undirected graph
where each vertex has a color distinct from its adjacent vertices.

• vtkPerturbCoincidentVertices — moves vertices slightly so they do not overlap.

• vtkRandomGraphSource — generate a random graph with a specified number of vertices.

• vtkRemoveIsolatedVertices — remove vertices of a graph with degree zero.

• vtkSplineGraphEdges — subsample graph edges to make smooth curves.

• vtkSQLDatabaseGraphSource — generate a graph from a SQL query.

• vtkSQLGraphReader — read a graph from a SQL database.
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• vtkTableToGraph — convert a vtkTable into a vtkGraph using an auxilliarry link graph.
• vtkVertexDegree — adds an attribute data array with the degree of each vertex.

vtkTable Algorithms. The following are algorithms that produce the data object type vtkTable. By
default the algorithms take vtkTable as input, but this can be changed by overriding the method FillIn-
putPortInfo().

• vtkBoostSplitTableField — splits table fields by creating new rows containined delimited data.
• vtkCollectTable — collect a distributed table.
• vtkDataObjectToTable — extract VTK field data as a table.
• vtkDelimitedTextReader — reader for parsing a text file. A delimiter (which can be any charac-

ter) is used to separate entries in the table.
• vtkExtractSelectedRows — return the selected rows of a table.
• vtkExtractTemporalFieldData — extract temporal arrays from input field data.
• vtkFixedWidthTextReader — read text files with fixed-width fields.
• vtkISIReader — read ISI files. ISI is a tagged format for expressing bibliographic citations.
• vtkMergeColumns — merge two columns into a single column. If the data is numeric, the val-

ues are summed in the merged column. If the data arrays are strings, the values are concate-
nated with a separating space (if both strings are non-empty).

• vtkMergeTables — combine two tables.
• vtkRISReader — read RIS files. RIS is a tagged format for expressing bibliographic citations.
• vtkRowQueryToTable — execute a SQL query and place the results into a table.
• vtkSQLDatabaseTableSource — generate a table from an SQL query.
• vtkStatisticsAlgorithm — this is the base class for statistics algorithms including bivariate,

means, multi-correlative, and univariate statistics.
• vtkThresholdTable — threshold table rows using user-specified minimum and maximum val-

ues.

vtkTree Algorithms. The following are algorithms that produce the data object type vtkTree. By
default the algorithms take vtkTree as input, but this can be changed by overriding the method FillIn-
putPortInfo().

• vtkAreaLayout — create a tree ring based on a variety of area layout strategies.
• vtkBoostBreadthFirstSearchTree — perform a breadth-first-search from a given source vertex

using BGL.
• vtkBoostPrimMinimumSpanningTree — construct a minimum spanning tree from a graph,

starting vertex, and an edge weighting array.
• vtkGroupLeafVertices — a filter that expands a tree and categorizes leaf vertices.
• vtkNetworkHierarchy — generate a tree from a graph from network IP addressed contained in

the graph.
• vtkPruneTreeFilter — removes a subtree rooted at a particular vertex in a vtkTree.
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• vtkStahlerMetric — compute the Stahler metric for a tree. This metric characterizes the com-
plexity of the sub-tree rooted at each node.

• vtkTableToTreeFilter — convert a vtkTable into a vtkTree.
• vtkTreeFieldAggregator — assign field data values to all the vertices in the tree, working from

the leaves on up.
• vtkTreeLevelsFilter — add level and leaf fields (i.e., data arrays) to a vtkTree.
• vtkTreeMapLayout — layout a tree into a tree map. Each vertex in the tree corresponds to a

rectangular region in the tree map.
• vtkXMLTreeReader — read an XML file into a vtkTree.

vtkUndirectedGraph Algorithms. The following are algorithms that produce the data object type
vtkUndirectedGraph. By default the algorithms take vtkGraph as input, but this can be changed by
overriding the method FillInputPortInfo().

• vtkBoostConnectedComponents — find the bi-connected components of a graph using BGL.
• vtkChacoGraphReader — read Chaco graph files.
• vtkTulipReader — read Tulip graph files.
• vtkXGMLReader — read XGML graph files.

vtkDirectedGraph Algorithms. The following are algorithms that produce the data object type vtk-
DirectedGraph. By default the algorithms take vtkGraph as input, but this can be changed by overrid-
ing the method FillInputPortInfo().

• vtkPipelineGraphSource — construct a graph from a VTK pipeline.

vtkPassInputType Algorithms. The following are algorithms that produce the same data object type
as their input type. By default the algorithms take vtkDataObject as input, but this can be changed by
overriding the method FillInputPortInfo().

• vtkAddMembershipArray — add an array to the output indicating membership within an input
selection.

• vtkApplyColors — color a dataset using default colors, lookup tables, annotations, and/or a
selection.

• vtkApplyIcons — generate icons for a dataset using default colors, lookup tables, annotations,
and/or a selection.

• vtkArrayMap — map values in an input array to different values in an output array of (possibly)
different type.

• vtkAssignAttribute — labels a field as an attribute.
• vtkAssignCoordinates — given two or three arrays take those values in those arrays and use

them as the x-y-z coordinates.
• vtkConvertSelectionDomain — convert a selection from one domain to another using known

domain mappings.
• vtkDataRepresentation — a general superclass for all data representations.
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• vtkGeoAssignCoordinates — given latitude and longitude, take those values and convert them
to x-y-z world coordinates.

• vtkPassThrough — shallow copies the input to the output.

• vtkProgrammableFilter — a general-purpose, user-programmable filter.

• vtkRemoveHiddenData — remove rows/edges/vertices of input data flagged by annotation.

• vtkTemporalStatistics — compute statistics of point or cell data as it changes over time. 

• vtkTransferAttributes — transfer data from a graph representation to a tree representation using
direct mapping or pedigree ids.

19.3 VTK File Formats
The Visualization Toolkit provides a number of source and writer objects to read and write popular
data file formats. The Visualization Toolkit also provides some of its own file formats. The main rea-
son for creating yet another data file format is to offer a consistent data representation scheme for a
variety of dataset types, and to provide a simple method to communicate data between software.

vtkRenderView

vtkView

Figure 19–18  Informatics and vtkView hierarchy.
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vtkTree

vtkGraphAlgorithm vtkTreeAlgorithmvtkTableAlgorithm vtkUndirectedGraphAlgorithm

vtkDirectedGraphAlgorithm
vtkTreeMapLayout

vtkEdgeLayout

vtkGraphLayout
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Whenever possible, we recommend that you use formats that are more widely used. But if this is not
possible, the Visualization Toolkit formats described here can be used instead. Note that these formats
may not be supported by many other tools.

There are two different styles of file formats available in VTK. The simplest are the legacy,
serial formats that are easy to read and write either by hand or programmatically. However, these for-
mats are less flexible than the XML based file formats described later in this section. The XML for-
mats support random access, parallel I/O, and portable data compression and are preferred to the
serial VTK file formats whenever possible.

Simple Legacy Formats

The legacy VTK file formats consist of five basic parts.

1. The first part is the file version and identifier. This part contains the single line: # vtk 
DataFile Version x.x. This line must be exactly as shown with the exception of the version 
number x.x, which will vary with different releases of VTK. (Note: the current version number 
is 3.0. Version 1.0 and 2.0 files are compatible with version 3.0 files.)

2. The second part is the header. The header consists of a character string terminated by end-of-
line character \n. The header is 256 characters maximum. The header can be used to describe 
the data and include any other pertinent information.

3. The next part is the file format. The file format describes the type of file, either ASCII or binary. 
On this line the single word ASCII or BINARY must appear.

4. The fourth part is the dataset structure. The geometry part describes the geometry and topology 
of the dataset. This part begins with a line containing the keyword DATASET followed by a key-
word describing the type of dataset. Then, depending upon the type of dataset, other keyword/
data combinations define the actual data.

5. The final part describes the dataset attributes. This part begins with the keywords POINT_DATA 
or CELL_DATA, followed by an integer number specifying the number of points or cells, respec-
tively. (It doesn’t matter whether POINT_DATA or CELL_DATA comes first.) Other keyword/data 
combinations then define the actual dataset attribute values (i.e., scalars, vectors, tensors, nor-
mals, texture coordinates, or field data).

An overview of the file format is shown in Figure 19–19. The first three parts are mandatory, but the
other two are optional. Thus you have the flexibility of mixing and matching dataset attributes and
geometry, either by operating system file manipulation or using VTK filters to merge data. Keywords
are case insensitive, and may be separated by whitespace. 

Before describing the data file formats please note the following.

• dataType is one of the types bit, unsigned_char, char, unsigned_short, short,
unsigned_int, int, unsigned_long, long, float, or double. These keywords are used to
describe the form of the data, both for reading from file, as well as constructing the appropriate
internal objects. Not all data types are supported for all classes.

• All keyword phrases are written in ASCII form whether the file is binary or ASCII. The binary
section of the file (if in binary form) is the data proper; i.e., the numbers that define points coor-
dinates, scalars, cell indices, and so forth.

• Indices are 0-offset. Thus the first point is point id 0.
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• If both the data attribute and geometry/topology part are present in the file, then the number of
data values defined in the data attribute part must exactly match the number of points or cells
defined in the geometry/topology part.

• Cell types and indices are of type int.

• Binary data must be placed into the file immediately after the “newline” (\n) character from the
previous ASCII keyword and parameter sequence.

• The geometry/topology description must occur prior to the data attribute description.

Binary Files. Binary files in VTK are portable across different computer systems as long as you
observe two conditions. First, make sure that the byte ordering of the data is correct, and second,
make sure that the length of each data type is consistent.

Most of the time VTK manages the byte ordering of binary files for you. When you write a
binary file on one computer and read it in from another computer, the bytes representing the data will
be automatically swapped as necessary. For example, binary files written on a Sun are stored in big
endian order, while those on a PC are stored in little endian order. As a result, files written on a Sun
workstation require byte swapping when read on a PC. (See the class vtkByteSwap for implementa-
tion details.) The VTK data files described here are written in big endian form.

Part 4: Geometry/topology. Type is one of:
STRUCTURED_POINTS
STRUCTURED_GRID
UNSTRUCTURED_GRID
POLYDATA
RECTILINEAR_GRID
FIELD

Part 5: Dataset attributes. The number of data 
items n of each type must match the number of 
points or cells in the dataset. (If type is 
FIELD, point and cell data should be omitted.

Figure 19–19  Overview of five parts of VTK data file format. 

# vtk DataFile Version 2.0
Really cool data
ASCII | BINARY
DATASET type
...
POINT_DATA n
...
CELL_DATA n
...

Part 1: Header

Part 2: Title (256 characters maximum, termi-
nated with newline \n character)

Part 3: Data type, either ASCII or BINARY

(1)
(2)

(3)

(4)

(5)
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Some file formats, however, do not explicitly define a byte ordering form. You will find that
data read or written by external programs, or the classes vtkVolume16Reader, vtkMCubesReader, and
vtkMCubesWriter may have a different byte order depending on the system of origin. In such cases,
VTK allows you to specify the byte order by using the methods

SetDataByteOrderToBigEndian()
SetDataByteOrderToLittleEndian()

Another problem with binary files is that systems may use a different number of bytes to represent an
integer or other native type. For example, some 64-bit systems will represent an integer with 8-bytes,
while others represent an integer with 4-bytes. Currently, the Visualization Toolkit cannot handle
transporting legacy binary files across systems with incompatible data length. In this case, use ASCII
file formats instead.

Dataset Format. The Visualization Toolkit supports five different dataset formats: structured points
(i.e., vtkImageData), structured grid, rectilinear grid, unstructured grid, and polygonal data. Unlike
the VTK XML files (described later in this chapter), by convention legacy VTK files use the .vtk file
extension regardless of the dataset type contained in the file. Data with implicit topology (structured
data such as vtkImageData and vtkStructuredGrid) are ordered with x increasing fastest, then y, then
z. These formats are as follows.

• Structured Points
The file format supports 1D, 2D, and 3D structured point datasets. The dimensions nx, ny, nz
must be greater than or equal to 1. The data spacing sx, sy, sz must be greater than 0. (Note: in
the version 1.0 data file, spacing was referred to as “aspect ratio”. ASPECT_RATIO can still be
used in version 2.0 data files, but is discouraged.)

DATASET STRUCTURED_POINTS
DIMENSIONS nx ny nz
ORIGIN x y z
SPACING sx sy sz

• Structured Grid
The file format supports 1D, 2D, and 3D structured grid datasets. The dimensions nx, ny, nz
must be greater than or equal to 1. The point coordinates are defined by the data in the POINTS
section. This consists of x-y-z data values for each point.

DATASET STRUCTURED_GRID
DIMENSIONS nx ny nz
POINTS n dataType
p0x p0y p0z
p1x p1y p1z
...
p(n-1)x p(n-1)y p(n-1)z

• Rectilinear Grid
A rectilinear grid defines a dataset with regular topology, and semi-regular geometry aligned
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along the x-y-z coordinate axes. The geometry is defined by three lists of monotonically
increasing coordinate values, one list for each of the x-y-z coordinate axes. The topology is
defined by specifying the grid dimensions, which must be greater than or equal to 1.

DATASET RECTILINEAR_GRID
DIMENSIONS nx ny nz
X_COORDINATES nx dataType
x0 x1 ... x(nx-1)
Y_COORDINATES ny dataType
y0 y1 ... y(ny-1)
Z_COORDINATES nz dataType
z0 z1 ... z(nz-1)

• Polygonal Data
The polygonal dataset consists of arbitrary combinations of surface graphics primitives: verti-
ces (and polyvertices), lines (and polylines), polygons (of various types), and triangle strips.
Polygonal data is defined by the POINTS, VERTICES, LINES, POLYGONS, or
TRIANGLE_STRIPS sections. The POINTS definition is the same as we saw for structured grid
datasets. The VERTICES, LINES, POLYGONS, or TRIANGLE_STRIPS keywords define the
polygonal dataset topology. Each of these keywords requires two parameters: the number of
cells n and the size of the cell list size. The cell list size is the total number of integer values
required to represent the list (i.e., sum of numPoints and connectivity indices over each cell).
None of the keywords VERTICES, LINES, POLYGONS, or TRIANGLE_STRIPS are required. 

DATASET POLYDATA
POINTS n dataType
p0x p0y p0z
p1x p1y p1z
...
p(n-1)x p(n-1)y p(n-1)z

VERTICES n size
numPoints0, i0, j0, k0, ...
numPoints1, i1, j1, k1, ...
...
numPointsn-1, in-1, jn-1, kn-1, ...

LINES n size
numPoints0, i0, j0, k0, ...
numPoints1, i1, j1, k1, ...
...
numPointsn-1, in-1, jn-1, kn-1, ...

POLYGONS n size
numPoints0, i0, j0, k0, ...
numPoints1, i1, j1, k1, ...
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...
numPointsn-1, in-1, jn-1, kn-1, ...

TRIANGLE_STRIPS n size
numPoints0, i0, j0, k0, ...
numPoints1, i1, j1, k1, ...
...
numPointsn-1, in-1, jn-1, kn-1, ...

• Unstructured Grid
The unstructured grid dataset consists of arbitrary combinations of any possible cell type.
Unstructured grids are defined by points, cells, and cell types. The CELLS keyword requires two
parameters: the number of cells n and the size of the cell list size. The cell list size is the total
number of integer values required to represent the list (i.e., sum of numPoints and connectivity
indices over each cell). The CELL_TYPES keyword requires a single parameter: the number of
cells n. This value should match the value specified by the CELLS keyword. The cell types data
is a single integer value per cell that specified cell type (see vtkCell.h or Figure 19–20).

DATASET UNSTRUCTURED_GRID
POINTS n dataType
p0x p0y p0z
p1x p1y p1z
...
p(n-1)x p(n-1)y p(n-1)z

CELLS n size
numPoints0, i, j, k, l, ...
numPoints1, i, j, k, l, ...
numPoints2, i, j, k, l, ... 
...
numPointsn-1, i, j, k, l, ...

CELL_TYPES n
type0
type1
type2
...
typen-1

• Field
Field data is a general format without topological and geometric structure, and without a partic-
ular dimensionality. Typically field data is associated with the points or cells of a dataset. How-
ever, if the FIELD type is specified as the dataset type (see Figure 19–19), then a general VTK
data object is defined. Use the format described in the next section to define a field. Also see
“Working With Field Data” on page 249 and the fourth of the examples starting in “Examples”
on page 477.
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Dataset Attribute Format. The Visualization Toolkit supports the following dataset attributes: sca-
lars (one to four components), color scalars, vectors, normals, texture coordinates (1D, 2D, and 3D),

 tensors, and field data. In addition, a lookup table using the RGBA color specification, associ-
ated with the scalar data, can be defined as well. Dataset attributes are supported for both points and
cells.

Each type of attribute data has a dataName associated with it. This is a character string (without
embedded whitespace) used to identify a particular data. The dataName is used by the VTK readers to
extract data. As a result, more than one attribute data of the same type can be included in a file. For
example, two different scalar fields defined on the dataset points, pressure and temperature, can be
contained in the same file. (If a matching dataName is not specified in the VTK reader, then the first
data of that type is extracted from the file.) 

• Scalars
Scalar definition includes specification of a lookup table. The definition of a lookup table is
optional. If not specified, the default VTK table will be used (and tableName should be
“default”). Also note that the numComp variable is optional—by default the number of com-
ponents is equal to one. (The parameter numComp must range between (1,4) inclusive; in ver-
sions of VTK prior to vtk2.3 this parameter was not supported.)

SCALARS dataName dataType numComp
LOOKUP_TABLE tableName
s0
s1
...
sn-1

• Color Scalars
The definition of color scalars (i.e., unsigned char values directly mapped to color) varies
depending upon the number of values (nValues) per scalar. If the file format is ASCII, the color
scalars are defined using nValues float values between (0,1). If the file format is BINARY, the
stream of data consists of nValues unsigned char values per scalar value.

COLOR_SCALARS dataName nValues
c00 c01 ... c0(nValues-1)
c10 c11 ... c1(nValues-1)
...
c(n-1)0 c(n-1)1 ... c(n-1)(nValues-1)

• Lookup Table
The tableName field is a character string (without imbedded white space) used to identify the
lookup table. This label is used by the VTK reader to extract a specific table.

Each entry in the lookup table is a rgba[4] (red-green-blue-alpha) array (alpha is opacity
where alpha=0 is transparent). If the file format is ASCII, the lookup table values must be
float values between (0,1). If the file format is BINARY, the stream of data must be four
unsigned char values per table entry. 

3 3×
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LOOKUP_TABLE tableName size
r0 g0 b0 a0
r1 g1 b1 a1
...
rsize-1 gsize-1 bsize-1 asize-1

• Vectors

VECTORS dataName dataType
v0x v0y v0z
v1x v1y v1z
...
v(n-1)x v(n-1)y v(n-1)z

• Normals
Normals are assumed normalized .

NORMALS dataName dataType
n0x n0y n0z
n1x n1y n1z
...
n(n-1)x n(n-1)y n(n-1)z

• Texture Coordinates
Texture coordinates of 1, 2, and 3 dimensions are supported.

TEXTURE_COORDINATES dataName dim dataType
t00 t01 ... t0(dim-1)
t10 t11 ... t1(dim-1)
...
t(n-1)0 t(n-1)1 ... t(n-1)(dim-1)

• Tensors
Currently only  real-valued, symmetric tensors are supported.

TENSORS dataName dataType
t000 t001 t002
t010 t011 t012
t020 t021 t022

t100 t101 t102
t110 t111 t112
t120 t121 t122
...
tn-1

00 tn-1
01 tn-1

02
tn-1

10 tn-1
11 tn-1

12

n 1=

3 3×
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tn-1
20 tn-1

21 tn-1
22

• Field Data
Field data is essentially an array of data arrays. Defining field data means giving a name to the
field and specifying the number of arrays it contains. Then, for each array, the name of the array
arrayName(i), the number of components of the array, numComponents, the number of tuples
in the array, numTuples, and the data type, dataType, are defined.

FIELD dataName numArrays
arrayName0 numComponents numTuples dataType
f00 f01 ... f0(numComponents-1)
f10 f11 ... f1(numComponents-1)
...
f(numTuples-1)0 f(numTuples-1)1 ... f(numTuples-1)(numComponents-1)

arrayName1 numComponents numTuples dataType
f00 f01 ... f0(numComponents-1)
f10 f11 ... f1(numComponents-1)
...
f(numTuples-1)0 f(numTuples-1)1 ... f(numTuples-1)(numComponents-1)

...
arrayName(numArrays-1) numComponents numTuples dataType
f00 f01 ... f0(numComponents-1)
f10 f11 ... f1(numComponents-1)
...
f(numTuples-1)0 f(numTuples-1)1 ... f(numTuples-1)(numComponents-1)

Examples. The first example is a cube represented by six polygonal faces. We define a single-compo-
nent scalar, normals, and field data on the six faces. There are scalar data associated with the eight
vertices. A lookup table of eight colors, associated with the point scalars, is also defined.

# vtk DataFile Version 2.0
Cube example
ASCII
DATASET POLYDATA
POINTS 8 float
0.0 0.0 0.0
1.0 0.0 0.0
1.0 1.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
1.0 0.0 1.0
1.0 1.0 1.0
0.0 1.0 1.0
POLYGONS 6 30
4 0 1 2 3
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4 4 5 6 7
4 0 1 5 4
4 2 3 7 6
4 0 4 7 3
4 1 2 6 5

CELL_DATA 6
SCALARS cell_scalars int 1
LOOKUP_TABLE default
0
1
2
3
4
5
NORMALS cell_normals float
0 0 -1
0 0 1
0 -1 0
0 1 0
-1 0 0
1 0 0
FIELD FieldData 2
cellIds 1 6 int
0 1 2 3 4 5
faceAttributes 2 6 float
0.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0

POINT_DATA 8
SCALARS sample_scalars float 1
LOOKUP_TABLE my_table
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
LOOKUP_TABLE my_table 8
0.0 0.0 0.0 1.0
1.0 0.0 0.0 1.0
0.0 1.0 0.0 1.0
1.0 1.0 0.0 1.0
0.0 0.0 1.0 1.0
1.0 0.0 1.0 1.0
0.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0

The next example is a volume of dimension . Since no lookup table is defined, either the
user must create one in VTK, or the default lookup table will be used.

3 4 6××
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# vtk DataFile Version 2.0
Volume example
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 3 4 6
SPACING 1 1 1
ORIGIN 0 0 0
POINT_DATA 72
SCALARS volume_scalars char 1
LOOKUP_TABLE default
0 0 0 0 0 0 0 0 0 0 0 0
0 5 10 15 20 25 25 20 15 10 5 0
0 10 20 30 40 50 50 40 30 20 10 0
0 10 20 30 40 50 50 40 30 20 10 0
0 5 10 15 20 25 25 20 15 10 5 0
0 0 0 0 0 0 0 0 0 0 0 0

The third example is an unstructured grid containing eight VTK cell types (see Figure 19–20 and Fig-
ure 19–21). The file contains scalar and vector data. 

# vtk DataFile Version 2.0
Unstructured Grid Example
ASCII

DATASET UNSTRUCTURED_GRID
POINTS 27 float
0 0 0 1 0 0 2 0 0 0 1 0 1 1 0 2 1 0
0 0 1 1 0 1 2 0 1 0 1 1 1 1 1 2 1 1
0 1 2 1 1 2 2 1 2 0 1 3 1 1 3 2 1 3
0 1 4 1 1 4 2 1 4 0 1 5 1 1 5 2 1 5
0 1 6 1 1 6 2 1 6

CELLS 11 60
8 0 1 4 3 6 7 10 9
8 1 2 5 4 7 8 11 10
4 6 10 9 12
4 5 11 10 14
6 15 16 17 14 13 12
6 18 15 19 16 20 17
4 22 23 20 19
3 21 22 18
3 22 19 18
2 26 25
1 24

CELL_TYPES 11
12
12
10
10
7
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VTK_VERTEX (=1) VTK_LINE (=3) VTK_POLY_VERTEX (=2)

VTK_POLY_LINE (=4) VTK_TRIANGLE_STRIP (=6)VTK_TRIANGLE(=5)

VTK_QUAD (=9)VTK_POLYGON (=7) VTK_PIXEL (=8)

VTK_TETRA (=10) VTK_VOXEL (=11) VTK_HEXAHEDRON (=12)
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Figure 19–20  Linear cell types found in VTK. Use the include file vtkCellType.h to manipulate cell
types.
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6
9
5
5
3
1

POINT_DATA 27
SCALARS scalars float 1
LOOKUP_TABLE default
0.0 1.0 2.0 3.0 4.0 5.0
6.0 7.0 8.0 9.0 10.0 11.0
12.0 13.0 14.0 15.0 16.0 17.0
18.0 19.0 20.0 21.0 22.0 23.0
24.0 25.0 26.0
VECTORS vectors float
1 0 0 1 1 0 0 2 0 1 0 0 1 1 0 0 2 0
1 0 0 1 1 0 0 2 0 1 0 0 1 1 0 0 2 0

Figure 19–21  Non-linear cell types found in VTK.
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0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1

The fourth and final example is data represented as a field. You may also wish to see “Working With
Field Data” on page 249 to see how to manipulate this data. (The data file shown below can be found
in its entirety in $VTK_DATA_ROOT/Data/financial.vtk.)

# vtk DataFile Version 2.0
Financial data in vtk field format
ASCII
FIELD financialData 6
TIME_LATE 1 3188 float
 29.14   0.00   0.00  11.71   0.00   0.00   0.00   0.00 
...(more stuff — 3188 total values)...

MONTHLY_PAYMENT 1 3188 float
  7.26   5.27   8.01  16.84   8.21  15.75  10.62  15.47 

...(more stuff)...

UNPAID_PRINCIPLE 1 3188 float
  430.70   380.88   516.22  1351.23   629.66  1181.97   888.91  1437.83 

...(more stuff)...

LOAN_AMOUNT 1 3188 float
  441.50   391.00   530.00  1400.00   650.00  1224.00   920.00  1496.00 

...(more stuff)...

INTEREST_RATE 1 3188 float
13.875 13.875 13.750 11.250 11.875 12.875 10.625 10.500 
...(more stuff)...

MONTHLY_INCOME 1 3188 unsigned_short
 39  51  51  38  35  49  45  56 

...(more stuff)...

In this example, a field is represented using six arrays. Each array has a single component and 3,188
tuples. Five of the six arrays are of type float, while the last array is of type unsigned_short.
Additional examples are available in the data directory.

XML File Formats
VTK provides another set of data formats using XML syntax. While these formats are much more
complicated than the original VTK format described previously (see “Simple Legacy Formats” on
page 470), they support many more features. The major motivation for their development was to
facilitate data streaming and parallel I/O. Some features of the format include support for compres-
sion, portable binary encoding, random access, big endian and little endian byte order, multiple file
representation of piece data, and new file extensions for different VTK dataset types. XML provides
many features as well, especially the ability to extend a file format with application specific tags.
There are two types of VTK XML data files: parallel and serial as described in the following.
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• Serial. File types designed for reading and writing by applications of only a single process. All
of the data are contained within a single file.

• Parallel. File types designed for reading and writing by applications with multiple processes
executing in parallel. The dataset is broken into pieces. Each process is assigned a piece or set
of pieces to read or write. An individual piece is stored in a corresponding serial file type. The
parallel file type does not actually contain any data, but instead describes structural information
and then references other serial files containing the data for each piece.

In the XML format, VTK datasets are classified into one of two categories.

• Structured. The dataset is a topologically regular array of cells such as pixels and voxels (e.g.,
image data) or quadrilaterals and hexahedra (e.g., structured grid) (see “The Visualization Pipe-
line” on page 25 for more information). Rectangular subsets of the data are described through
extents. The structured dataset types are vtkImageData, vtkRectilinearGrid, and
vtkStructuredGrid.

• Unstructured. The dataset forms a topologically irregular set of points and cells. Subsets of the
data are described using pieces. The unstructured dataset types are vtkPolyData and
vtkUnstructuredGrid (see “The Visualization Pipeline” on page 25 for more information).

By convention, each data type and file type is paired with a particular file extension. The types and
corresponding extensions are

• ImageData (.vti) — Serial vtkImageData (structured). 

• PolyData (.vtp) — Serial vtkPolyData (unstructured). 

• RectilinearGrid (.vtr) — Serial vtkRectilinearGrid (structured). 

• StructuredGrid (.vts) — Serial vtkStructuredGrid (structured). 

• UnstructuredGrid (.vtu) — Serial vtkUnstructuredGrid (unstructured). 

• PImageData (.pvti) — Parallel vtkImageData (structured). 

• PPolyData (.pvtp) — Parallel vtkPolyData (unstructured). 

• PRectilinearGrid (.pvtr) — Parallel vtkRectilinearGrid (structured). 

• PStructuredGrid (.pvts) — Parallel vtkStructuredGrid (structured). 

• PUnstructuredGrid (.pvtu) — Parallel vtkUnstructuredGrid (unstructured).

All of the VTK XML file types are well-formed XML documents.* The document-level element is
VTKFile:

<VTKFile type=”ImageData” version=”0.1” byte_order=”LittleEndian”> 
... 

</VTKFile>

The attributes of the element are:
* There is one case in which the file is not a well-formed XML document. When the AppendedData sec-
tion is not encoded as base64, raw binary data is present that may violate the XML specification. This
is not default behavior, and must be explicitly enabled by the user.
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type — The type of the file (the bulleted items in the previous list). 

version — File version number in “major.minor” format. 

byte_order — Machine byte order in which data are stored. This is either “BigEndian” or
“LittleEndian”. 

compressor — Some data in the file may be compressed. This specifies the subclass of
vtkDataCompressor that was used to compress the data.

Nested inside the VTKFile element is an element whose name corresponds to the type of the data for-
mat (i.e., the type attribute). This element describes the topology of the dataset, and is different for
the serial and parallel formats, which are described as follows.

Serial XML File Formats. The VTKFile element contains one element whose name corresponds to
the type of dataset the file describes. We refer to this as the dataset element, which is one of
ImageData, RectilinearGrid, StructuredGrid, PolyData, or UnstructuredGrid. The
dataset element contains one or more Piece elements, each describing a portion of the dataset.
Together, the dataset element and Piece elements specify the entire dataset.

Each piece of a dataset must specify the geometry (points and cells) of that piece along with the
data associated with each point or cell. Geometry is specified differently for each dataset type, but
every piece of every dataset contains PointData and CellData elements specifying the data for
each point and cell in the piece.

The general structure for each serial dataset format is as follows:

• ImageData — Each ImageData piece specifies its extent within the dataset’s whole extent.
The points and cells are described implicitly by the extent, origin, and spacing. Note that the
origin and spacing are constant across all pieces, so they are specified as attributes of the
ImageData XML element as follows.

<VTKFile type=”ImageData” ...>
<ImageData WholeExtent=”x1 x2 y1 y2 z1 z2” 
Origin=”x0 y0 z0” Spacing=”dx dy dz”> 
<Piece Extent=”x1 x2 y1 y2 z1 z2”> 

<PointData>...</PointData> 
<CellData>...</CellData> 

</Piece> 
</ImageData> 

</VTKFile>

• RectilinearGrid — Each RectilinearGrid piece specifies its extent within the dataset’s
whole extent. The points are described by the Coordinates element. The cells are described
implicitly by the extent.

<VTKFile type=”RectilinearGrid” ...>
<RectilinearGrid WholeExtent=”x1 x2 y1 y2 z1 z2”> 
<Piece Extent=”x1 x2 y1 y2 z1 z2”> 

<PointData>...</PointData> 
<CellData>...</CellData> 
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<Coordinates>...</Coordinates> 
</Piece> 

</RectilinearGrid> 
</VTKFile>

• StructuredGrid — Each StructuredGrid piece specifies its extent within the dataset’s
whole extent. The points are described explicitly by the Points element. The cells are
described implicitly by the extent.

<VTKFile type=”StructuredGrid” ...>
<StructuredGrid WholeExtent=”x1 x2 y1 y2 z1 z2”> 
<Piece Extent=”x1 x2 y1 y2 z1 z2”> 

<PointData>...</PointData> 
<CellData>...</CellData> 
<Points>...</Points> 

</Piece> 
</StructuredGrid> 

</VTKFile>

• PolyData — Each PolyData piece specifies a set of points and cells independently from the
other pieces. The points are described explicitly by the Points element. The cells are described
explicitly by the Verts, Lines, Strips, and Polys elements.

<VTKFile type=”PolyData” ...>
<PolyData> 
<Piece NumberOfPoints=”#” NumberOfVerts=”#” NumberOfLines=”#”
NumberOfStrips=”#” NumberOfPolys=”#”> 
<PointData>...</PointData> 
<CellData>...</CellData> 
<Points>...</Points> 
<Verts>...</Verts> 
<Lines>...</Lines> 
<Strips>...</Strips> 
<Polys>...</Polys> 

</Piece> 
</PolyData> 

</VTKFile>

• UnstructuredGrid — Each UnstructuredGrid piece specifies a set of points and cells inde-
pendently from the other pieces. The points are described explicitly by the Points element.
The cells are described explicitly by the Cells element.

<VTKFile type=”UnstructuredGrid” ...>
<UnstructuredGrid> 
<Piece NumberOfPoints=”#” NumberOfCells=”#”> 

<PointData>...</PointData> 
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<CellData>...</CellData> 
<Points>...</Points> 
<Cells>...</Cells> 

</Piece> 
</UnstructuredGrid> 

</VTKFile>

Every dataset describes the data associated with its points and cells with PointData and CellData
XML elements as follows:

<PointData Scalars=”Temperature” Vectors=”Velocity”> 
<DataArray Name=”Velocity” .../> 
<DataArray Name=”Temperature” .../> 
<DataArray Name=”Pressure” .../> 

</PointData>

VTK allows an arbitrary number of data arrays to be associated with the points and cells of a dataset.
Each data array is described by a DataArray element which, among other things, gives each array a
name. The following attributes of PointData and CellData are used to specify the active arrays by
name:

Scalars — The name of the active scalars array, if any. 

Vectors — The name of the active vectors array, if any. 

Normals — The name of the active normals array, if any. 

Tensors — The name of the active tensors array, if any. 

TCoords — The name of the active texture coordinates array, if any.
Some datasets describe their points and cells using different combinations of the following common
elements:

• Points — The Points element explicitly defines coordinates for each point individually. It
contains one DataArray element describing an array with three components per value, each
specifying the coordinates of one point.

<Points> 
<DataArray NumberOfComponents=”3” .../> 

</Points>

Coordinates — The Coordinates element defines point coordinates for an extent by speci-
fying the ordinate along each axis for each integer value in the extent’s range. It contains three
DataArray elements describing the ordinates along the x-y-z axes, respectively.

<Coordinates> 
<DataArray .../> 
<DataArray .../> 
<DataArray .../> 

</Coordinates>
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• Verts, Lines, Strips, and Polys — The Verts, Lines, Strips, and Polys elements define
cells explicitly by specifying point connectivity. Cell types are implicitly known by the type of
element in which they are specified. Each element contains two DataArray elements. The first
array specifies the point connectivity. All the cells’ point lists are concatenated together. The
second array specifies the offset into the connectivity array for the end of each cell.

<Verts> 
<DataArray type=”Int32” Name=”connectivity” .../>
<DataArray type=”Int32” Name=”offsets” .../> 

</Verts>

• Cells — The Cells element defines cells explicitly by specifying point connectivity and cell
types. It contains three DataArray elements. The first array specifies the point connectivity.
All the cells’ point lists are concatenated together. The second array specifies the offset into the
connectivity array for the end of each cell. The third array specifies the type of each cell. (Note:
the cell types are defined in Figure 19–20 and Figure 19–21.)

<Cells> 
<DataArray type=”Int32” Name=”connectivity” .../>
<DataArray type=”Int32” Name=”offsets” .../>
<DataArray type=”UInt8” Name=”types” .../> 

</Cells>

All of the data and geometry specifications use DataArray elements to describe their actual content
as follows:

• DataArray — The DataArray element stores a sequence of values of one type. There may be
one or more components per value. 

<DataArray type=”Float32” Name=”vectors” NumberOfComponents=”3”
format=”appended” offset=”0”/> 

<DataArray type=”Float32” Name=”scalars” format=”binary”>
bAAAAAAAAAAAAIA/AAAAQAAAQEAAAIBA... </DataArray>

<DataArray type=”Int32” Name=”offsets” format=”ascii”> 
10 20 30 ... </DataArray>

The attributes of the DataArray elements are described as follows:

type — The data type of a single component of the array. This is one of Int8, UInt8, Int16,
UInt16, Int32, UInt32, Int64, UInt64, Float32, Float64.

Name — The name of the array. This is usually a brief description of the data stored in the array. 

NumberOfComponents — The number of components per value in the array. 

format — The means by which the data values themselves are stored in the file. This is
“ascii”, “binary”, or “appended”. 
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offset — If the format attribute is “appended”, this specifies the offset from the beginning of
the appended data section to the beginning of this array’s data.

RangeMin, RangeMax — These optional attributes specify the minimum and maximum val-
ues present in the DataArray.

The format attribute chooses among the three ways in which data values can be stored:

format=”ascii” — The data are listed in ASCII directly inside the DataArray element.
Whitespace is used for separation.

format=”binary” — The data are encoded in base64 and listed contiguously inside the
DataArray element. Data may also be compressed before encoding in base64. The byte-
order of the data matches that specified by the byte_order attribute of the VTKFile ele-
ment. 

format=”appended” — The data are stored in the appended data section. Since many
DataArray elements may store their data in this section, the offset attribute is used to
specify where each DataArray’s data begins. This format is the default used by VTK’s
writers.

The appended data section is stored in an AppendedData element that is nested inside
VTKFile after the dataset element: 
<VTKFile ...>
... 
<AppendedData encoding=”base64”> 

_QMwEAAAAAAAAA... 
</AppendedData> 

</VTKFile>

The appended data section begins with the first character after the underscore inside the
AppendedData element. The underscore is not part of the data, but is always present.
Data in this section is always in binary form, but can be compressed and/or base64
encoded. The byte-order of the data matches that specified by the byte_order attribute
of the VTKFile element. Each DataArray’s data are stored contiguously and appended
immediately after the previous DataArray’s data without a seperator. The DataArray’s
offset attribute indicates the file position offset from the first character after the under-
score to the beginning its data.

Parallel File Formats. The parallel file formats do not actually store any data in the file. Instead, the
data are broken into pieces, each of which is stored in a serial file of the same dataset type.

The VTKFile element contains one element whose name corresponds to the type of dataset the
file describes, but with a “P” prefix. We refer to this as the parallel dataset element, which is one of
PImageData, PRectilinearGrid, PStructuredGrid, PPolyData, or PUnstructuredGrid.

The parallel dataset element and those nested inside specify the types of the data arrays used to
store points, point data, and cell data (the type of arrays used to store cells is fixed by VTK). The ele-
ment does not actually contain any data, but instead includes a list of Piece elements that specify the
source from which to read each piece. Individual pieces are stored in the corresponding serial file for-
mat. The parallel file needs to specify the type and structural information so that readers can update
pipeline information without actually reading the pieces’ files.
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The general structure for each parallel dataset format is as follows:

• PImageData — The PImageData element specifies the whole extent of the dataset and the
number of ghost-levels by which the extents in the individual pieces overlap. The Origin and
Spacing attributes implicitly specify the point locations. Each Piece element describes the
extent of one piece and the file in which it is stored.

<VTKFile type=”PImageData” ...> 
<PImageData WholeExtent=”x1 x2 y1 y2 z1 z2” 

GhostLevel=”#” Origin=”x0 y0 z0” Spacing=”dx dy dz”>
<PPointData>...</PPointData> 
<PCellData>...</PCellData> 
<Piece Extent=”x1 x2 y1 y2 z1 z2” Source=”imageData0.vti”/>
... 

</PImageData> 
</VTKFile>

• PRectilinearGrid — The PRectilinearGrid element specifies the whole extent of the data-
set and the number of ghost-levels by which the extents in the individual pieces overlap. The
PCoordinates element describes the type of arrays used to specify the point ordinates along
each axis, but does not actually contain the data. Each Piece element describes the extent of
one piece and the file in which it is stored.

<VTKFile type=”PRectilinearGrid” ...> 
<PRectilinearGrid WholeExtent=”x1 x2 y1 y2 z1 z2”

GhostLevel=”#”> 
<PPointData>...</PPointData> 
<PCellData>...</PCellData> 
<PCoordinates>...</PCoordinates> 
<Piece Extent=”x1 x2 y1 y2 z1 z2”

Source=”rectilinearGrid0.vtr”/>
... 

</PRectilinearGrid> 
</VTKFile>

• PStructuredGrid — The PStructuredGrid element specifies the whole extent of the dataset
and the number of ghost-levels by which the extents in the individual pieces overlap. The
PPoints element describes the type of array used to specify the point locations, but does not
actually contain the data. Each Piece element describes the extent of one piece and the file in
which it is stored.

<VTKFile type=”PStructuredGrid” ...>
<PStructuredGrid WholeExtent=”x1 x2 y1 y2 z1 z2”

GhostLevel=”#”>
<PPointData>...</PPointData> 
<PCellData>...</PCellData> 
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<PPoints>...</PPoints> 
<Piece Extent=”x1 x2 y1 y2 z1 z2”

Source=”structuredGrid0.vts”/> 
... 

</PStructuredGrid> 
</VTKFile>

• PPolyData — The PPolyData element specifies the number of ghost-levels by which the indi-
vidual pieces overlap. The PPoints element describes the type of array used to specify the
point locations, but does not actually contain the data. Each Piece element specifies the file in
which the piece is stored.

<VTKFile type=”PPolyData” ...> 
<PPolyData GhostLevel=”#”> 
<PPointData>...</PPointData> 
<PCellData>...</PCellData> 
<PPoints>...</PPoints> 
<Piece Source=”polyData0.vtp”/> 
... 

</PPolyData> 
</VTKFile>

• PUnstructuredGrid — The PUnstructuredGrid element specifies the number of ghost-lev-
els by which the individual pieces overlap. The PPoints element describes the type of array
used to specify the point locations, but does not actually contain the data. Each Piece element
specifies the file in which the piece is stored.

<VTKFile type=”PUnstructuredGrid” ...> 
<PUnstructuredGrid GhostLevel=”0”> 
<PPointData>...</PPointData> 
<PCellData>...</PCellData> 
<PPoints>...</PPoints> 
<Piece Source=”unstructuredGrid0.vtu”/>
... 

</PUnstructuredGrid> 
</VTKFile>

Every dataset uses PPointData and PCellData elements to describe the types of data arrays associated
with its points and cells.

• PPointData and PCellData — These elements simply mirror the PointData and CellData
elements from the serial file formats. They contain PDataArray elements describing the data
arrays, but without any actual data.

<PPointData Scalars=”Temperature” Vectors=”Velocity”> 
<PDataArray Name=”Velocity” .../> 
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<PDataArray Name=”Temperature” .../> 
<PDataArray Name=”Pressure” .../> 

</PPointData>

For datasets that need specification of points, the following elements mirror their counterparts from
the serial file format:

• PPoints — The PPoints element contains one PDataArray element describing an array with
three components. The data array does not actually contain any data.

<PPoints> 
<PDataArray NumberOfComponents=”3” .../> 

</PPoints>

• PCoordinates — The PCoordinates element contains three PDataArray elements describ-
ing the arrays used to specify ordinates along each axis. The data arrays do not actually contain
any data.

<PCoordinates> 
<PDataArray .../> 
<PDataArray .../> 
<PDataArray .../> 

</PCoordinates>

All of the data and geometry specifications use PDataArray elements to describe the data array
types:

• PDataArray — The PDataArray element specifies the type, Name, and optionally the
NumberOfComponents attributes of the DataArray element. It does not contain the actual
data. This can be used by readers to create the data array in their output without needing to read
any real data, which is necessary for efficient pipeline updates in some cases.

<PDataArray type=”Float32” Name=”vectors” NumberOfComponents=”3”/>

Example. The following is a complete example specifying a vtkPolyData representing a cube with
some scalar data on its points and faces.

<?xml version="1.0"?>
<VTKFile type="PPolyData" version="0.1" byte_order="LittleEndian">
  <PPolyData GhostLevel="0">
    <PPointData Scalars="my_scalars">
      <PDataArray type="Float32" Name="my_scalars"/>
    </PPointData>
    <PCellData Scalars="cell_scalars" Normals="cell_normals">
      <PDataArray type="Int32" Name="cell_scalars"/>
      <PDataArray type="Float32" Name="cell_normals" 
NumberOfComponents="3"/>
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    </PCellData>
    <PPoints>
      <PDataArray type="Float32" NumberOfComponents="3"/>
    </PPoints>
    <Piece Source="polyEx0.vtp"/>
  </PPolyData>
</VTKFile>

<?xml version="1.0"?>
<VTKFile type="PolyData" version="0.1" byte_order="LittleEndian">
  <PolyData>
    <Piece NumberOfPoints="8" NumberOfVerts="0" NumberOfLines="0"
           NumberOfStrips="0" NumberOfPolys="6">
      <Points>
        <DataArray type="Float32" NumberOfComponents="3" format="ascii">
          0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1
        </DataArray>
      </Points>
      <PointData Scalars="my_scalars">
        <DataArray type="Float32" Name="my_scalars" format="ascii">
          0 1 2 3 4 5 6 7
        </DataArray>
      </PointData>
      <CellData Scalars="cell_scalars" Normals="cell_normals">
        <DataArray type="Int32" Name="cell_scalars" format="ascii">
          0 1 2 3 4 5
        </DataArray>
        <DataArray type="Float32" Name="cell_normals" 

NumberOfComponents="3" format="ascii">
          0 0 -1 0 0 1 0 -1 0 0 1 0 -1 0 0 1 0 0
        </DataArray>
      </CellData>
      <Polys>
        <DataArray type="Int32" Name="connectivity" format="ascii">
          0 1 2 3 4 5 6 7 0 1 5 4 2 3 7 6 0 4 7 3 1 2 6 5
        </DataArray>
        <DataArray type="Int32" Name="offsets" format="ascii">
          4 8 12 16 20 24
        </DataArray>
      </Polys>
    </Piece>
  </PolyData>
</VTKFile>
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cache entries 10
ccmake (terminal-based interface) 16
cmake -i (interactive wizard mode) 16
CMAKE_INSTALL_PREFIX 17
CMakeCache.txt 10
CMakeLists.txt 10, 31
CMakeSetup GUI 12
configure 10
download 10, 15
EXECUTABLE_OUTPUT_PATH 13
generate 10
install (Unix) 15
LIBRARY_OUTPUT_PATH 13
LocalUser.cmake 307
NOTFOUND 13
Rebuild All in MSVC 13
SUBDIR 307
Unix 15
VTK_WRAP_JAVA 13
VTK_WRAP_PYTHON 13
VTK_WRAP_TCL 13, 16
VTK_WRAP_XXX 17
VTK.dsw 13
Windows 12

Coding Considerations 297
Coding Resources 437
Coding Style 299
coding style 299
Color 145, 146
Color Mapping 92
color mapping 92
color scalars

simple legacy file format 475
color transfer function 143, 145
ColorByArrayComponent 92
ColorByArrayComponent() 103
combine images 129
Command/Observer 29

AddObserver 29
examples 35
see also Events

commercial support 315
Common 5
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compilation test 313
Compiling the Source Code 17
Composite Data Readers 243
Composite Data Writers 245
Compute Modified Time 391
ComputePipelineMTime 323
ComputeRange 331
ComputeViewPlaneNormal() 49, 50
Conditions on Contributing Code To VTK 297
confocal microscopes 119
Connecting to a Database 187
connectivity 116
Constructing Surfaces 218
constructor 302, 306, 395, 403, 407, 413

in vtk 300
Contingency statistics 195
CONTINUE_EXECUTING 229, 235
continuous cycle 314, 315
contouring 93
Contributing Code 297
contributing code 299
Controlling Color / Opacity 145
Controlling shading 147
Controlling the Normal Encoding 152
convert between point and cell data 91
Converting a Table to a Graph 164
Converting a Table to a Tree 168
Converting Layouts to Geometry 173
coordinate system

normalized display 65
coordinate systems

display 62
normalized display 62
normalized viewport coordinates 62
user defined 62
view 62
viewport 62
world 62

coordinates
parallel XML file format 491

copy
deep 302
shallow 302

copy constructor 302, 306
CopyComponent 329
Copying Objects 302
Copying the Source Cod 12
copyright 297
Correlative statistics 195
coverage test 314
cow model 110

CreateDefaultLookupTable 330
CreateFromURL 188
CreateInstance() 308
CreateObject() 309

vtkObjectFactory 309
Creating a Volume Mapper 149
Creating a vtkVolume 143
Creating An Implicit Model 213
Creating and Deleting Objects 300
Creating Graph Algorithms 185
Creating Hardcopy 246
Creating Simple Models 42
crop a subvolume 150
Cropping a Volume 150
CroppingRegionFlags 151
CT 119
culler 161
Cursor Management and Highlighting 261
Cut vertices 183
Cutting 98
cutting 98, 110
CVS 5, 313
CVS Source Code Repository 313

D
D3 456
daily cycle 314, 315
DART 313
dashboard 313

compilation 313
coverage test 314
memory test 313
PrintSelf test 313
regression test 313
SetGet test 313
TestEmptyInput test 314

Data 6
data array 327
Data Arrays 327
data arrays

parallel XML file format 491
serial XML file format 487

data attributes 89
data information 319
data interface 239

exporters 246
importers 245
readers 239
writers 243

data object
as field data 474
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data object API
attribute data 362
data array 327
datasets 333
field data 362
vtkCellArray 357
vtkCellLinks 360
vtkCellTypes 359
vtkDataSetAttributes 364
vtkFieldData 362
vtkPoints 355

Data Object Readers 240
Data Object Writers 244
Data Set Readers 240
Data Set Writers 244
data transformation 70
DATA_TIME_STEPS 229
dataArray 328
Databases 187
databases 163
dataset

interface to 333
object model 438

Dataset Attribute Format 475
Dataset Format 472
dataset types 334
dataType 470
debugging pipeline execution 322
DebugOff() 300
DebugOn() 300
Decimation 108
decimation 107
DEDICOM 199
deep copy 302
DeepCopy 330
DeepCopy() 302
Delaunay triangulation 218

2D 218
3D 221

Delaunay triangulations 459
Delete() 20, 21, 300, 301, 391
Depth Peeling Parameters 80
depth sorting 79
Descriptive statistics 194
Design 199
DesiredUpdateRate 160, 256
destructor 302, 306, 408
developer

application 4
class 4

directed acyclic graph 371

directed graphs 371
display 62
DivideByZeroToC 135
DLL 309
Dolly() 50
double clocktime 85
double currentime 85
downstream flow 320
downstream request 320
Doxygen 6, 7
Doxygen documentation 6, 126, 128

E
Edge Layout 172
elevation 50
Elevation() 50
EndAppend() 108
EndCueInternal 85
EndInteraction 76
EndInteractionEvent 266, 273, 276, 281, 284, 287, 

288
EndInteractionEvents 280
environment variables

LD_LIBRARY_PATH 35
VTK_AUTOLOAD_PATH 310

event bindings 45
Events 33

AbortCheckEvent 424, 425
EndEvent 393, 424
EndInteractionEvent 423
EndPickEvent 46, 61, 62, 424
ExitEvent 424
InteractionEvent 423
PickEvent 61, 424
ProgressEvent 393, 424
StartEvent 29, 393, 423
StartInteractionEvent 423
StartPickEvent 46, 61, 424
UserEvent 46, 424
see also Command/Observer

example object factory 310
Examples 5
examples

location of 4
ExchangeAxis 285
Execute 188
Execute() 35
Executing Queries 188
expat 6
Exporters 246
exporters 246
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ExportToVoidPointer 331
ExtentClippingOn() 105
Extract Cells as Polygonal Data 104
Extract Subset of Cells 103
Extracting selections 294
Extrusion 217
extrusion 217
EyeAngle 51

F
fan-in 27
fan-out 27
FeatureAngle 107
FFMPEG 248
Fibonacci sequence 201
field data 362

as data object 474
example 249
example data file 482
simple legacy file format 474, 477

File Formats
.ply 241, 245
.pvti 241
.pvtk 240, 244
.pvtp 241
.pvtr 241
.pvts 241
.pvtu 242
.vtb 243
.vth 243
.vti 240, 241, 244
.vtk 240, 241, 242, 244
.vtm 243
.vtp 241, 244
.vtr 241, 244
.vts 241
.vtu 242
3D Studio 246
Chaco 242
DICOM 241
EnSight 245
Exodus 242
Exodus II format 245
GE Signa Imaging files 241
GeomView OOGL 246
GL2PS 246
Inventor scene graph 246
ISI format 243
JPEG 244
JPEG files 241
Los Alamos National Lab cosmology binary data 

format files 242
MINC 241, 244
netCDF files 242
OpenFOAM 243
OpenInventor 2.0 245
Parallel Boost Graph Library SQL database 242
Persistence of Vision Raytracer 246
PLOT3D 241
PNM 244
PNM files 241
RenderMan 246
RIS format bibliographic citation file 242
Sandia Chaco graph package format files 242
Sandia Exodus2 format files 243
Sandia National Lab Exodus format files 242
SESAME 241
SQL database 242
Stanford University .ply files 241
stereo-lithography files 241
TIFF 244
TIFF files 241
VRML 246
VRML version 2.0 246
Wavefront .obj files 241, 246
X3D format 246
XML 242
XML-based parallel partitioned files 241
XML-based VTK files 241

file formats 469–482
parallel XML 488–492

cell data 490
coordinates 491
data arrays 491
example 491–492
image data 489
point data 490
points 491
polygonal data 490
rectilinear grid 489
structured grid 489
unstructured grid 490

serial XML 484–488
active arrays 486
appended 488
ascii 488
binary 488
cell data 486
cells 487
data arrays 487
image data 484
point data 486
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points 486
polygonal data 485
rectilinear grid 484
structured grid 485
unstructured grid 485
verts, lines, strips, and polys 487

simple legacy 470
color scalars 475
examples 477–482
field data 474, 477
lookup table 475
normals 476
polygonal data 473
rectilinear grid 472
scalars 475
structured grid 472
structured points 472
tensors 476
texture coordinate 476
unstructured grid 474
vectors 476

XML 482–492
parallel 483
serial 483
structured 483
unstructured 483

FillComponent 329
FillInputPortInfo 465, 467, 468
FillInputPortInformation() 386, 387, 395, 396
FillOutputPortInformation() 386
filter

abstract 412
programmable 419
streaming 409

filter object 25
object model 439

Filtering 5
Filtering Data 48
filtering data 48
Filters 28, 174
Find A Similar Class 305
Fixed Point Ray Casting 156
flip image 134
FlipAboutOrigin 134
FlipNormals 107
FlipNormalsOn() 107
focal depth 24
FocalPoint 49
Fortran 203
foundation object

object model 437

FROM_OUTPUT_PORT 324
Frustum selections 292
Fulfilling Pipeline Requests 389

G
Gaussian Smoothing 133
Gaussian smoothing 133
Gaussian Splatting 222
Gaussian splatting 222
GE Signa Imaging files 241
general tabular data 163
Generate Surface Normals 107
generate texture coordinates 111
GenerateClippedOutputOn() 111
GenerateValues() 94, 99
Generating Hierarchies 210
GenericFiltering 5
Geographic Views and Representations 207
Geospatial Visualization 207
GeoVis 5, 286
Geovis 208
GetActor() 59, 60
GetActor2D 59
GetActualMemorySize 331
GetAnimationTime 84, 85
GetAssembly() 60
GetCameraInterpolator 288
GetClassName() 21, 300
GetClockTime 85
GetColorChannels 146
GetColumnName 189
GetColumnType 189
GetComponent 329
GetCoordinatesN 205
GetData 329
GetDataType 328
GetDataTypeMax 331
GetDataTypeMin 331
GetDataTypeRange 331
GetDataTypeSize 328
GetDeltaTime 85
GetDescription() 308
GetEventPending() 425
GetGradientOpacity 146
GetGrayTransferFunction 146
GetLastErrorText 188
GetLegendBoxActor 285
GetLookupTable 330
GetMatrix() 71
GetMaxId 330
GetMaxNorm 331
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GetMTime() 301, 392
GetName 331
GetNumberOfColumns 189
GetNumberOfComponents 328
GetNumberOfTuples 328
GetOutputPort() 27, 48
GetPath 280
GetPath() 60
GetPickPosition() 59
GetPlane 266
GetPlanes 268
GetPoint() 333
GetPolyData 266, 271, 281
GetPositionCoordinate() 65
GetProgress() 393
GetProp() 59, 60
GetProp3D() 59
GetProp3Ds() 60
GetPropAssembly() 60
GetProperty() 53
GetQueryInstance 188
GetRange 331
GetRecord 188
GetRGBTransferFunction 146
GetScalarOpacity 146
GetScalarPointer() 121
GetSelectionList 292
GetStorage 203
GetSummedLength 281
GetTables 188
GetTransform 268, 269
GetTuple 328
GetTuples 330
GetTupleValue 332
GetValue 202, 203, 204, 288
GetVariantValue 203
GetVoidPointer 330
GetVolume() 60
GetVTKSourceVersion() 308
GetXAxisActor2D 285
GetXYPlotActor 284
GetYAxisActor2D 285
Global ID selections 292
GlobalImmediateModeRendering() 425
glyphing 94
GNU make 17
gradient 133
gradient opacity transfer function 143, 145, 146
GradientOpacity 145, 146
Graph Algorithms 180
Graph Readers 242

Graph visualization 170
Graph Visualization Techniques 170
Graph Writers 245
Graphics 6
graphics filter 394
graphics model 21
graphics object

object model 441
graphs 163
GraphVertexId 183
GUI bindings 46
GUISupport 6

H
Headlight 23
Hidden Vertices 168
Hierarchical Data Sources 210
histogram 132
How To Contribute Code 299
How To Write A Factory 308
How To Write an Algorithm for VTK 385
HSVA 92
Hybrid 6

I
icicle 176
Identify A Superclass 305
Image Actor 124
Image and Volume Readers 240
Image and Volume Writers 244
Image Data 121
image data

parallel XML file format 489
Image Display 123
image gradient 133
image histogram 132
image plane widget 271
Image Processing 28
Image Processing & Visualization 119
Image Viewer 123
ImageData 483
ImageEllipsoidSource 126
ImageGaussianSource 127
imagemathematics 135
ImageMedianFilter 128
ImageSampleDistance 160
Imaging 6
imaging

object model 442
imaging filter

simple 399
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threaded 401
Implement PrintSelf() Methods 394
implementation of time support 228
implicit function 215
Implicit Modeling 213
implicit modelling 213
implicit plane widget 75, 76
Importers 245
importers 245
include file policy 304
incoming edge 371
Index selections 292
Informatics 465
information

algorithm 319
data 319
pipeline 318
port 319
request 319

information key 321
information object 321
Information Objects 318
Information Visualization 163
information visualization 465
InfoVis 5
InitialIntegrationStep 96
Initialize 330
Initialize() 43
InitializeHandles 280
input connection 317

optional 387
repeatable 387

Input Data 390
input pipeline information 389
input port 317
input ports 385
InsertComponent 329
InsertNextTuple 329
InsertNextTupleValue 332
InsertNextValue 332
InsertTuple 329
InsertTuple1() 90
InsertValue 332
install an object factory 309
installation 9, 163, 227, 291

overview 9
Unix 14

Installing CMake 12, 15
Installing VTK 17
Integrating With The Windowing System 421
integration

with windowing systems 421–434
Interaction Style 443
interaction styles

joystick 45
trackball 45

Interaction, Widgets and Selections 255
InteractionEvent 76, 281, 286, 287, 288
interactor style 46, 421
Interactor Styles 256
Interactors 255
interactors 45
InteractorStyle 124
Interface of Information Objects 321
Interfacing To VTK Data Objects 327
Inverse() 71
IO 6
IsA() 21, 301
isosurface

color with another scalar 102
isosurface generation 213
Isosurface Rendering 158
isosurfacing 109
IsRenderSupported 157
Iterating through an image 138
Iteration 204
ITK 7, 315

J
Java 6, 19, 29, 36, 37, 41
jpeg 6
justification 64

K
Kitware’s Quality Software Process 312
k-Means statistics 195
Kruskal MST 184
Kruskal variant 185
KWWidgets 14

L
labeling data 68
language conversion 37, 43
Laws of VTK Algorithms 390
lazy evaluation 43
LD_LIBRARY_PATH 35
LegendOn/Off 285
level-of-detail 54, 55
LightFollowCameraOff() 46
LightFollowCameraOn() 46
lights

controlling 51
positional 51
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line widget 266
linear cell types 480
lines 173
LineSmoothing 77
Linux 10
Location selections 293
LOD 159, 161
LogXOn 285
lookup table 92

simple legacy file format 475

M
Macintosh OSX 10
Managing Include Files 304
Managing Pipeline Execution 317
Manually Creating vtkImageData 120
mapper object 25

object model 439
Mapper Objects 463
mathematics

image 135
MaximumDistance 214
MaximumImageSampleDistance 160
MaximumNumberOfPlanes 160
MaximumPropagation 96
MaximumPropagationUnit 96
MDI

Multi-Document Interface 432
Measurement Widgets 262
memory test 313
Merging Data 99
merging data 99
Mesa 302
mesh simplification 108
Metadata 163
metadata 163
Methods 29, 328
MFC 6, 432
Microsoft

Word 310
Microsoft Foundation Classes 432
Microsoft Visual C++ 31
MinGW 12
Minimum Spanning Tree 184
MinimumImageSampleDistance 160
mirror image 134
Miscellaneous 284
model

graphics 21
ModelBounds 214
modeling

clipping 110
decimation 107
Delaunay triangulation 218
extrusion 217
from unorganized points 224
Gaussian splatting 222
generate texture coordinates 111
implicit modeling 213
procedural source objects 42
smoothing 109
sufrace construction 218

modified time 301
Modified() 44, 301
motion blur 24
MouseMoveEvent 47
MPEG2 248
MRI 119
MTGL 180
Multi-correlative statistics 195
multi-dimensional arrays 201
Multiple Volume Rendering Techniques 142
multiresolution modelling 108
MultiSamples 79
Multisampling 79
Multithreaded Graph Library 180, 186
multivariate 222
Multivariate statistics

 195
MySQL 187

N
N-Dimensional array 199
NegateEdgeWeights 182
Netscape 307
New() 20, 21, 300, 301, 306, 308, 391
NewInstance() 300
NMake 12
non-linear cell types 481
Normalized 84
normalized display 62
normalized display coordinates 65
normals 90

simple legacy file format 476
nVidia 79
nVidia graphics hardware 157

O
object

creation 300
deletion 300

Object Diagrams 437
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object factory 300, 301, 307
and New() method 308
DLL 309
example factory 310
how to install 309
how to write 308
ReHash() 310
required macro in factory .h file 310
VTK_AUTOLOAD_PATH 310
vtkDynamicLoader 310
vtkGetFactoryCompilerUsed() 310
vtkGetFactoryVersion() 310
vtkLoad() 310

object model
attribute data 439
cell 437
dataset 438
filter object 439
foundation 437
graphics object 441
imaging 442
mapper object 439
OpenGL 442
picking 442
pipeline 439
renderer object 442
source object 439
topology 439
transformation 443
volume rendering 441
VTK 437–443

Observers 29
OffScreenRenderingOn() 247
OLE automation 310
OMT graphical language 437
Opacity 145
opacity 22, 23, 24, 55
Open 188
OpenGL 77, 149, 302

object model 442
OpenGL requirements 80
open-source 3
operator= 302, 306
optional input connection 387
Oracle 187
order of multiplication 71
Order statistics 194
orthogonal camera view 50
OrthogonalizeViewUp() 50
ouble deltatime 85
output pipeline information 389

output port 317
output ports 385
OverView 194

P
package require

vtk 42
vtkinteraction 42
vtktesting 42

Painter mechanism 82
PARAFAC 199
Parallel 6
Parallel Boost Graph Library 180, 465
Parallel Statistics Algorithms 197
ParallelProjectionOn() 51
ParaView 7
ParentId() 32
PassPointDataOn() 91
PATH

set from batch script 14
PATH environment variable 14
PBGL 180
Pedigree ID selections 292
per pixel sorting 79
Performance 203
Per-primitive type antialiasing 77
perspective camera view 50
Phases 193
Photoshop 307
Pick() 59
PickableOff() 55
picking 59

object model 442
piecemeal rendering 247
PImageData 483
PIMPL 303
PIMPL idiom 303
pipeline

debugging execution 322
downstream flow 320
downstream request 320
object model 439
request 319
update mechanism 319
upstream flow 320
upstream request 320

pipeline execution 317
Pipeline Execution Models 319
pipeline information 318

data objects 394
input 389
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output 389
Pipeline Information Flow 320
Pixar 248
PlaceFactor 76
PlacePointEvent 263, 264, 284
PlaceWidget 268, 269
plane widget 266
Play 84
PLAYMODE_REALTIME 83
PLAYMODE_SEQUENCE 83
png 6
point attribute data 89
point data

parallel XML file format 490
serial XML file format 486

point data to cell data conversion 91
point data versus cell data 91
Point Placers 262
PointClippingOn() 105
pointer access 334
points 173

parallel XML file format 491
serial XML file format 486

PointSmoothing 77
PolyData 124, 483
polydata mapper 82
Polygonal Data 473
polygonal data

legacy file format 473
parallel XML file format 490
serial XML file format 485

Polygonal Data Readers 241
Polygonal Data Writers 244
Polygonal meshes 109
polygonal reduction 108
polygons 173
PolygonSmoothing 77
polylines 173
Populating Dense Arrays 203
Populating Sparse Arrays 203
port information 319, 386
Position 49
Position2Coordinate 67
PositionalOn() 51
PositionCoordinate 66
PostgreSQL 190, 191
PostMultiply() 71
PostScript output 246
PPolyData 483
PRectilinearGrid 483
PreMultiply() 71

PreserveTopology 109
PreserveTopologyOff() 109
PreserveTopologyOn() 109
Principal component analysis (PCA) statistics 195
Print object state 21
Print() 300
PrintSelf 300
PrintSelf test 313
PrintSelf() 306, 388, 394, 395, 403, 407, 408, 413
PrintStatus 29
Priorities 261
probing 100
procedural source 42
process object

see algorithm
Processing Multi-Dimensional Data 198
ProcessRequest() 319, 320, 389
programming languages conversion 37, 43
ProgressEvent 392
Projected Tetrahedra 159
projection

parallel (orthogonal) 51
perspective 50

PROP 294
protected methods 302
PStructuredGrid 483
PUnstructuredGrid 483
Purify 313
Python 6, 19, 29, 36, 37, 41

Q
Qt 6, 434
Qt tree widget 179
Qt widget 179
Queries and Threads 189

R
Ray Casting 153, 156
ray casting 142, 153

fixed point arithmetic 156
unstructured grid 157

reader 406
reader source 44
Readers 239
readers 239
ReadFinancialData 249
Reading and Writing Data 239
Reading Results 189
RealTime Mode 83
Reclaim/Delete Allocated Memory 391
Reconfigurable Bindings 260
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Rectilinear Grid 472
rectilinear grid

parallel XML file format 489
serial XML file format 484
simple legacy file format 472

Rectilinear Grid Readers 241
Rectilinear Grid Writers 244
Rectilinear Grids 114
RectilinearGrid 483
Reference Count Data 390
Reference Counting 20
reference-counting 390
Register() 20
RegisterFactory() 309
RegisterOverride() 308

classOverride 309
createFunction 309
description 309
enableFlag 309
overrideClassName 309

relational databases 163
Relative 84
release cycle 314, 315
releases 5
RemoveAllCue 84
RemoveCue 84
Render 44, 165
Render() 28
rendered volume 148
renderer object

object model 442
Rendering 6
Rendering Engine 21
RenderMan 247, 248
repeatable input 387
representations 176, 443
request 319
request information 319
REQUEST_DATA 235, 324, 325
REQUEST_DATA_OBJECT 229, 323
REQUEST_INFORMATION 229, 323, 325
REQUEST_UPDATE_EXTENT 229, 235, 325
REQUEST_UPDATE_EXTENT_INFORMATION 

325
RequestData 121
RequestData() 389, 395, 396, 406, 407, 408, 414, 419
RequestInformation 409
RequestInformation() 389, 403
RequestSelectedColumns 197
RequestUpdateExtent() 389, 410
Required Methods 306

resampling 100
ResetCamera 165
ResetCamera() 50
Resize 202, 330
resolution 210
resources 6
ReverseXAxis 285
ReverseYAxis 285
rooted tree 164
RotateWXYZ() 52, 71
RotateX() 52, 71
RotateY() 71
RotateZ() 71
Running CMake 12

S
SafeDownCast 202
SafeDownCast() 21, 35, 301
SampleDimensions 214
Sandia Chaco graph format packages 242
SaveDatabase 210
saving hi-res images 247
Saving Images 247
saving images 247
Saving Large (High-Resolution) Images 247
Scalar Bar 66
scalar data 24
scalar opacity transfer function 143, 145, 146
Scalar Values 122
ScalarOpacity 145, 146
scalars 90

simple legacy file format 475
ScalarVisibilityOff() 54
Scale() 71
SceneLight 23
Scientific visualization 163
Segmentation / Registration widgets 276
segmenting CT data 145
selection 291
Selections 179, 255
Selections in Views 179
Sequence Mode 83
Set___Component 252
Set/GetResolution 281
SetAmbient 149
SetAnimationModeToAnimate 286
SetAnimationModeToJump 286
SetAnimationModeToOff 287
SetAnimationTime 84
SetArray 332
SetArray() 120
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SetAttributeModeToUseCellData() 91
SetAxisLabelTextProperty 285
SetAxisTitleTextProperty 285
SetBackground() 43
SetBounds 266
SetCellMaximum() 105
SetCellMinimum() 105
SetClippingPlane() 49
SetColor 146, 147
SetColor() 51, 54
SetColorModeToDefault() 93
SetColorModeToMapScalars() 93
SetColumnStatus 197
SetComponent 329
SetCompositeMethodToClassifyFirst 154
SetCompositeMethodToInterpolateFirst 154
SetConeAngle() 51
SetCreateGraphVertexIdArray 183, 185
SetCroppingRegionFlagsToCross 151
SetCroppingRegionFlagsToFence 151
SetCroppingRegionFlagsToInvertedCross 151
SetCroppingRegionFlagsToSubVolume 151
SetCroppingResgionFlagsToInvertedFence 151
SetCutFunction 305
SetDataModeToAppended() 243
SetDataModeToAscii() 243
SetDataModeToBinary() 243
SetDesiredUpdateRate 256
SetDesiredUpdateRate() 46
SetDiffuse 149
SetDirectionEncoder 152
SetEdgeWeightArrayName 184, 185
SetEndCapLength 286
SetEndCapWidth 286
SetEndTime 83, 84
SetExtent() 105
SetExtractionModeToSpecifiedRegions 116
SetFileName 248
SetFileTypeToASCII() 243
SetFileTypeToBinary() 243
SetFocalPoint() 50, 51
SetFontFactor 68
SetFrameRate 84
SetGet Macros 307
SetGet macros 307
SetGet test 313
SetGlobalIds 292
SetGradientOpacity 146, 147
SetHandleProperty 280
SetHandleRepresentation 284
SetHaveHeaders 165

SetHeightOffset 278
SetInput 140, 150, 176, 248
SetInputArrayToProcess() 97
SetInputConnection 176
SetInputConnection() 27, 42, 48, 102
SetIntegrationDirectionToBackward() 97
SetIntegrationDirectionToBoth() 97
SetIntegrationDirectionToForward() 97
SetInteractionStyle 48, 258
SetInteractorStyle 256
SetInteractorStyle() 423
SetInterpolationTypeToLinear 154
SetInterpolationTypeToNearest 143, 154
SetIsoValue 153
SetLineProperty 280
SetLookupTable 330
SetLoop 84
SetMapper 143
SetMapper() 53
SetMatrix() 71
SetMaximizeMethodToOpacity 154
SetMaximizeMethodToScalarValue 154
SetMaximumValue 286
SetMinimumValue 286
SetName 331
SetNegateEdgeWeights 184
SetNumberOfAnimationSteps 287
SetNumberOfComponents 328
SetNumberOfFrames 288
SetNumberOfInputPorts() 386
SetNumberOfOutputPorts() 386
SetNumberOfTuples 328
SetNumberOfTuples() 90
SetNumberOfValues 332
SetNumberOfXLabels 284
SetNumberOfXMinorTicks 285
SetNumberOfYLabels 285
SetNumberOfYMinorTicks 285
SetOnRatio 98
SetOpacity() 55
SetOrientation() 52
SetOrientationToVertical() 66
SetOrigin() 52
SetOriginFromSelection 183
SetOriginSelection 182
SetOriginSelectionConnection 182
SetOriginVertex 182, 183, 185
SetOriginVertexString 183
SetOutputArrayName 183, 184
SetOutputSelection 183
SetOutputSelectionType 183, 184
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SetParallelScale() 51
SetParametricSpline 281
SetPedigreeIds 292
SetPicker() 46
SetPlayMode 83
SetPointMaximum() 105
SetPosition() 50, 51, 52
SetProjectionNormal 280, 281
SetProjectionPosition 280, 281
SetProperty 143
SetQuery 188, 189
SetRayCastFunction 157
SetRayIntegrator 157, 158
SetRepresentationToWireframe 143
SetScalarModeToDefault() 93
SetScalarModeToUseCellData() 93
SetScalarModeToUsePointData() 93
SetScalarModeToUsePointFieldData() 93, 103
SetScalarOpacity 146, 147
SetScalarRange() 92
SetScalars() 90
SetScale() 52
SetScaleModeToDataScalingOff() 95
SetScaleModeToScaleByScalar() 95
SetSelectedHandleProperty 280
SetSelectedLineProperty 280
SetSlice 124
SetSliderLength 286
SetSliderWidth 286
SetSource 221
SetSourceConnection() 97, 102
SetSpecular 149
SetSpecularPower 149
SetStartTime 83, 84
SetStillUpdateRate 256
SetTimeMode 84
SetTitle 284
SetTitleText 286
SetTitleTextProperty 285
SetTubeWidth 286
SetTubing 267
SetTuple 329
SetTuple2() 90
SetupRenderWindow 165
SetValue 202, 203, 204, 286, 332
SetValue() 94, 99, 111
SetVariantValue 202
SetVaryRadiusToVaryRadiusByScalar() 97
SetVaryRadiusToVaryRadiusByVector() 97
SetVaryRadiusToVaryRadiusOff() 97
SetVectorModeToUseVector() 95

SetVectors() 91
SetViewAngle() 50
SetVoidArray 330
SetXRange 284
SetXTitle 284
SetYRange 284
SetYTitle 284
Shade instance variables 149
ShadeOn 147
shallow copy 302
ShallowCopy() 302
ShowSliderLabelOn 286
ShowView 208
simple graph view 170
Singular Value Decomposition 198
slicing. See cutting
smart pointer 20
Smooth Mesh 109
smoothing 109
software process

continuous cycle 315
daily cycle 315
release cycle 315

source
procedural 42
reader 44

Source Code Installation 12, 15
source object 25

object model 439
Special Plotting Classes 66
Specifying columns of interest 193
Speed vs. Accuracy Trade-offs 159
Splitting 107
spreadsheets 163
SQL databases 187
SQL INSERT 190
SQLite 187
Squeeze 330
Squeeze() 391
Standard Executives 323
Standard Methods 300
standard methods 300
Standard Template Library 303
StartAppend() 108
StartCueInternal 85
StartEvent 47
StartInteraction 76
StartInteractionEvent 273, 281, 287, 288
Statistics 192
stereo 24, 51
stereo-lithography files 241
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StillUpdateRate 160, 256
STL 303

PIMPL 303
STL (stereo-lithography) 44
stream surface 97
streaming 27
streamlines 95
Structured Grid 472
structured grid

parallel XML file format 489
serial XML file format 485
simple legacy file format 472

Structured Grid Readers 241
Structured Grid Writers 244
Structured grids 112
Structured Points 472
structured points

simple legacy file format 472
StructuredGrid 483
subsampling 121
superclass 21
Supported Data Types 140
surface construction 218
surface normal generation 107
SwitchOff() 51
SwitchOn() 51
System Architecture 19

T
Table Readers 242
Table Schemata 190
Table Writers 245
tables 163
Tabular Data 164
TargetReduction 109
Tcl 6, 19, 27, 29, 30, 37, 41

under Unix 30
under Windows 30

Tcl/Tk 433
techniques 89

clipping 110
general

appending data 100
color isosurface 102
color mapping 92
contouring 93
conversion to vtkPolyData 104
cutting 98
data attributes 89
extract subset of data 103
glyphing 94

merging data 99
probing 100
slicing.See cutting
stream surface 97
streamlines 95

image data 139
image processing 119
modeling 213

Delaunay triangulation 218
extrusion 217
from unorganized points 224
Gaussian splatting 222
implicit modeling 213
surface construction 218

polygonal data 105
clipping 110
decimation 107
manual creation 106
smoothing 109
surface normal generation 107
texture coordinates 111

rectilinear grids 114
extract subgrid 114
manually create 114

structured grids 112
extract subgrid 112
manual creation 112
subsampling 113

unstructured grids 115
contouring 117
extract subset 115
isosurfacing 117
manual creation 115

temporal support 227
tensors 90

simple legacy file format 476
Terrain 211
TestEmptyInput test 314
text justification 64
texture coordinates 90

generation 111
simple legacy file format 476

texture mapping 58
The Parallel Boost Graph Library 186
The Pipeline Interface 385
The User Interface 388
The Visualization Pipeline 25
ThreadedRequestData() 404
Threshold selections 293
TickInternal 85
TIFF 248
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tiff 6
Tiled Rendering 247
Time Varying Data 227
TIME_RANGE 228, 229
TIME_STEPS 228, 229
TIMEMODE_NORMALIZED 84
TIMEMODE_RELATIVE 84
Timers 261
topology

object model 439
transfer functions

color 143, 145
gradient opacity 143, 145
scalar opacity 143, 145

transformation
data 70
object model 443
ordering 52

Transforming Data 70
Translate() 71
Translucent polygonal geometry 79
transparency 55
tree ring 176, 177
tree ring view 169
treemap 176
trees 163
TUCKER 199
Types of selections 292

U
ultrasound scanners 119
undirected graphs 371
Univariate Algorithms 194
UNIX 15, 31
Unix 47

LD_LIBRARY_PATH 35
Unorganized Points 224
unorganized points 224
UnRegister() 20
Unstructured Grid 474
unstructured grid

contouring 117
isosurfacing 117
parallel XML file format 490
serial XML file format 485
simple legacy file format 474

Unstructured Grid Readers 242
Unstructured Grid Writers 245
Unstructured Grids 115
UnstructuredGrid 483
Update 239, 240

UPDATE_TIME_STEPS 229
Update() 28
upstream flow 320
upstream request 320
Use Debug Macros 391
User Methods

see Command/Observer
user-defined coordinates 62
Using multi-dimensional arrays 201
Using statistics algorithms 196
Using STL 303
Using the hardware selector 293
Using time support 230
Utilities 6

V
ValGrind 313
Value selections 293
vectors 90

simple legacy file format 476
version control system 313
Vertex Layout 171
verts, lines, strips, and polys

serial XML file format 487
view coordinates 62
viewport coordinates 62
viewports 23
Views 5, 465
Views and Representations 176
ViewUp 50
virtual constructor 300
VisibilityOff() 55
VisibilityOn() 55
visualization techniques - see techniques 89
visualize relationships in a table 166
Visualizing Structured Grids 112
Visualizing Unstructured Grids 115
Visualizing vtkDataSet 89
vkImageTracerWidget 280
volume ray casting 147
Volume Rendering 139
Volume rendering 123
volume rendering 139–??

clipping planes 151
color transfer function 143, 145
cropping

cross 150
fence 150
inverted cross 150
inverted fence 150

cropping regions 150
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gradient opacity transfer function 143, 145
multi-component data 147
normal encoding 152
object model 441
performance 159
ray casting 153, 156, 157
sample distance 154
scalar opacity transfer function 143, 145
shading 147
space leaping 156
use of multiple processors 153, 157

VolumePro 159
VolumeRendering 6
volumetric ray casting 139
Volumetric Ray Casting for vtkImageData 153
VTK 5, 7

architecture 19
as an object-oriented system 19
coding style 299
contributing code 299
data object API 327–368
definition 3
directory structure 5
documentation 6
execution model 27
interactors 45
object model 437–443
obtaining the software 5
quality testing dashboard 5, 313
regression testing 313
software process 312–315
standard methods 300
STL use 303

VTK File Formats 469
VTK libraries 9
VTK rendering engine 21
VTK view 165
VTK_AUTOLOAD_PATH 310
VTK_CREATE_FUNCTION 309
VTK_FACTORY_INTERFACE_IMPLEMENT 310
VTK_GRAPHICS_EXPORT 395
VTK_IMAGING_EXPORT 402
VTK_IO_EXPORT 407
VTK_SOURCE_VERSION 308
VTK_UNSIGNED_CHAR 150
VTK_UNSIGNED_SHORT 150
VTK.sln 13
vtk3DSImporter 245, 246, 248
vtk3DWidget 259, 280, 423
vtkAbstractArray 199
vtkAbstractArrays 327

vtkAbstractMapper 23
vtkAbstractMapper3D 151
vtkAbstractPicker 46, 59, 61

EndPickEvent 61, 62
GetPickPosition() 59
Pick() 59
PickEvent 61
StartPickEvent 61

vtkAbstractPropPicker 59, 60
GetActor() 59, 60
GetActor2D() 59
GetAssembly() 60
GetPath() 60
GetProp() 59, 60
GetProp3D() 59
GetPropAssembly() 60
GetVolume() 60

vtkAbstractTransform 72
vtkAbstractVolumeMapper 139, 140, 143, 149
vtkAbstractWidget 259
vtkActor 21, 23, 25, 56, 59, 139, 143, 149, 424, 464

GetProperty() 53
PickEvent 61
SetMapper() 53
SetProperty() 53

vtkActor2D 21, 59, 62, 63, 64, 464
GetPositionCoordinate() 65
Position2Coordinate 67
PositionCoordinate 66

vtkAddMembershipArray 468
vtkAdjacencyMatrixToEdgeTable 206
vtkAffineCallback 289
vtkAffineRepresentation2D 269
vtkAffineWidget 269, 289
vtkAlgorithm 25, 228, 239, 243, 317, 385, 423

AbortExecute flag 393
FillInputPortInformation() 386, 387, 395, 396
FillOutputPortInformation() 386
GetOutputPort() 48
GetProgress() 393
ProcessRequest() 320, 389
RequestInformation() 389
RequestUpdateExtent() 389
SetInputArrayToProcess() 97
SetInputConnection() 48
SetNumberOfInputPorts() 386
SetNumberOfOutputPorts() 386

vtkAlgorithmOutput 182
vtkAngleWidget 263
vtkAnimationCue 83, 84
vtkAnimationScene 83



Index 511

vtkAnnoatedCubeActor 274
vtkAnnotatedCubeActor 464
vtkAnnotationLink 179
vtkAppendFilter 100, 455
vtkAppendPolyData 79, 100, 459
vtkApplyColors 468
vtkApplyIcons 468
vtkApproximatingSubdivisionFilter 459
vtkArcParallelEdgeStrategy 172
vtkArcPlotter 459
vtkAreaLayout 467
vtkAreaPicker 60
vtkArray 199, 204, 379
vtkArrayCalculator 455
vtkArrayCoordinates 202
vtkArrayData 205, 383
vtkArrayDataAlgorithm 205
vtkArrayExtents 201
vtkArrayMap 468
vtkArrayVectorNorm 206
vtkArrowSource 445
vtkAssembly 57, 60, 464

AddPart() 57
vtkAssemblyNode 61
vtkAssemblyPath 57, 61
vtkAssignAttribute 251, 252, 455, 468
vtkAssignCoordinates 468
vtkAssignCoordinatesLayoutStrategy 171
vtkAttributeDataToFieldDataFilter 455
vtkAVIWriter 248
vtkAxes 446
vtkAxesActor 274, 464
vtkAxisActor2D 285, 464
vtkBalloonWidget 261, 275
vtkBandedPolyDataContourFilter 459
vtkBezierContourLineInterpolator 277
vtkBiDimensionalWidget 264
vtkBlankStructuredGrid 462
vtkBlankStructuredGridWithImage 462
vtkBMPReader 100
vtkBooleanTexture 446
vtkBoostBiconnectedComponents 182, 183
vtkBoostBrandesCentrality 182, 184, 466
vtkBoostBreadthFirstSearch 180, 182, 186, 466
vtkBoostBreadthFirstSearchTree 182, 183, 467
vtkBoostConnectedComponents 182, 184, 466, 468
vtkBoostGraphAdapter 186
vtkBoostKruskalMinimumSpanningTree 182, 184
vtkBoostLogWeighting 206
vtkBoostPrimMinimumSpanningTree 182, 184, 467
vtkBoostRandomSparseArraySource 206

vtkBoostSplitTableField 169, 467
vtkBorderWidget 276, 289
vtkBoxClipDataSet 455
vtkBoxLayoutStrategy 176
vtkBoxWidget 73
vtkBoxWidget2 268
vtkBrownianPoints 455
vtkButterflySubdivisionFilter 460
vtkC ontourFilter 107
vtkCamera 23, 25, 49, 74

Azimuth() 50
ComputeViewPlaneNormal() 49, 50
Dolly() 50
Elevation() 50
EyeAngle 51
FocalPoint 49
OrthogonalizeViewUp() 50
ParallelProjectionOn() 51
Position 49
ResetCamera() 50
SetClippingPlane() 49
SetFocalPoint() 50
SetParallelScale() 51
SetPosition() 50
SetStereo() 51
SetViewAngle() 50
ViewUp 50
Zoom() 50

vtkCameraInterpolator 288
vtkCameraRepresentation 288
vtkCameraWidget 288
vtkCaptionActor2D 273, 464
vtkCaptionWidget 273
vtkCardinalSpline 281
vtkCastToConcrete 455
vtkCellArray 106, 327, 345, 350, 357
vtkCellCenters 69, 455
vtkCellDataToPointData 91, 455
vtkCellDerivatives 455
vtkCellLinks 345, 350, 360
vtkCellPicker 60
vtkCellTypes 345, 350, 359
vtkCenteredSliderRepresentation 288
vtkCenteredSliderWidget 288
vtkChacoGraphReader 242, 468
vtkChacoReader 242
vtkCheckerboardRepresentation 282
vtkCheckerboardWidget 282
vtkCircularLayoutStrategy 171
vtkCleanPolyData 460
vtkClipDataSet 455
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vtkClipPolyData 460
GenerateClippedOutputOn() 111
SetValue() 111

vtkClipVolume 450
vtkClustering2DLayoutStrategy 172
vtkCollapseGraph 170, 466
vtkCollectGraph 466
vtkCollectPolyData 460
vtkCollectTable 467
vtkColorTransferFunction 24, 143, 144, 146

HSV color space 144
RGB color space 144

vtkCommand 35
vtkCommunity2DLayoutStrategy 172
vtkCompassRepresentation 288
vtkCompositeDataPipeline 326
vtkCompositeDataSet 243
vtkCone 215
vtkConeLayoutStrategy 172
vtkConeSource 95, 446
vtkConnectivityFilter 105, 116, 455
vtkConstrained2DLayoutStrategy 172
vtkContourFilter 93, 100, 102, 117, 119, 216, 455

GenerateValues() 94
SetValue() 94

vtkContourGrid 117, 462
vtkContourLineInterpolator 276
vtkContourValues 392
vtkContourWidget 276, 280
vtkConvertSelectionDomain 468
vtkCoordinate 62, 65
vtkCornerAnnotation 464
vtkCosineSimilarity 206
vtkCosmicTreeLayoutStrategy 172
vtkCosmoReader 242
vtkCubeAxesActor2D 68, 464

SetFlyModeToClosestTriad() 68
SetFlyModeToOuterEdges() 68

vtkCubeSource 446
vtkCursor3D 446
vtkCurvatures 460
vtkCutMaterial 455
vtkCutter 99, 305, 392, 455

GenerateValues() 99
SetValue() 99

vtkCxxSetObjectMacro() 305
vtkCylinderSource 42, 446
vtkDashedStreamLine 456
vtkDataArray 185, 199, 327, 328, 332

InsertTuple1() 90
SetArray() 120

SetNumberOfTuples() 90
SetTuple2() 90
Squeeze() 391

vtkDataArrays 90
vtkDataObject 25, 205, 240, 243, 244, 252, 468
vtkDataObjectAlgorithm 386
vtkDataObjectReader 240, 253
vtkDataObjects 239, 243
vtkDataObjectToDataSetFilter 251, 252
vtkDataObjectToTable 170, 467
vtkDataObjectWriter 244, 253
vtkDataRepresentation 176, 468
vtkDataSet 25, 76, 89, 104, 112, 115, 170, 171, 232, 

240, 251, 292, 333, 455, 459, 462
GetPoint() 333

vtkDataSetAlgorithm 386, 412, 416
vtkDataSetAttributes 362, 364

SetScalars() 90
SetVectors() 91

vtkDataSetMapper 105, 112, 222, 463
vtkDataSetReader 240
vtkDataSets 294
vtkDataSetSurfaceFilter 456
vtkDataSetToDataObjectFilter 252, 456
vtkDataSetTriangleFilter 456
vtkDataSetWriter 244
vtkDataWriter

SetFileTypeToASCII() 243
SetFileTypeToBinary() 243

vtkDebugMacro() 391
vtkDecimatePro 91, 105, 108, 109, 123, 393, 460

PreserveTopology 109
PreserveTopologyOff() 109
PreserveTopologyOn() 109
TargetReduction 109

vtkDelaunay2D 218, 221, 459
Tolerance 220

vtkDelaunay3D 111, 218, 221, 459
vtkDelimitedTextReader 165, 242, 467
vtkDemandDrivenPipeline 323

execution steps 324
vtkDenseArray 200, 201, 203, 381
vtkDepthSortPolyData 55, 79, 460
vtkDiagonalMatrixSource 205
vtkDicer 456
vtkDICOMImageReader 241
vtkDijkstraImageContourLineInterpolator 278
vtkDirectedAcyclicGraph 372, 377
vtkDirectedGraph 375, 468
vtkDirectedGraph Algorithms 468
vtkDirectionEncoder 152
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vtkDiscreteMarchingCubes 450
vtkDiskSource 446
vtkDistanceRepresentation 263
vtkDistanceWidget 261, 262, 263, 264
vtkDistributedDataFilter 456
vtkDistributedStreamTracer 456
vtkDotProductSimilarity 206
vtkDoubleArray 292, 293
vtkDuplicatePolyData 460
vtkDynamicLoader 310
vtkEarthSource 446
vtkEdgeCenters 173
vtkEdgeLayout 172, 466
vtkEdgeLayoutStrategy 172
vtkEdgePoints 456
vtkElevationFilter 29, 91, 412, 456
vtkEllipsoidTensorProbeRepresentation 272
vtkEllipticalButtonSource 446
vtkEmptyCell 438
vtkEncodedGradientEstimator 152
vtkEnsightReader 230
vtkEnSightWriter 245
vtkErrorMacro 409
vtkExecutive 317

ProcessRequest() 319
vtkExecutives 228
vtkExodusIIReader 243
vtkExodusIIWriter 245
vtkExodusReader 230, 242
vtkExtractDataOverTime 459
vtkExtractEdges 456
vtkExtractGeometry 103, 104, 456
vtkExtractGrid 113, 462
vtkExtractPolyDataGeometry 460
vtkExtractPolyDataPiece 460
vtkExtractRectilinearGrid 463
vtkExtractSelectedGraph 294, 466
vtkExtractSelectedRows 467
vtkExtractSelection 294
vtkExtractTemporalFieldData 467
vtkExtractTensorComponents 456
vtkExtractUnstructuredGrid 115, 462
vtkExtractUnstructuredGridPiece 463
vtkExtractUserDefinedPiece 463
vtkExtractVectorComponents 456
vtkExtractVOI 121, 340, 450
vtkFast2DLayoutStrategy 172
vtkFeatureEdges 460
vtkFFMPEGWriter 248
vtkFieldData 26, 333, 362
vtkFieldDataToAttributeDataFilter 456

vtkFileImageSource 210
vtkFileTerrainSource 210
vtkFilteredAxis

FlipAboutOrigin 134
vtkFiniteDifferenceGradientEstimator 152
vtkFixedPointVolumeRayCastMapper 23, 142, 150, 

153, 156, 159, 463
vtkFixedWidthTextReader 242, 467
vtkFloatArray 90, 184, 199, 332
vtkFollower 23, 65, 465
vtkForceDirectedLayoutStrategy 172
vtkGaussianSmooth 133

SetRadiusFactors() 133
SetStandardDeviations() 133

vtkGaussianSplatter 222, 223, 225, 456
vtkGenerateIndexArray 170
vtkGenericCell 336, 437
vtkGenericDataObjectReader 240
vtkGenericDataObjectWriter 244
vtkGenericEnSightReader 240
vtkGenericMovieWriter 248
vtkGeoAlignedImageRepresentation 208, 210
vtkGeoAlignedImageSource 210
vtkGeoAssignCoordinates 469
vtkGeoCamera 286
vtkGeoEdgeStrategy 172
vtkGeoGlobeSource 210
vtkGeoGraphRepresentation 209
vtkGeoGraphRepresentation2D 209
vtkGeoInteractorStyle 257
vtkGeometryFilter 104, 105, 112, 456

CellClippingOn() 105
ExtentClippingOn() 105
PointClippingOn() 105
SetCellMaximum() 105
SetCellMinimum() 105
SetExtent() 105
SetPointMaximum() 105

vtkGeoProjection 211
vtkGeoProjectionSource 210
vtkGeoSource 210, 211
vtkGeoTerrain 210
vtkGeoTerrain2D 209, 211
vtkGeoTerraindata 208
vtkGeoTransform 211
vtkGeoView 208, 209, 210
vtkGeoView2D 209, 210
vtkGESignaReader 241
vtkGetFactoryCompilerUsed() 310
vtkGetFactoryVersion() 310
vtkGetMacro 388
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vtkGetStringMacro() 407
vtkGL2PSExporter 246
vtkGlyph2D 456
vtkGlyph3D 94, 95, 219, 456

SetScaleModeToDataScalingOff() 95
SetScaleModeToScaleByScalar() 95

vtkGlyphSource2D 446
vtkGraph 164, 170, 171, 180, 182, 186, 292, 372, 465, 

468
vtkGraphAlgorithm 182
vtkGraphHierarchicalBundle 175
vtkGraphHierarchicalBundleEdges 175, 466
vtkGraphLayout 171, 466
vtkGraphLayoutFilter 460
vtkGraphLayoutStrategy 171
vtkGraphLayoutView 176, 178
vtkGraphMapper 173
vtkGraphReader 242
vtkGraphs 294
vtkGraphToGlyphs 173
vtkGraphToPolyData 173
vtkGraphWriter 245
vtkGreedyTerrainDecimation 450
vtkGridSynchronizedTemplates3D 462
vtkGroupLeafVertices 168, 169, 467
vtkHandleRepresentation 265, 283
vtkHandleWidget 259, 261, 262, 263, 265, 266, 283
vtkHardwareSelector 293
vtkHAVSVolumeMapper 159
vtkHedgeHog 456
vtkHexahedron 112, 344
vtkHierarchicalBoxDataSet 243
vtkHierarchicalGraphView 178
vtkHull 460
vtkHyperStreamline 456
vtkIcicleView 178
vtkIdFilter 69, 456
vtkIdType 182
vtkIdTypeArray 292
vtkImageAccumulate 132, 450
vtkImageActor 22, 123, 124, 125, 266, 465
vtkImageActorPointPlacer 262, 266, 279
vtkImageAlgorithm 386, 400, 401, 406

RequestData() 406
RequestInformation() 403

vtkImageAnisotropicDiffusion2D 451
vtkImageAnisotropicDiffusion3D 451
vtkImageAppend 129, 451

AppendAxis 130
PreserveExtents 130

vtkImageAppendComponents 129, 131, 451

vtkImageBlend 451
vtkImageBoxSource 126
vtkImageBoxSourceExecute 126
vtkImageButterworthHighPass 451
vtkImageButterworthLowPass 451
vtkImageCacheFilter 451
vtkImageCanvasSource2D 126, 446
vtkImageCast 125, 128, 451

ClampOverflow 128
vtkImageChangeInformation 129, 451
vtkImageCheckerboard 451
vtkImageCityBlockDistance 451
vtkImageClip 121, 451
vtkImageConstantPad 451
vtkImageContinuousDilate3D 451
vtkImageContinuousErode3D 451
vtkImageConvolve 451
vtkImageCorrelation 451
vtkImageCursor3D 451
VTKImageData 152
vtkImageData 28, 58, 89, 102, 105, 119, 120, 121, 

140, 142, 147, 149, 150, 152, 153, 156, 161, 
163, 213, 222, 229, 247

AllocateScalars() 121
dimensions 120
GetScalarPointer() 121
implicit geometry 120
implicit topology 120
manual creation 120
origin 120
scalar type 120
spacing 120

vtkImageDataGeometryFilter 123, 451
vtkImageDataStreamer 128, 451
vtkImageDifference 452
vtkImageDilateErode3D 126, 452
vtkImageDivergence 452
vtkImageDotProduct 452
vtkImageEllipsoidSource 126, 127, 132, 446
vtkImageEuclideanDistance 452
vtkImageEuclideanToPolar 452
vtkImageExport 452
vtkImageExtractComponents 452
vtkImageFFT 307, 452
vtkImageFlip 134, 452

FilteredAxis 134
vtkImageFourierCenter 452
vtkImageGaussianSmooth 133, 424, 452
vtkImageGaussianSource 127, 446
vtkImageGradient 129, 133, 409, 452

HandleBoundaries 133
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SetDimensionality() 133
vtkImageGradientMagnitude 133, 452
vtkImageGridSource 127, 446
vtkImageHSIToRGB 452
vtkImageHSVToRGB 452
vtkImageHybridMedian2D 452
vtkImageIdealHighPass 452
vtkImageIdealLowPass 452
vtkImageImport 452
vtkImageIslandRemoval2D 452
vtkImageIterator 404
vtkImageLaplacian 452
vtkImageLogarithmicScale 452
vtkImageLogic 132, 453
vtkImageLuminance 132, 453
vtkImageMagnify 453
vtkImageMagnitude 133, 453
vtkImageMandelbrotSource 446
vtkImageMapper 463
vtkImageMapToColors 131, 453

SetActiveComponent() 131
vtkImageMapToWindowLevelColors 123, 131, 453
vtkImageMarchingCubes 453
vtkImageMask 453
vtkImageMaskBits 453
vtkImageMathematics 135, 453

absolute value 136
add constant 136
addition 136
arctangent 136, 137
complex conjugate 136
cosine 135
division 136
exponential 135
invert 135
maximum 137
minimum 136
multiplication 136
multiply by constant 136
multiply complex numbers 136
natural logarithm 136
replace value 136
sine 135
square 136
square root 136
subtraction 136

vtkImageMedian3D 453
vtkImageMirrorPad 453
vtkImageNoiseSource 127, 446
vtkImageNonMaximumSuppression 453
vtkImageNormalize 453

vtkImageOpenClose3D 453
vtkImagePermute 134, 453

FilteredAxes 134
vtkImagePlaneWidget 74, 125, 271
vtkImageProgressIterator 404
vtkImageQuantizeRGBToIndex 453
vtkImageRange3D 453
vtkImageReader 127, 129, 133, 241
vtkImageRectilinearWipe 453
vtkImageResample 160, 453
vtkImageReslice 137, 454

AutoCropOutput 138
vtkImageRFFT 454
vtkImageRGBToHSI 454
vtkImageRGBToHSV 454
vtkImageSeedConnectivity 454
vtkImageSeparableConvolution 454
vtkImageShiftScale 125, 129, 401, 454
vtkImageShrink3D 454
vtkImageSinusoidSource 128, 447
vtkImageSkeleton2D 454
vtkImageSobel2D 454
vtkImageSobel3D 454
vtkImageStencil 454
vtkImageThreshold 454
vtkImageToImageStencil 454
vtkImageToPolyDataFilter 454
vtkImageTracerWidget 279, 281
vtkImageTranslateExtent 454
vtkImageVariance3D 454
vtkImageViewer 123, 124, 133
vtkImageViewer2 123
vtkImageWrapPad 454
vtkImplicitBoolean 215
vtkImplicitFunction 103, 392
vtkImplicitModeller 214, 457

MaximumDistance 214
ModelBounds 214
SampleDimensions 214

vtkImplicitPlaneWidget 72, 75
vtkImplicitPlaneWidget2 267
vtkImplicitTextureCoords 457
vtkImporter 245, 246
vtkInformation 228, 317, 318, 321
vtkInformationDoubleVectorKey 321
vtkInformationKey 321
vtkInformationKeyMacro 322
vtkInformationKeyRestrictedMacro 322
vtkInformationRequestKey 319
vtkInformationStringKey 321
vtkInitialValueProblemSolver 97
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vtkIntArray 90, 199, 293
vtkInteractorEventRecorder 74
vtkInteractorObserver 72, 255, 259, 261, 423
vtkInteractorStyle 24, 46, 47, 72, 74, 256, 257, 259, 

261, 421, 423
required methods 422

vtkInteractorStyleAreaSelectHover 257
vtkInteractorStyleFlight 47, 257, 422
vtkInteractorStyleImage 124, 125, 257, 422
vtkInteractorStyleJoystickActor 257, 421, 422
vtkInteractorStyleJoystickCamera 257, 421, 422
vtkInteractorStyleRubberBandZoom 422
vtkInteractorStyleRubberbandZoom 257
vtkInteractorStyleSwitch 422
vtkInteractorStyleTerrain 422
vtkInteractorStyleTrackball 421
vtkInteractorStyleTrackballActor 257, 422
vtkInteractorStyleTrackballCamera 257, 422
vtkInteractorStyleTreeMapHover 257
vtkInteractorStyleUnicam 257, 422
vtkInteractorStyleUser 421
vtkInterpolateDataSetAttributes 457
vtkISIReader 243, 467
vtkIVExporter 246
vtkIVWriter 245
vtkJPEGReader 229, 241
vtkJPEGWriter 244, 247
vtkKochanekSpline 281
vtkLabeledDataMapper 68, 463
vtkLegendBoxActor 465
vtkLight 23, 25, 51, 74

PositionalOn() 51
SetColor() 51
SetConeAngle() 51
SetFocalPoint() 51
SetPosition() 51
SwitchOff() 51
SwitchOn() 51

vtkLinearExtrusionFilter 217, 460
vtkLinearSubdivisionFilter 460
vtkLineRepresentation 266
vtkLineSource 447
vtkLineWidget 72
vtkLineWidget2 266
vtkLinkEdgels 454
vtkLoad() 310
vtkLocator 392
vtkLODActor 23, 44, 55, 256, 425, 465

AddLODMapper() 55
SetDesiredUpdateRate() 46

vtkLODProp3D 23, 161, 162, 465

vtkLookupTable 24, 66, 92
vtkLoopSubdivisionFilter 460
vtkLSDynaReader 230
vtkMapper 92, 93, 139

ColorByArrayComponent() 103
ScalarVisibilityOff() 54
ScalarVisibilityOn() 54
SetColorModeToDefault() 93
SetColorModeToMapScalars() 93
SetScalarModeToDefault() 93
SetScalarModeToUseCellData() 93
SetScalarModeToUsePointData() 93
SetScalarModeToUsePointFieldData() 93, 103
SetScalarRange() 92

vtkMapper2D 62, 63
vtkMarchingContourFilter 457
vtkMarchingCubes 91, 454
vtkMarchingSquares 454
vtkMaskFields 457
vtkMaskPoints 95, 457
vtkMaskPolyData 460
vtkMatricizeArray 206
vtkMatrix4x4 61
vtkMemoryLimitImageDataStreamer 454
vtkMergeColumns 170, 467
vtkMergeDataObjectFilter 457
vtkMergeFields 253, 457
vtkMergeFilter 99, 100, 123, 457
vtkMergeTables 167, 170, 467
vtkMeshQuality 457
vtkMFCDocument 432
vtkMFCRenderView 432
vtkMFCView 432
vtkMILVideoSource 447
vtkMINCImageReader 241
vtkMINCImageWriter 244
vtkMPEG2Writer 248
vtkMultiBlockDataSet 243
vtkMultiBlockDataset 293
vtkMultiBlockDataSets 294
vtkMultiPieceDataSet 243
vtkMultiProcessController 197
vtkMutableDirectedGraph 375, 377
vtkMutableUndirectedGraph 375
vtkNetworkHierarchy 467
vtkNormalizeMatrixVectors 206
vtkOBBDicer 457
vtkObject 29, 305

AddObserver() 29, 46
GetMTime() 392
SafeDownCast() 21
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vtkObjectBase 305
Delete() 20
GetClassName() 21
IsA() 21
New() 20
Print() 21
Register() 20
UnRegister() 20

vtkObjectFactory 301, 308
CreateInstance() 308
CreateObject() 309
GetDescription() 308
GetVTKSourceVersion() 308
RegisterFactory() 309
RegisterOverride() 308
ReHash() 310

vtkOBJExporter 246
vtkOBJReader 241
vtkOOGLExporter 246
vtkOpenFOAMReader 243
vtkOpenGLVolumeTextureMapper2D 151
vtkOrientationMarkerWidget 273
vtkOutlineCornerFilter 457
vtkOutlineCornerSource 447
vtkOutlineFilter 457
vtkOutlineSource 447
vtkPainter 83
vtkPainterPolyDataMapper 82
vtkPanel 434
vtkParallelCoordinatesActor 465
vtkParallelopipedRepresentation 270
vtkParallelopipedWidget 270
vtkParametricFunctionSource 448
vtkParametricSpline 281
vtkParticleReader 241
vtkPassInputType Algorithms 468
vtkPassThrough 469
vtkPassThroughEdgeStrategy 172
vtkPassThroughFilter 457
vtkPassThroughLayoutStrategy 172
vtkPBGLBreadthFirstSearch 466
vtkPBGLCollapseGraph 466
vtkPBGLCollapseParallelEdges 466
vtkPBGLCollectGraph 466
vtkPBGLConnectedComponents 466
vtkPBGLGraphSQLReader 242, 466
vtkPBGLMinimumSpanningTree 466
vtkPBGLRandomGraphSource 466
vtkPBGLRMATGraphSource 466
vtkPBGLShortestPaths 466
vtkPBGLVertexColoring 466

vtkPCAAnalysisFilter 459
vtkPCellDataToPointData 457
vtkPChacoReader 242
vtkPContingencyStatistics 197
vtkPCorrelativeStatistics 197
vtkPDataSetReader 240
vtkPDataSetWriter 244
vtkPDescriptiveStatistics 197
vtkPerturbCoincidentVertices 466
vtkPExodusIIReader 243
vtkPExodusReader 242
vtkPicker 60, 424

GetProp3Ds() 60
vtkPiecewiseFunction 24, 143, 146
vtkPieChartActor 22
vtkPImageWriter 244
vtkPipelineGraphSource 468
vtkPixel 114, 119, 339, 341
vtkPlane 76, 99, 111, 151, 215
vtkPlaneSource 58, 70, 102, 448
vtkPlaneWidget 72, 266
vtkPlatonicSolidSource 448
vtkPlaybackRepresentation 289
vtkPlaybackWidget 289
vtkPLinearExtrusionFilter 460
vtkPLOT3DReader 103, 241
vtkPLYReader 241
vtkPLYWriter 245
vtkPMultiCorrelativeStatistics 197
vtkPNMReader 241
vtkPNMWriter 244
vtkPoint 171

GetPoint() 333
vtkPointData 251
vtkPointDataToCellData 91, 457

PassPointDataOn() 91
vtkPointHandleRepresentation2D 259, 265, 283
vtkPointHandleRepresentation3D 259, 283
vtkPointLoad 448
vtkPointPicker 60
vtkPointPlacer 262, 265, 276
vtkPoints 70, 112, 115, 171, 280, 355
vtkPointSet 70, 459, 462
vtkPointSetAlgorithm 386, 415
vtkPointSource 97, 448
vtkPointWidget 72
vtkPolyData 76, 89, 104, 105, 106, 107, 119, 123, 265, 

294, 327, 333, 459
BuildCells() 345
BuildLinks() 345
cell types 107
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vtkPolyDataAlgorithm 386, 399, 407
vtkPolyDataConnectivityFilter 116, 460
vtkPolyDataMapper 23, 25, 42, 53, 112, 151, 161, 463
vtkPolyDataMapper2D 464
vtkPolyDataNormals 107, 460

FeatureAngle 107
FlipNormals 107
FlipNormalsOn() 107
Splitting 107

vtkPolyDataReader 241
vtkPolyDataStreamer 461
vtkPolyDataToImageStencil 461
vtkPolyDataWriter 244
vtkPolygonalHandleRepresentation 259
vtkPolygonalHandleRepresentation3D 265
vtkPolygonalSurfaceContourLineInterpolator 277
vtkPolygonalSurfacePointPlacer 265, 277
vtkPostScriptWriter 244
vtkPOutlineCornerFilter 457
vtkPOVExporter 246
vtkPPCAStatistics 197
vtkPPolyDataNormals 461
vtkPProbeFilter 457
vtkProbeFilter 102, 457

SetInputConnection() 102
SetSourceConnection() 102

vtkProcessIdScalars 457
vtkProcessObject

see vtkAlgorithm
vtkProcrustesAlignmentFilter 459
vtkProgrammableAttributeDataFilter 419, 457
vtkProgrammableDataObjectSource 240, 249, 253, 

419, 448
vtkProgrammableFilter 185, 419, 458, 469
vtkProgrammableGlyphFilter 419, 458
vtkProgrammableSource 225, 419, 448
vtkProjectedTerrainPath 278, 461
vtkProjectedTetrahedra 157
vtkProjectedTetrahedraMapper 150, 151, 159, 464
vtkProjectedTexture 458
vtkProp 21, 59, 259, 274, 464

PickableOff() 55
VisibilityOff() 55
VisibilityOn() 55

vtkProp3D 23, 59, 70, 73, 75, 141, 143, 464, 465
AddOrientation() 52
AddPosition() 52
RotateWXYZ() 52
RotateX() 52
SetOrientation() 52
SetOrigin(0 52

SetPosition() 52
SetScale() 52

vtkPropAssembly 60, 274, 465
vtkProperty 23, 25, 53, 139, 143, 149

GetColor() 54
SetAmbientColor() 54
SetColor() 54
SetDiffuseColor() 54
SetOpacity() 55
SetSpecularColor() 54

vtkProperty2D 62
vtkPropPicker 60, 424
vtkPruneTreeFilter 170, 467
vtkPSphereSource 448
vtkQtTreeView 179
vtkQuad 112, 344
vtkQuadricClustering 108, 461

Append() 108
EndAppend() 108
StartAppend() 108

vtkQuadricDecimation 108, 461
vtkQuantizePolyDataPoints 461
vtkRandomGraphSource 466
vtkRandomLayoutStrategy 172
vtkRearrangeFields 251, 252, 458
vtkRectangularButtonSource 448
vtkRectilinearGrid 89, 114, 463
vtkRectilinearGridAlgorithm 386
vtkRectilinearGridClip 463
vtkRectilinearGridGeometryFilter 114, 463
vtkRectilinearGridOutlineFilter 463
vtkRectilinearGridReader 241
vtkRectilinearGridToTetrahedra 463
vtkRectilinearGridWriter 244
vtkRectilinearSynchronizedTemplates 463
vtkRectilinearWipeWidget 282
vtkRecursiveDividingCubes 454
vtkRecursiveSphereDirectionEncoder 152
vtkReflectionFilter 458
vtkRegularPolygonSource 448
vtkRemoveHiddenData 469
vtkRemoveIsolatedVertices 170, 466
vtkRenderedGraphRepresentation 209
vtkRenderedSurfaceRepresentation 177
vtkRenderer 23, 25, 43, 123, 245, 307

AddActor() 43, 57
ResetCamera() 50
SetBackground() 43

vtkRenderers 24
vtkRendererSource 448
vtkRenderLargeImage 247
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vtkRenderView 165, 177
vtkRenderWindow 23, 25, 32, 34, 123, 160, 165, 245, 

307, 421, 425
AddRenderer() 43
desired update rate 159
GetEventPending() 425
OffScreenRenderingOn() 247

vtkRenderWindowInteractor 24, 25, 45, 46, 47, 56, 
59, 61, 72, 74, 255, 256, 257, 259, 421, 424, 
428

Initialize() 43
InteractorStyle 422
LightFollowCameraOff() 46
LightFollowCameraOn() 46
SetInteractorStyle() 423
SetPicker() 46
Start() 421

vtkReverseSense 225, 461
vtkRibbonFilter 461
vtkRIBExporter 246, 248

SetSize() 248
vtkRISReader 242, 467
vtkRotationalExtrusionFilter 217, 461
vtkRowQueryToTable 189, 467
vtkRTAnalyticSource 449
vtkRuledSurfaceFilter 97, 98, 461
vtkRungeKutta2 97
vtkRungeKutta45 97
vtkSampleFunction 216, 449
vtkScalarBar

SetOrientationToVertical() 66
vtkSetOrientationToHorizontal() 66

vtkScalarBarActor 22, 465
vtkScalarBarWidget 72, 272
vtkScalarsToColors 131
vtkScaledTextActor 465
vtkSeedRepresentation 283, 284
vtkSeedWidget 283, 284
vtkSelection 182, 291
vtkSelectionLink 179
vtkSelectionNode 291, 292, 294, 370
vtkSelectPolyData 461
vtkSelectVisiblePoints 69, 458
vtkSESAMEReader 241
vtkSetMacro 388
vtkSetOrientationToHorizontal() 66
vtkSetStringMacro() 407
vtkShepardMethod 224, 458
vtkShrinkFilter 103, 222, 394, 395, 458
vtkShrinkPolyData 461
vtkSimple2DLayoutStrategy 172

vtkSimpleElevationFilter 458
vtkSimpleImageFilterExample 399, 455
vtkSimpleImageToImageFilter 399
vtkSimplePointsReader 242, 406, 407
vtkSLACParticleReader 242
vtkSliceAndDiceLayoutStrategy 176
vtkSliderRepresentation 286
vtkSliderRepresentation2D 286, 287
vtkSliderRepresentation3D 282, 286
vtkSliderWidget 282, 286, 287, 288
vtkSmartPointer 20, 321, 409
vtkSmoothPolyDataFilter 109, 461
vtkSparseArray 200, 201, 203, 204, 382
vtkSpatialRepresentationFilter 458
vtkSphere 215
vtkSphereHandleRepresentation 259, 265, 270
vtkSphereSource 70, 449
vtkSphereWidget 74
vtkSplineFilter 461
vtkSplineGraphEdges 175, 466
vtkSplineWidget 74, 280
vtkSplitField 253, 458
vtkSQLDatabase 187, 189
vtkSQLDatabaseGraphSource 466
vtkSQLDatabaseSchema 190, 191
vtkSQLDatabaseTableSource 467
vtkSQLGraphReader 242, 466
vtkSQLQuery 187, 189, 190
vtkSquarifyLayoutStrategy 176
vtkStackedTreeLayoutStrategy 176
vtkStahlerMetric 468
vtkStandardNewMacro 301
vtkStatisticsAlgorithm 467
vtkStdString 377
vtkSTLReader 241
vtkSTLWriter 245
vtkStreamer 458

SetSourceConnection() 97
vtkStreamingDemandDrivenPipeline 230, 325
vtkStreamLine 458
vtkStreamPoints 458
vtkStreamTracer 96, 458

InitialIntegrationStep 96
MaximumPropagation 96
MaximumPropagationUnit 96
SetIntegrationDirectionToBackward() 97
SetIntegrationDirectionToBoth() 97
SetIntegrationDirectionToForward() 97

vtkStringArray 167, 292, 377
vtkStringToCategory 166, 170
vtkStringToNumeric 170
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vtkStripper 123, 461
vtkStructuredGrid 89, 112, 462
vtkStructuredGridAlgorithm 386
vtkStructuredGridClip 462
vtkStructuredGridGeometryFilter 112, 462
vtkStructuredGridOutlineFilter 462
vtkStructuredGridReader 241
vtkStructuredGridWriter 244
vtkStructuredPoints 89
vtkStructuredPointsReader 240
vtkStructuredPointsWriter 244
vtkSubdivideTetra 463
vtkSubPixelPositionEdgels 461
vtkSuperquadricSource 449
vtkSurfaceReconstructionFilter 225, 458

SampleSpacing 226
vtkSurfaceRepresentation 177
vtkSynchronizedTemplates2D 94, 455
vtkSynchronizedTemplates3D 94, 455
vtkSynchronizedTemplatesCutter3D 455
vtkTable 165, 167, 170, 189, 192, 196, 206, 467
vtkTable Algorithms 467
vtkTableReader 242
vtkTableToGraph 164, 166, 167, 168, 206, 467
vtkTableToSparseArray 206
vtkTableToTreeFilter 168, 169, 468
vtkTableWriter 245
vtkTemplateMacro 400, 405
vtkTemporalDataSet 229, 233
vtkTemporalStatistics 469
vtkTensorGlyph 458
vtkTensorProbeWidget 272
vtkTerrainContourLineInterpolator 278
vtkTerrainDataPointPlacer 265, 278
vtkTerranContourLineInterpolator 278
vtkTetra 307
vtkTextActor 276
vtkTextActor3D 465
vtkTextMapper 62, 63, 464
vtkTextProperty 64, 276

justification 64
vtkTextSource 449
vtkTexture 58
vtkTexturedSphereSource 449
vtkTextureMapToCylinder 111, 458
vtkTextureMapToPlane 111, 458
vtkTextureMapToSphere 111, 458
vtkTextWidget 276
vtkThinPlateSplineTransform 72
vtkThreadedImageAlgorithm 386, 400, 401

ThreadedRequestData() 404

vtkThreshold 91, 458
SetAttributeModeToUseCellData() 91

vtkThresholdPoints 458
vtkThresholdTable 170, 467
vtkThresholdTextureCoords 459
vtkTIFFReader 241
vtkTIFFWriter 244, 247
vtkTkImageViewerWidget 433
vtkTkRenderWidget 48, 258, 433
vtkTransferAttributes 469
vtkTransform 24, 71, 72, 104

GetMatrix() 71
Inverse() 71
PostMultiply() 71
PreMultiply() 71
RotateWXYZ() 71
RotateX() 71
RotateY() 71
RotateZ() 71
Scale() 71
SetMatrix() 71
Translate() 71

vtkTransformFilter 70, 459
vtkTransformPolyDataFilter 70, 71, 72, 95, 461
vtkTransformTextureCoordinates 111
vtkTransformTexture-Coords 112
vtkTransformTextureCoords 459
vtkTransformToGrid 449
vtkTransmitPolyDataPiece 462
vtkTransmitUnstructuredGridPiece 463
vtkTransposeMatrix 206
vtkTree 168, 170, 179, 377, 467
vtkTree Algorithms 467
vtkTreeFieldAggregator 468
vtkTreeLayoutStrategy 172
vtkTreeLevelsFilter 468
vtkTreeMapLayout 468
vtkTreeMapToPolyData 176
vtkTreeMapView 178
vtkTreeOrbitLayoutStrategy 172
vtkTreeReader 242
vtkTreeRingToPolyData 176
vtkTreeRingView 169, 176, 177, 179
vtkTreeWriter 245
vtkTriangleFilter 109, 123, 462
vtkTriangularTCoords 462
vtkTriangularTexture 449
vtkTubeFilter 96, 105, 219, 391, 462

SetVaryRadiusToVaryRadiusByScalar() 97
SetVaryRadiusToVaryRadiusByVector() 97
SetVaryRadiusToVaryRadiusOff() 97
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vtkTulipReader 468
vtkTypedArray 200, 202, 204, 380
vtkTypeMacro() 306
vtkUndirectedGraph 375, 468
vtkUndirectedGraph Algorithms 468
vtkUnsignedIntArray 293
vtkUnstructuredGrid 23, 89, 104, 105, 115, 120, 140, 

142, 147, 150, 157, 161, 394, 462
Allocate() 115

vtkUnstructuredGridAlgorithm 386, 394
RequestData() 395, 396

vtkUnstructuredGridBunykRayCastFunction 157
vtkUnstructuredGridHomogeneousRayIntegrator 158
vtkUnstructuredGridLinearRayIntegrator 158
vtkUnstructuredGridPartialPreIntegration 158
vtkUnstructuredGridPreIntegration 158
vtkUnstructuredGridReader 242
vtkUnstructuredGridVolumeMapper 140
vtkUnstructuredGridVolumeRayCastFunction 157
vtkUnstructuredGridVolumeRayCastMapper 150, 

157, 159, 464
vtkUnstructuredGridVolumeRayIntegrator 157
vtkUnstructuredGridVolumeZSweepMapper 158, 

159, 464
vtkUnstructuredGridWriter 245
vtkUnstructuredGridZSweepMapper 150, 157
vtkusers mailing list 7, 9
vtkVariant 377
vtkVariantArray 167, 292, 377
vtkVectorDot 459
vtkVectorNorm 459
vtkVectorText 65, 449
vtkVersion

GetVTKSourceVersion() 308
vtkVertex 308
vtkVertexDegree 372, 467
vtkVideoSource 449
vtkView 176, 208, 465
vtkVolume 21, 23, 57, 60, 139, 141, 143, 149, 424, 

465
vtkVolumeMapper 140, 150, 151, 161
vtkVolumeProMapper 150, 151
vtkVolumeProperty 23, 139, 141, 143, 145, 146, 147, 

148, 149, 154, 156, 157
vtkVolumeRayCastCompositeFunction 141, 153, 154
vtkVolumeRayCastFunction 153
vtkVolumeRayCastIsosurfaceFunction 153
vtkVolumeRayCastMapper 141, 142, 150, 151, 152, 

153, 154, 159, 464
vtkVolumeRayCastMIPFunction 153
vtkVolumeTextureMapper2D 150, 152, 156, 464

vtkVolumeTextureMapper3D 150, 153, 157, 464
vtkVoxel 114, 119, 339, 341
vtkVoxelContoursToSurfaceFilter 462
vtkVoxelModeller 459
vtkVRMLExporter 246, 248
vtkVRMLImporter 246
vtkWarpLens 459
vtkWarpScalar 100, 459
vtkWarpTo 459
vtkWarpVector 459
vtkWeightedTransformFilter 459
vtkWidgetRepresentation 259
vtkWin32RenderWindowInteractor 47, 421
vtkWin32VideoSource 449
vtkWindowedSincPolyDataFilter 109, 462
vtkWindowLevelLookupTable 123
vtkWindowToImageFilter 247, 248, 449
vtkWorldPointPicker 59, 61, 424
vtkX3DExporter 246
vtkXGMLReader 468
vtkXMLCompositeDataReader 243
vtkXMLCompositeDataWriter 245
vtkXMLDataSetWriters 244
vtkXMLImageDataReader 240
vtkXMLImageDataWriter 244
vtkXMLPImageDataReader 241
vtkXMLPolyDataReader 241
vtkXMLPolyDataWriter 244
vtkXMLPPolyDataReader 241
vtkXMLPPolyDataWriter 245
vtkXMLPRectilinearGridDataReader 241
vtkXMLPRectilinearGridWriter 244
vtkXMLPStructuredGridReader 241
vtkXMLPStructuredGridWriter 244
vtkXMLPUnstructuredGridReader 242
vtkXMLPUnstructuredGridWriter 245
vtkXMLReader 230
vtkXMLRectilinearGridReader 241
vtkXMLRectilinearGridWriter 244
vtkXMLStructuredGridReader 241
vtkXMLStructuredGridWriter 244
vtkXMLTreeReader 168, 242, 468
vtkXMLUnstructuredGridReader 242
vtkXMLUnstructuredGridWriter 245
vtkXMLWriter

SetDataModeToAppended() 243
SetDataModeToAscii() 243
SetDataModeToBinary() 243

vtkXRenderWindowInteractor 47, 421, 428
vtkXYPlot-Actor 67
vtkXYPlotActor 66, 67, 465
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vtkXYPlotActor2D 66
vtkXYPlotWidget 284

W
warping 122
ways to obtain data 42
Widget Hierarchies 261
WidgetActivateEvent 276
Widgets 6, 125, 255, 258, 443
Widgets for probing or manipulating underlying data 

265
windowing systems

integration with 421–434
Java AWT 434
MFC 432
Motif 427
MS Windows 432
Tcl/Tk 433
X 427
Xt 427

window-level transfer function 124
Windows

associate .tcl with vtk.exe 11
world coordinates 62
wrapper 19
Wrapping 6
write a VTK class 305
write an object factory 308
WritePointer 332
Writers 243
writers 243
WriteVoidPointer 330
writing

abstract filter 412
graphics filter 394
imaging filter

simple 399
threaded 401

reader 406
streaming filter 409

Writing Data 190
Writing your own painter 83

X
XML 163, 482
XML File Formats 482
Xt 429
X-Y plots 66

Z
zlib 6
Zoom() 50

ZSweep 158
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